Citation: | Li Y H, Wu Y, Liang H, Zhu Y F, Zhang H D, Guo S G. Exploration and outlook of plasma-actuated gas dynamics. Advances in Mechanics, 2022, 52(1): 1-32 doi: 10.6052/1000-0992-21-044 |
[1] |
杜海. 2016. 纳秒脉冲介质阻挡放电等离子体激励器流动控制原理及应用研究. [博士论文]. 南京航空航天大学
Du H. 2016. Research on principle and application of flow control of nanosecond pulse dielectric barrier discharge plasma actuator. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics
|
[2] |
洪延姬, 李倩, 王殿楷. 2016. 超声速飞行器的激光空气锥减阻方法. 北京: 科学出版社
Hong Y J, Li Q, Wang Y K. 2016. Laser air cone drag reduction method for supersonic aircraft. Beijing: Science Press
|
[3] |
李洋, 梁华, 贾敏, 宋慧敏, 李军, 魏彪. 2018. 等离子体合成射流改善翼型气动性能实验研究. 推进技术, 9: 28-34 (Li Y, Liang H, Jia M, Song H M, Li J, Wei B. 2018. Experimental research on improving airfoil aerodynamic performance by plasma synthetic jet. Journal of Propulsion Technology, 9: 28-34).
|
[4] |
李应红, 吴云, 梁华, 等. 2010. 提高抑制流动分离能力的等离子体冲击流动控制原理. 科学通报, 55: 3060-3068 (Li Y H, Wu Y, Liang H, et al. 2010. The mechanism of plasma shock flow control for enhancing flow separation control capability. Chinese Science Bulletin (Chinese Ver)
|
[5] |
李应红, 吴云. 2020. 等离子体激励调控流动与燃烧的研究进展与展望. 中国科学:技术科学, 50: 1252-1273 (Li Y H, Wu Y. 2020. Research progress and outlook of flow control and combustion control using plasma actuation. Science China Technological Sciences, 50: 1252-1273).
|
[6] |
彭倩. 2018. 基于等离子体激励器控制湍流边界层减阻的参数优化研究. [硕士论文]. 深圳: 哈尔滨工业大学
Peng Q. 2018. Parametric optimization of plasma actuators for drag reduction in a turbulent boundary layer. [Master Thesis]. Shenzhen: Harbin University of Technology
|
[7] |
苏志, 李军, 梁华, 魏彪, 陈杰. 2018. 多路等离子体合成射流改善翼型性能实验研究. 推进技术, 9: 1928-1937 (Su Z, Li J, Liang H, Wei B, Chen J. 2018. Experimental research on the improvement of airfoil performance by multi-path plasma synthetic jet. Journal of Propulsion Technology, 9: 1928-1937).
|
[8] |
吴云, 李应红, 朱俊强. 2007. 等离子体气动激励扩大低速轴流式压气机稳定性的实验. 航空动力学报, 22: 2025-2030 (Wu Y, Li Y H, Zhu J Q. 2007. Experiment on enlarging the stability of low-speed axial compressor by plasma aerodynamic actuation. Journal of Aerospace Power, 22: 2025-2030). doi: 10.3969/j.issn.1000-8055.2007.12.009
|
[9] |
吴云, 李应红, 朱俊强. 2009. 等离子体气动激励抑制压气机叶栅角区流动分离的仿真与实验. 航空动力学报, 24: 830-835 (Wu Y, Li Y H, Zhu J Q. 2009. Simulation and experiment of plasma aerodynamic actuation to suppress the flow separation in the corner of compressor cascade. Journal of Aerospace Power, 24: 830-835).
|
[10] |
吴云, 李应红. 2015. 等离子体流动控制研究进展与展望. 航空学报, 36: 381-405 (Wu Y, Li Y H. 2015. Progress and outlook of plasma flow control. Acta Aeronautica et Astronautica Sinica, 36: 381-405).
|
[11] |
吴云, 张海灯, 于贤君, 等. 2017. 轴流压气机等离子体流动控制. 工程热物理学报, 38: 1396-1414 (Wu Y, Zhang H D, Yu X J, et al. 2017. Plasma flow control of axial compressor. Journal of Engineering Thermophysics, 38: 1396-1414).
|
[12] |
张海灯, 李应红, 吴云, 等. 2014a. 高速压气机叶栅纳秒脉冲等离子体流动控制仿真研究. 航空学报, 35: 1560-1570 (Zhang H D, Li Y H, Wu Y, et al. 2014a. Simulation research on nanosecond pulsed plasma flow control of high-speed compressor cascade. Acta Aeronautica et Astronautica Sinica, 35: 1560-1570).
|
[13] |
张海灯, 吴云, 贾敏, 等. 2014b. 压气机叶栅内流环境中纳秒脉冲等离子体的气动激励特性. 高电压技术, 40: 2140-2149 (Zhang H D, Wu Y, Jia M, et al. 2014b. Aerodynamic actuation characteristics of nanosecond pulsed plasma in the internal flow environment of compressor cascade. High Voltage Engineering, 40: 2140-2149).
|
[14] |
张海灯, 吴云, 李应红, 等. 2014c. 叶栅等离子体流动控制布局优化和影响规律. 航空动力学报, 29: 2593-2605 (Zhang H D, Wu Y, Li Y H, et al. 2014c. Optimization and influence law of cascade plasma flow control layout. Journal of Aerospace Power, 29: 2593-2605).
|
[15] |
张海灯, 吴云, 李应红, 汪一舟, 王长凯. 2020. 纳秒脉冲等离子体激励调控压气机叶型附面层流动探索研究. 工程热物理学报, 41: 2147-2153 (Zhang H D, Wu Y, Li Y H, Wang Y Z, Wang C K. 2020. Research on nanosecond pulsed plasma actuation to regulate the flow of compressor blade surface layer. Journal of Engineering Thermophysics, 41: 2147-2153).
|
[16] |
张海灯, 吴云, 于贤君, 刘宝杰. 2019. 高负荷压气机失速及其等离子体流动控制. 工程热物理学报, 40: 289-299 (Zhang H D, Wu Y, Yu X J, Liu B J. 2019. High-load compressor stall and its plasma flow control. Journal of Engineering Thermophysics, 40: 289-299).
|
[17] |
张鑫, 黄勇, 阳鹏宇. 2018. 等离子体无人机失速分离控制飞行实验. 航空学报, 39: 121587 (Zhang X, Huang Y, Yang P Y. 2018. Stall separation control using plasma of UAV flight experiment. Acta Aeronautica et Astronautica Sinica, 39: 121587).
|
[18] |
赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 2015. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 64: 015101 (Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H. 2015. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta. Phys. Sin-Ch. Ed., 64: 015101). doi: 10.7498/aps.64.015101
|
[19] |
赵光银. 2015. 翼型/三角翼等离子体冲击流动控制机理研究. [博士论文]. 西安: 空军工程大学
Zhao G Y. 2015. Research on the mechanism of airfoil/delta wing plasma flow control. [PhD Thesis]. Xi'an: Air Force Engineering University
|
[20] |
赵勤, 吴云, 李应红, 等. 2013. 端壁等离子体气动激励抑制高负荷压气机叶栅角区流动分离实验. 航空动力学报, 28: 2129-2139 (Zhao Q, Wu Y, Li Y H, et al. 2013. Experimental study of end-wall plasma aerodynamic actuation to suppress flow separation in the corner region of a high-load compressor cascade. Journal of Aerospace Power, 28: 2129-2139).
|
[21] |
赵小虎, 李应红, 岳太鹏. 2011. 等离子体气动激励抑制高负荷压气机叶栅流动分离的实验研究. 高电压技术, 37: 1521-1528 (Zhao X H, Li Y H, Yue T P. 2011. Experimental research on plasma aerodynamic actuation to suppress flow separation in high-load compressor cascade. High Voltage Engineering, 37: 1521-1528).
|
[22] |
赵小虎, 吴云, 李应红, 等. 2012. 高负荷压气机叶栅分离结构及其等离子体流动控制. 航空学报, 33: 208-219 (Zhao X H, Wu Y, Li Y H, et al. 2012. Separation structure of high-load compressor cascade and its plasma flow control. Acta Aeronautica et Astronautica Sinica, 33: 208-219).
|
[23] |
Adelgren R, Elliott G, Knight D, Zheltovodov A, Beutner A. 2001. Energy deposition in supersonic flows// 39th AIAA Aerospace Sciences Meeting and Exhibit, 2001-0885
|
[24] |
Akcayoz E, Vo H D, Mahallati A. 2016. Controlling corner stall separation with plasma actuators in a compressor cascade. J. Turbomach., 138: 081008. doi: 10.1115/1.4032675
|
[25] |
Alexandre V L, Mikhail N S, Dmitry F O, Richard B M and Sergey O M. 2010. Limitations of the DBD effects on the external flow// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010-470
|
[26] |
Anderson K V, Knight D D. 2012. Plasma jet for flight control. AIAA J., 50: 1855-1872. doi: 10.2514/1.J051309
|
[27] |
Ashrafi F, Michaud M, Vo H D. 2016. Delay of rotating stall in compressors using plasma actuators. J. Turbomach., 138: 091009. doi: 10.1115/1.4032840
|
[28] |
Bedin A P, Mishin G I. 1995. Ballistic studies of the aerodynamics drag on a sphere in ionized air. Tech. Phys. Lett., 21: 5-7.
|
[29] |
Belson B, Meidell K, Hanson R. 2012. Comparison of Plasma Actuators in Simulations and Experiments for Control of Bypass Transition// In: AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, 2012-1141
|
[30] |
Bin W, Chao G, Feng L, Xue M, Wang Y and Zheng B. 2019. Reduction of turbulent boundary layer drag through DBD plasma actuation based on the Spalding formula. Plasma. Sci. Technol., 21: 045501. doi: 10.1088/2058-6272/aaf2e2
|
[31] |
Caruana D, Rogier F, Dufour G, Gleyzes. 2013. The plasma synthetic jet actuator, physics, modeling and flow control application on separation. Aerospace Lab., 1-13.
|
[32] |
Cheng X Q, Wong C W, Hussain F, W Schröder, Zhou Y. 2021. Flat plate drag reduction using plasma-generated streamwise vortices. J. Fluid. Mech., 918: A24. doi: 10.1017/jfm.2021.311
|
[33] |
Chiatto M, de Luca L. 2017. Numerical and experimental frequency response of plasma synthetic jet actuators// 55th AIAA Aerospace Sciences Meeting, 2017-1884
|
[34] |
Choi K S, Jukes T, Whalley R. 2011. Turbulent boundary-layer control with plasma actuators. Philos. T. R. Soc. A., 369: 1443-1458. doi: 10.1098/rsta.2010.0362
|
[35] |
Correale G, Michelis T, Popov I. 2013. Disturbance introduced into a laminar Boundary Layer by a NS-DBD plasma actuator// AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, 2013-0752
|
[36] |
Correale G, Michelis T, Ragni D, Kotsonis M, Scarano F. 2014. Nanosecond-pulsed plasma actuation in quiescent air and laminar boundary layer. J. Phys. D., 47: 264264.
|
[37] |
Dong H, Geng X, Shi Z, Cheng K, Cui Y D, Khoo B C. 2019. On evolution of flow structures induced by nanosecond pulse discharge inside a plasma synthetic jet actuator. Jpn. J. Appl. Phys., 58: 028002. doi: 10.7567/1347-4065/aaf6e5
|
[38] |
Du Y Q, Symeonidis V, George E K. 2002. Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid. Mech., 457: 1-34. doi: 10.1017/S0022112001007613
|
[39] |
Duchmann A, Grundmann S, Tropea C. 2012. Delay of natural transition with dielectric barrier discharges. Exp. Fluids, 54: 1461.
|
[40] |
Duchmann A, Simon B, Magin P. 2013. In-flight transition delay with DBD plasma actuators// AIAA Aerospace Sciences Meeting, 2013-0900
|
[41] |
Duong A H, Corke T C, Thomas F O. 2021. Characteristics of drag-reduced turbulent Boundary layers with pulsed-direct-current plasma actuation. J. Fluid. Mech., 915: A113. doi: 10.1017/jfm.2021.167
|
[42] |
Elias P Q, Severac N, Luyssen M, Tobeli O, Lambert F, Bur R, Houard A. 2018. Experimental investigation of linear energy deposition using femtosecond laser filamentation in a M=3 supersonic flow// 54th AIAA/SEA/ASEE Joint Propulsion Conference, 2018-4896
|
[43] |
Fang Y, Hong Q, Li H. 2011. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions. Journal of Physics Conference: Series, 276: 012021. doi: 10.1088/1742-6596/276/1/012021
|
[44] |
Gaitonde D V. 2013. Analysis of plasma-based flow control mechanisms through large-eddy simulations. Comput. Fluids, 85: 19-26. doi: 10.1016/j.compfluid.2012.09.004
|
[45] |
Gan T, Wu Y, Sun Z Z, Jin D. 2018. Shock wave boundary layer interaction controlled by surface arc plasma actuators. Phys. Fluids, 30: 055107. doi: 10.1063/1.5013166
|
[46] |
Ganiev Y C, Gordeev V P, Krasilnikov A V, et al. 2000. Aerodynamic drag reduction by plasma and hot-gas injection. J. Thermophys. Heat Transfer, 14: 10-17. doi: 10.2514/2.6504
|
[47] |
Greenblatt D, Kastantin Y, Nayeriet C N. 2007. Delta wing flow control using dielectric barrier discharge actuators. AIAA J., 46: 1554-1660.
|
[48] |
Greene B R, Clemens N T, Magari T, Micka D. 2015. Control of mean separation in shock boundary layer interaction using pulsed plasma jets. Shock Waves, 25: 495-505. doi: 10.1007/s00193-014-0524-5
|
[49] |
Grossman K, Bohdan C, van Wie D. 2003. Spark jet actuators for flow control// 41st Aerospace Sciences Meeting and Exhibit, 2003-53
|
[50] |
Grundmann S, Frey M, Tropea C. 2009. Unmanned aerial vehicle (UAV) with plasma actuators for separation control// 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009-698
|
[51] |
Grundmann S, Tropea C. 2007. Experimental transition delay using glow-discharge plasma actuators. Exp. Fluids, 42: 653-657. doi: 10.1007/s00348-007-0256-8
|
[52] |
Grundmann S, Tropea C. 2008. Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators. Exp. Fluids, 44: 795-806. doi: 10.1007/s00348-007-0436-6
|
[53] |
Haack S, Taylor T, Emhoff, Cybyk B. 2010. Development of an analytical spark jet model// 5th Flow Control Conference, 2010-4979
|
[54] |
Han M H, Li J, Niu Z G, Liang H, Zhao G Y, Hua W Z. 2015. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator. Chin. J. Aeronaut., 28: 377-384. doi: 10.1016/j.cja.2015.02.006
|
[55] |
Hanson R, Lavoie P, Bade K. 2012. Steady-state closed-loop control of bypass boundary layer transition using plasma actuators// AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, 012-1140
|
[56] |
Hardy P, Barricau P, Caruana D, Gleyzes C, Belinger A, Cambronne P. 2010. Plasma synthetic jet for flow control// 40th Fluid Dynamics Conference and Exhibit, 2010-5103
|
[57] |
Huang B, Zhang C, Adamovich I, Akishev Y, Shao T. 2020. Surface ionization wave propagation in the nanosecond pulsed surface dielectric barrier discharge: the influence of dielectric material and pulse repetition rate. Plasma Sources Sci. Technol., 29: 044001. doi: 10.1088/1361-6595/ab7854
|
[58] |
Jothiprasad G, Murray R C, Essenhigh K. 2011. Control of tip-clearance flow in a low-speed axial compressor rotor with plasma actuation. J. Turbomach., 134: 021019.
|
[59] |
Jukes T N, Choi K S, Johnson G A. 2016. Turbulent drag reduction by surface plasma through spanwise flow oscillation// 3rd AIAA Flow Control Conference, 2016-3693
|
[60] |
Kaparos P, Koltsakidis S, Panagiotou P. 2018. Experimental investigation of DBD plasma actuators on a BWB aerial vehicle model// 2018 Flow Control Conference, 2018-4028
|
[61] |
Keisuke T, Yvette Z, Walter R L, Igor V A. 2011. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses. Plasma Sources Sci. T., 20: 055009. doi: 10.1088/0963-0252/20/5/055009
|
[62] |
Kelley C L, Bowles P O, Cooney. 2014. Leading edge separation control using alternating-current and nanosecond pulse plasma actuator. AIAA J., 52: 1871-1884. doi: 10.2514/1.J052708
|
[63] |
Khorunzhenko V, Roupassov D, Starikovskii A. 2002. Hypersonic flow and shock wave structure control by low temperature nonequilibrium plasma of gas discharge// 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002-3569
|
[64] |
Kim H, Ahn S, Kim K H. 2018. Numerical analysis on jet formation process of spark jet actuator// 2018 AIAA Aerospace Sciences Meeting, 2018-1552
|
[65] |
Klimov A I, Koblov A N, Mishin G I, et al. 1982. Shock wave propagation in a glow discharge. Tech. Phys. Lett., 8: 192-194.
|
[66] |
Kolesnichenko Y F, Azarova O A, Brovkin V G. 2004. Basics in beamed MW energy deposition for flow/flight control// 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004-0669
|
[67] |
Laurendeau F, Chedevergne F, Casalis G. 2014. Transient ejection phase modeling of a plasma synthetic jet actuator. Phys. Fluids, 26: 125101. doi: 10.1063/1.4902394
|
[68] |
Leonov S B, Yarantsev D A. 2008. Near-surface electrical discharge in supersonic airflow: properties and flow control. J. Propul. Power, 24: 1168-1181. doi: 10.2514/1.24585
|
[69] |
Leonov S, Opaits D, Miles R, Soloviev V. 2010. Time-resolved measurements of plasma-induced momentum in air and nitrogen under dielectric barrier discharge actuation. Phys. Plasmas., 17: 113505. doi: 10.1063/1.3494279
|
[70] |
Li C, Zhang Y, Lee C. 2020. Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer: The effect of first mode. Phys. Fluids, 32: 051701. doi: 10.1063/5.0008457
|
[71] |
Li Y H, Wu Y, Zhou M. 2010. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation. Exp. Fluids, 48: 1015-1023. doi: 10.1007/s00348-009-0787-2
|
[72] |
Li Z, Shi Z W, Du H. 2018. Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing. Plasma Sci. Technol., 20: 115504. doi: 10.1088/2058-6272/aacaf0
|
[73] |
Liu R, Niu Z, Wang M, Hao M, Lin Q. 2018. Aerodynamic control of NACA 0021 airfoil model with spark discharge plasma synthetic jets. Sci. China Technol. Sci., 58: 1949-1955.
|
[74] |
Meyer R, Palm P, Plonjes E, Rich W, Adamovich I V. 2003. The effect of a nonequilibrium RF discharge plasma on a conical shock wave in a M=2.5 flow. AIAA J, 41: 465-469.
|
[75] |
Miles R B, Macheret S O, Martinelli L, Murray R, Shneider M, Yu Z. 2001. Plasma control of shock waves in aerodynamics and sonic boom mitigation// 32nd AIAA Plasma Dynamics and Lasers Conference and 4th Weakly Ionized Gases Workshop, 2001-3062
|
[76] |
Narayanaswamy V, Raja L L, Clemens N T. 2010. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control. AIAA J., 48: 297-305. doi: 10.2514/1.41352
|
[77] |
Narayanaswamy V, Raja L L, Clemens N T. 2012a. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator. AIAA J., 50: 246-249. doi: 10.2514/1.J051246
|
[78] |
Narayanaswamy V, Raja L L, Clemens N T. 2012b. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Phys. Fluids, 24: 076101. doi: 10.1063/1.4731292
|
[79] |
Nishihara M, Takashima K, Rich W, Adamovich L V. 2011. Mach 5 bow shock control by a nanosecond pulse surface DBD// 49th Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011-1144
|
[80] |
Opaits D F, Roupassov D V, Starikovskaia S M. 2004. Shock wave interaction with non-equilibrium plasma of gas discharge// 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004-1023
|
[81] |
Patel M P, Ng T T, Vasudevan S. 2007. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. J. Aircr., 44: 1264-1274. doi: 10.2514/1.25368
|
[82] |
Peter P, Rodney M. 2003. Nonequilibrium radio frequency discharge plasma effect on conical shock wave: M = 2.5 flow. AIAA J., 41: 465-469. doi: 10.2514/2.1968
|
[83] |
Reedy T M, Kale N V, Dutton C, Elliott G S. 2013. Experimental characterization of a pulsed plasma jet. AIAA J., 51: 2027-2031. doi: 10.2514/1.J052022
|
[84] |
Riherd M, Roy S. 2013. Damping Tollmien–Schlichting waves in a boundary layer using plasma actuators. J. Phys. D. :Appl. Phys., 46: 5203.
|
[85] |
Roth J R, Sherman D M, Wilkinson S P. 2000. Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J, 38: 1166-1172. doi: 10.2514/2.1110
|
[86] |
Roth J R, Sherman D M. 1998. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma// NASA Langley Technical Report Server, 1998-0328
|
[87] |
Roth J R. 1995. Investigation of a uniform glow discharge. Plasma in Atmospheric Air, ADA296928.
|
[88] |
Saddoughi S, Bennett G, Boespflug M. 2014. Experimental investigation of tip clearance flow in a transonic compressor with and without plasma actuators. J. Turbomach., 137: 041008.
|
[89] |
Schuele C Y, Corke T C, Matlist. 2013. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness. J. Fluid Mech., 718: 5-38. doi: 10.1017/jfm.2012.579
|
[90] |
Shang J S. 2002. Plasma injection for hypersonic blunt-body drag reduction. AIAA J., 40: 1178-1186. doi: 10.2514/2.1769
|
[91] |
Shin Y J, Kim H J, Kim K H. 2021. Development of one-dimensional analytical model for a spark jet actuator. AIAA J., 59: 1055-1074. doi: 10.2514/1.J059619
|
[92] |
Shneider M N, Macheret S O, Zaidi S H, Girgis I G, Miles R B. 2008. Virtual shapes in supersonic flow control with energy addition. J. Propul. Power, 24: 900-915. doi: 10.2514/1.34136
|
[93] |
Sidorenko A, Budovsky A D, Pushkarev A V. 2008. Flight testing of DBD plasma separation control system// 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008-373
|
[94] |
Soloviev V, Krivtsov V. 2015. Analytical and numerical estimation of the body force and heat sources generated by the surface dielectric barrier discharge powered by alternating voltage// 6th European Conf. for Aeronautics and Space Science, EUCA-SS2015.
|
[95] |
Starikovskii A Y, Nikipelov A, Nudnova M, Roupassov D. 2009. SDBD plasma actuator with nanosecond pulse-periodic discharge. Plasma Sources Sci. T., 18: 034015. doi: 10.1088/0963-0252/18/3/034015
|
[96] |
Su Z, Li J. 2018. UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge. Chin. Phys., 27: 105205. doi: 10.1088/1674-1056/27/10/105205
|
[97] |
Sun Q, Cheng B Q, Li Y H, Kong W S, Zhu Y F, Jin D. 2013. Computation and experimental analysis of Mach 2 air flow over a blunt body with plasma aerodynamic actuation. Sci. China Technol. Sc., 56: 795-802. doi: 10.1007/s11431-013-5177-6
|
[98] |
Tang M X, Wu Y, Guo S G, Liang H, Luo Y H. 2020a. Compression ramp shock wave/boundary layer interaction control with high-frequency streamwise pulsed spark discharge array. Phys. Fluids, 32: 121704. doi: 10.1063/5.0031839
|
[99] |
Tang M X, Wu Y, Guo S G, Sun Z Z, Luo Z B. 2020b. Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control. Phys. Fluids, 32: 076104. doi: 10.1063/5.0011040
|
[100] |
Thomas F O, Corke T C, Duong A, Midya S, Yates K. 2019. Turbulent drag reduction using pulsed-DC plasma actuation. J. Phys. D. Appl. Phys., 52: 434001. doi: 10.1088/1361-6463/ab3388
|
[101] |
Ullmer D, Peschke P, Terzis A. 2015. Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements. J. Phys. D, 48: 365203. doi: 10.1088/0022-3727/48/36/365203
|
[102] |
Unfer T, Boeuf P. 2009. Modelling of a nanosecond surface discharge actuator. J. Phys. D. Appl. Phys., 42: 194017. doi: 10.1088/0022-3727/42/19/194017
|
[103] |
Unfer T, Boeuf P. 2010. Modeling and comparison of sinusoidal and nanosecond pulsed surface dielectric barrier discharges for flow control. Plasma Phys. Control. Fusion, 52: 124019. doi: 10.1088/0741-3335/52/12/124019
|
[104] |
Vo H D. 2010. Rotating stall suppression in axial compressors with casing plasma actuation. J. Propul. Power, 26: 808-818. doi: 10.2514/1.36910
|
[105] |
Wang L, Xia Z X, Luo Z B. 2014. Three-electrode plasma synthetic jet actuator for high-speed flow control. AIAA J., 52: 879-882. doi: 10.2514/1.J052686
|
[106] |
Webb N, Clifford C, Samimy M. 2013. Control of oblique shock wave/boundary layer interactions using plasma actuators. Exp. Fluids, 54: 1545. doi: 10.1007/s00348-013-1545-z
|
[107] |
Wei B, Wu Y, Liang H. 2020. Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator. Aerosp. Sci. Technol. , 96: 105584
|
[108] |
White A R, Subramaniam V V. 2001. Shock propagation through a low-pressure glow discharge in argon. J. Thermophys. Heat Transfer, 15: 491-496. doi: 10.2514/2.6638
|
[109] |
Wu Y, Li Y H, Jia M, Song H M, Guo Z G, Zhu X M, Pu Y K. 2008. Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics. Appl. Phys. Lett., 93: 031503. doi: 10.1063/1.2964193
|
[110] |
Wu Y, Li Y H, Liang H. 2014. Nanosecond pulsed discharge plasma actuation: characteristics and flow control performance// 45th AIAA Plasma Dynamics and Lasers Conference, 2014-2118
|
[111] |
Wu Y, Zhao X H, Li Y H. 2012. Corner separation control in a highly loaded compressor cascade using plasma aerodynamic actuation. R. ASME., GT2012-69196
|
[112] |
Yadala S, Hehner M T, Serpieri J, et al. 2018. Experimental control of swept-wing transition through base-flow modification by plasma actuators. J. Fluid. Mech., 844: 268-279.
|
[113] |
Yang G, Yao Y, Gan, T, Lu L. 2016. Large-eddy simulation of shock-induced flow separation control using Spark Jet concept// 54th AIAA Aerospace Sciences Meeting, 2016-0045
|
[114] |
Zhang H D, Wu Y, Li Y H. 2019a. Control of compressor tip leakage flow using plasma actuation. Aerosp. Sci. Technol., 86: 244-255.
|
[115] |
Zhang H D, Wu Y, Li Y H. 2019b. Mechanism of compressor airfoil boundary layer flow control using nanosecond plasma actuation. Int. J. Heat Fluid Flow, 80: 108502. doi: 10.1016/j.ijheatfluidflow.2019.108502
|
[116] |
Zhang H D, Wu Y, Yu X, Li Y H, Liu B. 2019c. Experimental investigation on the plasma flow control of axial compressor rotating stall// ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, GT2019-90609
|
[117] |
Zhang H D, Yu X J, Liu B J, Wu Y, Li Y H. 2017a. Control of corner separation with plasma actuation in a high-speed compressor cascade. Appl. Sci., 7: 465. doi: 10.3390/app7050465
|
[118] |
Zhang Y, Li C, Lee C. 2020. Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer: The effect of second mode. Phys. Fluids, 32: 071702. doi: 10.1063/5.0011299
|
[119] |
Zhang Z B, Wu Y, Jia M, Song H M. 2017b. The multichannel discharge plasma synthetic jet actuator. Sensor Actuat. A-Phys., 253: 112-117. doi: 10.1016/j.sna.2016.11.011
|
[120] |
Zhang Z, Wu Y, Jia M, Zong H, Cui W, Liang H, Li Y. 2015. Influence of the discharge location on the performance of a three-electrode plasma synthetic jet actuator. Sens. Actuators A:Phys., 235: 71-79. doi: 10.1016/j.sna.2015.09.019
|
[121] |
Zhao G, Li Y, Liang H. 2015. Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge. Exp. Fluids, 56: 1864. doi: 10.1007/s00348-014-1864-8
|
[122] |
Zhao X H, Li Y H, Wu Y. 2012a. Investigation of end-wall flow behavior with plasma flow control on a highly loaded compressor cascade. J. Therm. Sci., 21: 295-301. doi: 10.1007/s11630-012-0547-0
|
[123] |
Zhao X H, Li Y H, Wu Y. 2012b. Numerical investigation of flow separation control on a highly loaded compressor cascade by plasma aerodynamic actuation. Chin. J. Aeronaut., 25: 349-360. doi: 10.1016/S1000-9361(11)60396-8
|
[124] |
Zhao X H, Wu Y, Li Y H. 2012c. Topological analysis of plasma flow control on corner separation in a highly loaded compressor cascade. Acta Mech. Sin., 28: 1277-1286. doi: 10.1007/s10409-012-0152-1
|
[125] |
Zhao Z, Cui Y D. 2018. On the boundary flow using pulsed nanosecond DBD plasma actuators. Mod. Phys. Lett. B, 32: 1840035.
|
[126] |
Zhou Y, Xia Z, Luo Z, Wang L. 2017. Effect of three-electrode plasma synthetic jet actuator on shock wave control. Science China Technological Sciences, 60: 146-152. doi: 10.1007/s11431-016-0248-4
|
[127] |
Zhu Y, Wu Y. 2020. The secondary ionization wave and characteristic map of surface discharge plasma in a wide time scale. New. J. Phys., 22: 103060. doi: 10.1088/1367-2630/abc2e7
|
[128] |
Zhu Y, Shcherbanev S, Baron B, Starikovskaia S. 2017. Nanosecond surface dielectric barrier discharge in atmospheric pressure air: I. measurements and 2D modeling of morphology, propagation and hydrodynamic perturbations. Plasma Sources Sci. Technol., 26: 125004. doi: 10.1088/1361-6595/aa9304
|
[129] |
Zhu Y, Wu Y, Cui W, et al. 2013. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge. J. Phys. D. Appl. Phys., 46: 355205. doi: 10.1088/0022-3727/46/35/355205
|
[130] |
Zong H H, Wu Y, Jia M, Song H M, Liang H, Li Y H, Zhang Z B. 2015a. Influence of geometrical parameters on performance of plasma synthetic jet actuator. J. Phys. D:Appl. Phys., 49: 0255041.
|
[131] |
Zong H H, Wu Y, Li Y H, Song H M, Zhang Z B, Jia M. 2015b. Analytic model and frequency characteristics of plasma synthetic jet actuator. Phys. Fluids, 27: 027105. doi: 10.1063/1.4908071
|
[132] |
Zong H, Kotsonis M. 2016. Characterisation of plasma synthetic jet actuators in quiescent flow. J. Phys. D:Appl. Phys., 49: 335202. doi: 10.1088/0022-3727/49/33/335202
|
[133] |
Zong H, Kotsonis M. 2017a. Effect of slotted exit orifice on performance of plasma synthetic jet actuator. Exp. Fluids, 58: 17. doi: 10.1007/s00348-016-2299-1
|
[134] |
Zong H, Kotsonis M. 2017b. Interaction between plasma synthetic jet and subsonic turbulent boundary layer. Phys. Fluids, 29: 045104. doi: 10.1063/1.4979527
|
[135] |
Zong H, Kotsonis M. 2018. Formation, evolution and scaling of plasma synthetic jets. J. Fluid Mech., 837: 147-181. doi: 10.1017/jfm.2017.855
|
[136] |
Zong H, van Pelt, Kotsonis. T. 2018. Airfoil Flow Separation control with plasma synthetic jets at moderate Reynolds number. Exp. Fluids, 59: 169. doi: 10.1007/s00348-018-2624-y
|
[137] |
Zong H, Kotsonis M. 2019. Effect of velocity ratio on the interaction between plasma synthetic jets and turbulent cross-flow. J. Fluid Mech., 865: 928-962. doi: 10.1017/jfm.2019.93
|
[138] |
Zong H, Kotsonis M. 2020. Three-dimensional vortical structures generated by plasma synthetic jets in crossflow. Phys. Fluids, 32: 061701. doi: 10.1063/5.0009530
|