Volume 52 Issue 3
Sep.  2022
Turn off MathJax
Article Contents
Han F, Fan D G, Zhang L Y, Wang Q Y, Gu X C, Wang Z J. Neurological disease and cognitive dynamics (II): Neural oscillations and cognitive dynamics. Advances in Mechanics, 2022, 52(3): 587-622 doi: 10.6052/1000-0992-21-065
Citation: Han F, Fan D G, Zhang L Y, Wang Q Y, Gu X C, Wang Z J. Neurological disease and cognitive dynamics (II): Neural oscillations and cognitive dynamics. Advances in Mechanics, 2022, 52(3): 587-622 doi: 10.6052/1000-0992-21-065

Neurological disease and cognitive dynamics (II): Neural oscillations and cognitive dynamics

doi: 10.6052/1000-0992-21-065
More Information
  • Corresponding author: nmqingyun@163.com
  • Received Date: 2021-12-13
  • Accepted Date: 2022-01-19
  • Available Online: 2022-01-19
  • Publish Date: 2022-09-25
  • The brain nervous system has various oscillatory rhythms, from slow to fast. These rhythmic oscillations are believed to be involved in the realization of various brain functions. The high-frequency Gamma synchronous oscillations are considered to be most related to the cognitive functions of the brain. In this review paper, the research progress of Gamma oscillations and their functions in biological experiments is expounded. Then, concerning the biological observation that the frequency of Gamma oscillations sensitively depends on the characteristics of external stimuli, the dynamical modeling work on the variable-frequency Gamma oscillations and the cognitive functions based on neural network models is also expounded. In this paper, the generation mechanisms of variable-frequency Gamma oscillation dynamics regulated by visual stimuli are explained, and a neurocognitive mechanism of global enhancement of firing rate contrast based on synchronous inhibition is proposed. The research results are helpful to understand the generation mechanisms of synchronous oscillations of nervous system and the cognitive functions and lay a foundation for the study of brain working mechanisms of cognitive activities and brain-like intelligence.

     

  • loading
  • Adjamian P, Hadjipapas A, Barnes G R, et al. 2008. Induced Gamma activity in primary visual cortex is related to luminance and not color contrast: an MEG study. Journal of Vision, 8: 1-7. doi: 10.1167/8.7.1
    Adrian E D. 1935. Discharge frequencies in the cerebral and cerebellar cortex. Proceedings of the Physical Society, 83: 32-33.
    Adrian E D. 1942. Olfactory reactions in the brain of the hedgehog. The Journal of Physiology, 100: 459-473. doi: 10.1113/jphysiol.1942.sp003955
    Aoyagi T, Kang Y, Terada N, et al. 2002. The role of Ca2+ dependent cationic current in generating Gamma frequency rhythmic bursts: modeling study. Neuroscience, 115: 1127-1138. doi: 10.1016/S0306-4522(02)00537-7
    Bastos A M, Briggs F, Alitto H J, et al. 2014. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for Gamma-band. Journal of Neuroscience, 34: 7639-7644. doi: 10.1523/JNEUROSCI.4216-13.2014
    Bartos M, Vida I, Frotscher M, et al. 2002. Fast synaptic inhibition promotes synchronized Gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences of the United States of America, 99: 13222-13227. doi: 10.1073/pnas.192233099
    Bartos M, Vida I, Jonas P. 2007. Synaptic mechanisms of synchronized Gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience, 8: 45-56. doi: 10.1038/nrn2044
    Bathellier B, Lagier S, Faure P, et al. 2006. Circuit properties generating Gamma oscillations in a network model of the olfactory bulb. Journal of Neurophysiology, 95: 2678-2691. doi: 10.1152/jn.01141.2005
    Bathellier B, Carleton A, Gerstner W. 2008. Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous Integrate-and-Fire networks. Neural Computation, 20: 2973-3002. doi: 10.1162/neco.2008.11-07-636
    Bauer M, Stenner M-P, Friston K J, Dolan R J. 2014. Attentional modulation of Alpha/Beta and Gamma oscillations reflect functionally distinct processes. Journal of Neuroscience, 34: 16117-16125. doi: 10.1523/JNEUROSCI.3474-13.2014
    Bear M F, Connors B W, Paradiso M A. 2004. Neuroscience: Exploring the Brain. Beijing: High Education Press
    Bitzenhofer S H, Popplau J A, Hanganu-Opatz I. 2020. Gamma activity accelerates during prefrontal development. Elife, 9: e56795. doi: 10.7554/eLife.56795
    Bland B, Brian H. 1986. The physiology and pharmacology of hippocampal formation Theta rhythms. Progrss in Neurobiology, 26: 1-54. doi: 10.1016/0301-0082(86)90019-5
    Borgers C, Kopell N J. 2008. Gamma oscillations and stimulus selection. Neural Computation, 20: 383-414. doi: 10.1162/neco.2007.07-06-289
    Borgers C, Epstein S, Kopell N J. 2008. Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proceedings of the National Academy of Sciences of the United States of America, 105: 18023-18028. doi: 10.1073/pnas.0809511105
    Bouyer J, Montaron M, Rougeul A. 1981. Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: Cortical and thalamic localizations. Electroencephalography and Clinical Neurophysiology, 51: 244-252. doi: 10.1016/0013-4694(81)90138-3
    Bragin A, Jandó G, Nádasdy Z, et al. 1995. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. Journal of Neuroscience, 15: 47-60. doi: 10.1523/JNEUROSCI.15-01-00047.1995
    Bremer F. 1958. Cerebral and cerebellar potential. Physiological Reviews, 58: 357-388.
    Brette R, Rudolph M, Carnevale T, et al. 2007. Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience, 23: 349-398. doi: 10.1007/s10827-007-0038-6
    Brunet N M, Bosman C A, Vinck M, et al. 2014. Stimulus repetition modulates Gamma-band synchronization in primate visual cortex. Proceedings of the National Academy of Sciences, 111: 3626-3631. doi: 10.1073/pnas.1309714111
    Buzsáki G. 2006. Rhythms of the Brain. Oxford University Press
    Buzsáki G, Draguhn A. 2004. Neuronal oscillations in cortical networks. Science, 304: 1926-1929. doi: 10.1126/science.1099745
    Buzsáki G, Horváth Z, Urioste R, et al. 1992. High-frequency network oscillation in the hippocampus. Science, 256: 1025-1027. doi: 10.1126/science.1589772
    Buzśaki G, Wang X J. 2012. Mechanisms of Gamma oscillations. Annual Review of Neuroscience, 35: 203-225. doi: 10.1146/annurev-neuro-062111-150444
    Canolty R T, Edwards E, Dalal S S, et al. 2006. High Gamma power is phase-locked to Theta oscillations in human neocortex. Science, 313: 1626-1628. doi: 10.1126/science.1128115
    César, Rennó-Costa, Garcia D, et al. 2019. Regulation of Gamma-frequency oscillation by feedforward inhibition: A computational modeling study. Hippocampus, 29: 957-970. doi: 10.1002/hipo.23093
    Chapeau-Blondeau F, Chambet N. 1995. Synapse models for neural networks: From ion channel kinetics to multiplicative coefficient wij. Neural Computation, 7: 713-734. doi: 10.1162/neco.1995.7.4.713
    Cole S R, Voytek B. 2017. Brain oscillations and the importance of waveform shape. Trends in Cognitive Sciences, 21: 137-149. doi: 10.1016/j.tics.2016.12.008
    Dayan P, Abbott L F. 2001. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Mit Press
    Demiralp T, Bayraktaroglu Z, Lenz D, et al. 2007. Gamma amplitudes are coupled to Theta phase in human EEG during visual perception. International Journal of Psychophysiology, 64: 24-30. doi: 10.1016/j.ijpsycho.2006.07.005
    Destexhe A, Mainen Z F, Sejnowski T J. 1998. Kinetic models of synaptic transmission. Methods in Neuronal Modeling, 2: 1-25.
    Doesburg S M, Roggeveen A B, Kitajo K, et al. 2008. Large-scale Gamma-band phase synchronization and selective attention. Cerebral Cortex, 18: 386-396. doi: 10.1093/cercor/bhm073
    Fan J, Byrne J, Worden M S, et al. 2007. The relation of brain oscillations to attentional networks. Journal of Neuroscience, 27: 6197-6206. doi: 10.1523/JNEUROSCI.1833-07.2007
    Fitzgerald P J, Watson B O. 2018. Gamma oscillations as a biomarker for major depression: an emerging topic. Translational Psychiatry, 8: 177. doi: 10.1038/s41398-018-0239-y
    FitzHugh R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1: 445-466. doi: 10.1016/S0006-3495(61)86902-6
    Freeman W J. 1975. Mass Action in the Nervous System. Academic Press
    Frien A, Eckhorn R, Bauer R, et al. 1994. Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. NeuroReport, 5: 2273-2277. doi: 10.1097/00001756-199411000-00017
    Fries P. 2005. A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9: 474-480. doi: 10.1016/j.tics.2005.08.011
    Fries P. 2015. Rhythms for cognition: Communication through coherence. Neuron, 88: 220-235. doi: 10.1016/j.neuron.2015.09.034
    Fries P, Nikolić D, Singer W. 2007. The Gamma cycle. Trends in Neurosciences, 30: 309-316. doi: 10.1016/j.tins.2007.05.005
    Fries P, Reynolds J H, Rorie A E, et al. 2001. Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291: 1560-1563. doi: 10.1126/science.1055465
    Gazit T, Friedman A, Lax E, et al. 2015. Programmed deep brain stimulation synchronizes VTA gamma band field potential and alleviates depressive-like behavior in rats. Neuropharmacology, 91: 135-141. doi: 10.1016/j.neuropharm.2014.12.003
    Glass L. 2001. Synchronization and rhythmic processes in physiology. Nature, 410: 277-284. doi: 10.1038/35065745
    Gieselmann M A, Thiele A. 2008. Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1. European Journal of Neuroscience, 28: 447-459. doi: 10.1111/j.1460-9568.2008.06358.x
    Gray C M, Knig P, Engel A K, et al. 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338: 334-337. doi: 10.1038/338334a0
    Gregory S, Fusca M, Rees G, et al. 2016. Gamma frequency and the spatial tuning of primary visual cortex. PLoS One, 11: e0157374. doi: 10.1371/journal.pone.0157374
    Grossberg S, Versace M. 2008. Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Research, 1218: 278-312. doi: 10.1016/j.brainres.2008.04.024
    Gruber T, Müller M M, Keil A, et al. 1999. Selective visual-spatial attention alters induced Gamma band responses in the human EEG. Clinical Neurophysiology, 110: 2074-2085. doi: 10.1016/S1388-2457(99)00176-5
    Gu X C, Han F, Wang Z J, et al. 2019. Dependency of Gamma oscillations in E/I neuronal network on illumination contrast of external stimulus. Theoretical & Applied Mechanics Letters, 9: 21-27.
    Gu X C, Han F, Wang Z J. 2021a. Dependency analysis of frequency and strength of Gamma oscillations on input difference between excitatory and inhibitory neurons. Cognitive Neurodynamics, 15: 501-515. doi: 10.1007/s11571-020-09622-5
    Gu X C, Han F, Wang Z J, Kashif K, et al. 2021b. Enhancement of Gamma oscillations in E/I neural networks by increase of difference between external inputs. Electronic Research Archive, 29: 3227-3241. doi: 10.3934/era.2021035
    Han F, Gu X, Wang Z J, et al. 2018. Global firing rate contrast enhancement in E/I neuronal networks by recurrent synchronized inhibition. Chaos, 28: 106324. doi: 10.1063/1.5037207
    Han F, Wang Z J, Fan H, et al. 2020. High-frequency synchronization improves firing rate contrast and information transmission efficiency in E/I neuronal networks. Neural Plasticity, 2020: 8823111.
    Han F, Wang Z J, Fan H. 2017. Determine neuronal tuning curves by exploring optimum firing rate distribution for information efficiency. Frontiers in Computational Neuroscience, 11: 10.
    Hauck M, Lorenz J, Engel A K. 2007. Attention to painful stimulation enhances γ-band activity and synchronization in human sensorimotor cortex. Journal of Neuroscience, 27: 9270-9277. doi: 10.1523/JNEUROSCI.2283-07.2007
    Henrie J A, Kang K, Shapley R. 2005. Stimulus size affects the LFP spectral contents in primate V1. Society for Neuroscience, 35: 18.
    Henrie J A, Shapley R. 2005. LFP power spectra in v1 cortex: The graded effect of stimulus contrast. Journal of Neurophysiology, 94: 479-490. doi: 10.1152/jn.00919.2004
    Herrmann C S, Murray M M, Ionta S, et al. 2016. Shaping intrinsic neural oscillations with periodic stimulation. Journal of Neuroscience, 36: 5328-5337. doi: 10.1523/JNEUROSCI.0236-16.2016
    Hindmarsh J L, Rose R M. 1982. A model of the nerve impulse using two first-order differential equations. Nature, 296: 162-164. doi: 10.1038/296162a0
    Hipp J F, Engel A K, Siegel M. 2011. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron, 69: 387-396. doi: 10.1016/j.neuron.2010.12.027
    Hodgkin A L, Huxley A F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. Journal of Physiology, 116: 449. doi: 10.1113/jphysiol.1952.sp004717
    Howard M W, Rizzuto D S, Caplan J B, et al. 2003. Gamma oscillations correlate with working memory load in humans. Cerebral Cortex, 13: 1369-1374. doi: 10.1093/cercor/bhg084
    Hutt A, Mierau A, Lefebvre J. 2016. Dynamic control of synchronous activity in networks of spiking neurons. PLoS ONE, 11: e0161488. doi: 10.1371/journal.pone.0161488
    Huxter J, Burgess N, O’Keefe1 J. 2003. Independent rate and temporal coding in hippocampal pyramidal cells. Nature, 425: 828-832. doi: 10.1038/nature02058
    Izhikevich E M. 2003. Simple model of spiking neurons. IEEE Transactions on Neural Networks and Learning Systems, 14: 1569-1572. doi: 10.1109/TNN.2003.820440
    Jadi M P, Behrens M M, Sejnowski T J. 2016. Abnormal Gamma oscillations in N-methyl-D-aspartate receptor hypofunction models of schizophrenia. Biological Psychiatry, 79: 716-726. doi: 10.1016/j.biopsych.2015.07.005
    Jadi M P, Sejnowski T J. 2014a. Cortical oscillations arise from contextual interactions that regulate sparse coding. Proceedings of the National Academy of Sciences of the United States of America, 111: 6780-6785. doi: 10.1073/pnas.1405300111
    Jadi M P, Sejnowski T J. 2014b. Regulating cortical oscillations in an inhibition-stabilized network. Proceedings of the IEEE, 102: 830-842. doi: 10.1109/JPROC.2014.2313113
    Jasper H, Penfield W. 1949. Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus. European Archives of Psychiatry and Clinical Neuroscience, 183: 163-174.
    Jensen O, Tesche C D. 2010. Frontal Theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15: 1395-1399.
    Jerbi K, Hamamé C M, Ossandón T, et al. 2008. Role of posterior parietal Gamma activity in planning prosaccades and antisaccades. Journal of Neuroscience, 28: 13713-13715. doi: 10.1523/JNEUROSCI.4896-08.2008
    Jia X, Tanabe S, KohnA. 2013a. Gamma and the coordination of spiking activity in early visual cortex. Neuron, 77: 762-774. doi: 10.1016/j.neuron.2012.12.036
    Jia X, Xing D, Kohn A. 2013b. No consistent relationship between Gamma power and peak frequency in macaque primary visual cortex. Journal of Neuroscience, 33: 17-25. doi: 10.1523/JNEUROSCI.1687-12.2013
    Kahana M J, Sekuler R, Caplan J B, et al. 1999. Human Theta oscillations exhibit task dependence during virtual maze navigation. Nature, 399: 781-784. doi: 10.1038/21645
    Kaiser J, Bühler M, Lutzenberger W. 2004. Magnetoencephalographic Gamma-band responses to illusory triangles in humans. NeuroImage, 23: 551-560. doi: 10.1016/j.neuroimage.2004.06.033
    Kang K, Shelley M, Henrie J A, et al. 2010. LFP Spectral peaks in V1 cortex: network resonance and cortico-cortical feedback. Journal of Computational Neuroscience, 29: 495-507. doi: 10.1007/s10827-009-0190-2
    Khalid A, Kim BS, Seo BA, et al. 2016. Gamma oscillation in functional brain networks is involved in the spontaneous remission of depressive behavior induced by chronic restraint stress in mice. BMC Neurosci, 17: 4.
    Kim J, Bertalmio M. 2015. Investigating the effect of lateral inhibition in the retinal circuitry on lightness contrast and assimilation: a model study. Journal of Vision, 15: 633. doi: 10.1167/15.12.633
    Koch S P, Werner P, Steinbrink J, et al. 2009. Stimulus-induced and state-dependent sustained Gamma activity is tightly coupled to the hemodynamic response in humans. Journal of Neuroscience, 29: 13962-13970. doi: 10.1523/JNEUROSCI.1402-09.2009
    Kopell N J, Gritton H J, Whittington M A, Kramer M A. 2014. Beyond the connectome: the dynome. Neuron, 83: 1319-1328. doi: 10.1016/j.neuron.2014.08.016
    Kostal L, Lansky P. 2013. Information capacity and its approximations under metabolic cost in a simple homogeneous population of neurons. Biosystems, 112: 265-275. doi: 10.1016/j.biosystems.2013.03.019
    Kropotov J D. 2009. Quantitative EEG, Event-Related Potentials and Neurotherapy. Academic Press.
    Lapicque L. 1907. Recherches quantitatives sur l'excitation electrique des nerfs traitée comme une polarization. Journal of Physiology and Pathology General, 9: 620-635.
    Lefebvre J, Hutt A, Knebel J F, et al. 2015. Stimulus statistics shape oscillations in nonlinear recurrent neural networks. Journal of Neuroscience, 35: 2895-2903. doi: 10.1523/JNEUROSCI.3609-14.2015
    Li K T, Liang J, Zhou C. 2021. Gamma oscillations facilitate effective learning in excitatory-inhibitory balanced neural circuits. Neural Plasticity, 7: 1-18.
    Lu Y, Sarter M, Zochowski M, et al. 2020. Phasic cholinergic signaling promotes emergence of local Gamma rhythms in excitatory–inhibitory networks. European Journal of Neuroscience, 52: 3545-3560. doi: 10.1111/ejn.14744
    Magazzini L, Singh K D. 2018. Spatial attention modulates visual Gamma oscillations across the human ventral stream. NeuroImage, 166: 219-229. doi: 10.1016/j.neuroimage.2017.10.069
    Masuda N. 2009. Selective population rate coding: A possible computational role of Gamma oscillations in selective attention. Neural Computation, 21: 3335-3362. doi: 10.1162/neco.2009.09-08-857
    Mcclelland J L, Rumelhard D E. 1986. Exploration in Parallel Distributed Processing, A Handbook of Models, Programs, and Exercises. Cambridge: MIT Press
    McCulloch W S, Pitts W. 1943. A logical calculus of the ideas immanent in neurons activity. Bulletin of Mathematical Biophysics, 5: 115-133. doi: 10.1007/BF02478259
    Morrison A, Aertsen A, Diesmann M. 2007. Spike-timing dependent plasticity in balanced random networks thanks. Neural Computation, 19: 1437-1467. doi: 10.1162/neco.2007.19.6.1437
    Moujahid A, d'Anjou A, Torrealdea F J, Torrealdea F. 2011. Energy and information in Hodgkin-Huxley neurons. Physical Review E, 83: 031912. doi: 10.1103/PhysRevE.83.031912
    Mountcastle V B. 1997. The columnar organization of the neocortex. Brain, 120: 701-722. doi: 10.1093/brain/120.4.701
    Muthukumaraswamy S D, Singh K D. 2013. Visual Gamma oscillations: the effects of stimulus type, visual field coverage and stimulus motion on meg and EEG recordings. NeuroImage, 69: 223-230. doi: 10.1016/j.neuroimage.2012.12.038
    Neymotin S A, Lee H, Park E, et al. 2011. Emergence of physiological oscillation frequencies in a computer model of neocortex. Frontiers in Computational Neuroscience, 5: 19.
    Oliveira L D R, Gomes R M, Santos B A, et al. 2019. Effects of the parameters on the oscillation frequency of Izhikevich spiking neural networks. Neurocomputing, 337: 251-261. doi: 10.1016/j.neucom.2019.01.071
    Onslow A C E, Jones M W, Bogacz R. 2014. A canonical circuit for generating phase-amplitude coupling. PLoS ONE, 9: e102591. doi: 10.1371/journal.pone.0102591
    Orekhova E V, Butorina A V, Sysoeva O V, et al. 2015. Frequency of Gamma oscillations in humans is modulated by velocity of visual motion. Journal of Neurophysiology, 114: 244-255. doi: 10.1152/jn.00232.2015
    Osipova D, Takashima A, Oostenveld R, et al. 2006. Theta and Gamma oscillations predict encoding and retrieval of declarative memory. Journal of Neuroscience, 26: 7523-7531. doi: 10.1523/JNEUROSCI.1948-06.2006
    Panzeri S, Brunel N, Logothetis N K, et al. 2010. Sensory neural codes using multiplexed temporal scales. Trends in Neurosciences, 33: 111-120. doi: 10.1016/j.tins.2009.12.001
    Peng X, Wang Z, Han F, et al. 2018. A novel time-event-driven algorithm for simulating spiking neural networks based on circular array. Neurocomputing, 292: 121-129. doi: 10.1016/j.neucom.2018.02.085
    Perry G, Randle J M, Koelewijn L, et al. 2015. Linear tuning of Gamma amplitude and frequency to luminance contrast: evidence from a continuous mapping paradigm. PLoS One, 10: e0124798. doi: 10.1371/journal.pone.0124798
    Peter A, Stauch B J, Shapcott K, et al. 2021. Stimulus-specific plasticity of macaque V1 spike rates and Gamma. Cell Reports, 37: 110086. doi: 10.1016/j.celrep.2021.110086
    Petersen C C H, Sakmann B. 2013. Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging. Journal of Neuroscience, 21: 8435-8446.
    Pesaran B, Pezaris J, Sahani M, et al. 2002. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience, 5: 805-811. doi: 10.1038/nn890
    Rall W. 1967. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30: 1138-1168. doi: 10.1152/jn.1967.30.5.1138
    Ray S, Maunsell J H R. 2010. Differences in Gamma frequencies across visual cortex restrict their possible use in computation. Neuron, 67: 885-896. doi: 10.1016/j.neuron.2010.08.004
    Ray S, Maunsell J H R. 2011. Different origins of Gamma rhythm and high-Gamma activity in macaque visual cortex. PLoS Biology, 9: e1000610. doi: 10.1371/journal.pbio.1000610
    Richard A Y. 1987. The gaussian derivative model for spatial vision: i. retinal mechanisms. Spatial Vision, 2: 273-293. doi: 10.1163/156856887X00222
    Rodieck R W. 1965. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research, 5: 583-601. doi: 10.1016/0042-6989(65)90033-7
    Rodieck R W. 1975. Analysis of receptive fields of cat retinal ganglion cells. Journal of Neurophysiology, 28: 833-849.
    Sacerdote L, Giraudo M T. 2013. Stochastic integrate and fire models: a review on mathematical methods and their applications. Quantitative Biology, 2058: 99-148.
    Saleem A B, Lien A D, Krumin M, et al. 2017. Subcortical source and modulation of the narrowband Gamma oscillation in mouse visual cortex. Neuron, 93: 315-322. doi: 10.1016/j.neuron.2016.12.028
    Sato Y, Ochi A, Mizutani T, Otsubo H. 2019. Low entropy of interictal Gamma oscillations is a biomarker of the seizure onset zone in focal cortical dysplasia type II. Epilepsy & Behavior, 96: 155-159.
    Schnitzler A, Gross J. 2005. Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6: 285-296. doi: 10.1038/nrn1650
    Schroeder C E, Lakatos P. 2009. Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32: 9-18. doi: 10.1016/j.tins.2008.09.012
    Schwarzkopf D S, Robertson D J, Song C, et al. 2012. The Frequency of visually induced Gamma-band oscillations depends on the size of early human visual cortex. Journal of Neuroscience, 32: 1507-1512. doi: 10.1523/JNEUROSCI.4771-11.2012
    Sengupta B, Laughlin S B, Niven J E. 2014. Consequences of converting graded to action potentials upon neural information coding and energy efficiency. PLoS Computational Biology, 10: e1003439. doi: 10.1371/journal.pcbi.1003439
    Senkowski D, Schneider T R, Foxe J J, Engel A K. 2008. Crossmodal binding through neural coherence: implications for multisensory processing. Trends in Neurosciences, 31: 401-409. doi: 10.1016/j.tins.2008.05.002
    Sherfey J, Ardid S, Miller E K, et al. 2020. Prefrontal oscillations modulate the propagation of neuronal activity required for working memory. Neurobiology of Learning and Memory, 173: 107228. doi: 10.1016/j.nlm.2020.107228
    Siegel M, Donner T H, Engel A K. 2012. Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13: 121-134. doi: 10.1038/nrn3137
    Siegel M, Donner T H, Oostenveld R, et al. 2008. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron, 60: 709-719. doi: 10.1016/j.neuron.2008.09.010
    Singer W, Gray C M. 1995. Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18: 555-586. doi: 10.1146/annurev.ne.18.030195.003011
    Sokolov A, Lutzenberger W, Pavlova M, et al. 1999. Gamma-band meg activity to coherent motion depends on task-driven attention. NeuroReport, 10: 1997-2000. doi: 10.1097/00001756-199907130-00001
    Storchi R, Bedford R A, Martial F P, et al. 2017. Modulation of fast narrowband oscillations in the mouse retina and dLGN according to background light intensity. Neuron, 93: 299-307. doi: 10.1016/j.neuron.2016.12.027
    Swettenham J B, Muthukumaraswamy S D, Singh K D. 2009. Spectral properties of induced and evoked Gamma oscillations in human early visual cortex to moving and stationary stimuli. Journal of Neurophysiology, 102: 1241-1253. doi: 10.1152/jn.91044.2008
    Tan L L, Oswald M J, Kuner B, 2021. Neurobiology of brain oscillations in acute and chronic pain. Trends in Neurosciences, 44: 629-642.
    Tiesinga P, Sejnowski T J. 2009. Cortical enlightenment: are attentional Gamma oscillations driven by ING or PING. Neuron, 63: 727-732. doi: 10.1016/j.neuron.2009.09.009
    Trujillo C A, Gao R, Negraes P D. et al. 2019. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell, 25: 1-12.
    Valley M T, Firestein S A, 2008. Lateral look at olfactory bulb lateral inhibition. Neuron, 59: 682-684.
    Vanderwolf C H. 1969. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and Clinical Neurophysiology, 26: 407-418. doi: 10.1016/0013-4694(69)90092-3
    Vida I, Bartos M, Jonas P. 2006. Shunting inhibition improves robustness of Gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron, 49: 107-117. doi: 10.1016/j.neuron.2005.11.036
    Vinck M, Batista-Brito R, Knoblich U, et al. 2015. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron, 86: 740-754. doi: 10.1016/j.neuron.2015.03.028
    Wallace E, Benayoun M, Van Drongelen W, et al. 2011. Emergent oscillations in networks of stochastic spiking neurons. PLoS ONE, 6: e14804. doi: 10.1371/journal.pone.0014804
    Wang X J. 2010. Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90: 1195-1268. doi: 10.1152/physrev.00035.2008
    Wang X J, Buzsáki G. 1996. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16: 6402-6413. doi: 10.1523/JNEUROSCI.16-20-06402.1996
    Wang Y H, Wang R B, Xu X Y. 2017. Neural energy supply-consumption properties based on Hodgkin-Huxley model. Neural Plasticity, 2017: 6207141.
    Wang Z J, Han F, Aihara K. 2011. Three synaptic components contributing to robust network synchronization. Physical Review E, 83: 051905. doi: 10.1103/PhysRevE.83.051905
    Wang Z J, Peng X, Han F, et al. 2020. A novel parallel clock-driven algorithm for simulation of neuronal networks based on virtual synapse. Simulation:Transactions of the Society for Modeling and Simulation International, 96: 415-427. doi: 10.1177/0037549720903804
    Whittington M A, Traub R D, Jefferys J G R. 1995. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373: 612-615. doi: 10.1038/373612a0
    Wildie M, Shanahan M. 2012. Establishing communication between neuronal populations through competitive entrainment. Frontiers in Computational Neuroscience, 5: 62.
    Xing D, Yeh C, Burns S, et al. 2012. Laminar analysis of visually evoked activity in the primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 109: 13871-13876.
    Zhu Z, Wang R, Zhu F. 2018. The energy coding of a structural neural network based on the Hodgkin-Huxley model. Frontiers in Neuroscience, 12: 122. doi: 10.3389/fnins.2018.00122
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(2)

    Article Metrics

    Article views (2896) PDF downloads(342) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return