Volume 51 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Falk M L, Langer J S, Chen Y trans, Wang Y J proof. Deformation and failure of amorphous, solidlike materials. Advances in Mechanics, 2021, 51(2): 406-426 doi: 10.6052/1000-0992-21-034
Citation: Falk M L, Langer J S, Chen Y trans, Wang Y J proof. Deformation and failure of amorphous, solidlike materials. Advances in Mechanics, 2021, 51(2): 406-426 doi: 10.6052/1000-0992-21-034

Deformation and failure of amorphous, solidlike materials

doi: 10.6052/1000-0992-21-034
More Information
  • Corresponding author: mfalk@jhu.edu
  • Received Date: 2021-06-11
    Available Online: 2021-06-30
  • Publish Date: 2021-06-25
  • Since the 1970s, theories of deformation and failure of amorphous, solidlike materials have started with models in which stress-driven, molecular rearrangements occur at localized flow defects via shear transformations. This picture is the basis for the modern theory of shear transformation zones (STZs), which is the focus of this review. We begin by describing the structure of the theory in general terms and by showing several applications, specifically, interpretation of stress-strain measurements for a bulk metallic glass, analysis of numerical simulations of shear banding, and the use of the STZ equations of motion in free-boundary calculations. In the second half of this review, we focus for simplicity on what we call an athermal model of amorphous plasticity, and use that model to illustrate how the STZ theory emerges within a systematic formulation of nonequilibrium thermodynamics.

     

  • loading
  • [1]
    Angell C A, Ngai K L, McKenna G B, McMillan PF, Martin S W. 2000. Relaxation in glassforming liquids and amorphous solids. Appl. Phys. Rev., 88: 3113-57. doi: 10.1063/1.1286035
    [2]
    Argon A S. 1979. Plastic-deformation in metallic glasses. Acta Metall., 27: 47-58. doi: 10.1016/0001-6160(79)90055-5
    [3]
    Argon A S, Shi L T. 1983. Development of visco-plastic deformation in metallic glasses. Acta Metall., 31: 499-507. doi: 10.1016/0001-6160(83)90038-X
    [4]
    Bailey N P, Schiotz J, Jacobsen K W. 2006. Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses. Phys. Rev. B, 73: 064108. doi: 10.1103/PhysRevB.73.064108
    [5]
    Bouchbinder E, Langer J S, Procaccia I. 2007a. Athermal shear-transformation-zone theory of amorphous plastic deformation. I. Basic principles. Phys. Rev. E, 75: 036107. doi: 10.1103/PhysRevE.75.036107
    [6]
    Bouchbinder E, Langer J S, Procaccia I. 2007b. Athermal shear-transformation-zone theory of amorphous plastic deformation. II. Analysis of simulated amorphous silicon. Phys. Rev. E, 75: 036108. doi: 10.1103/PhysRevE.75.036108
    [7]
    Bouchbinder E, Langer J S, Lo T S, Procaccia I. 2007c. Free-boundary dynamics in elastoplastic amorphous solids: the circular hole problem. Phys. Rev. E, 76: 026115. doi: 10.1103/PhysRevE.76.026115
    [8]
    Bouchbinder E, Lo T S, Procaccia I. 2008a. Dynamic failure in amorphous solids via a cavitation instability. Phys. Rev. E, 77: 025101. doi: 10.1103/PhysRevE.77.025101
    [9]
    Bouchbinder E, Lo T S, Procaccia I, Shtilerman E. 2008b. Stability of an expanding circular cavity and the failure of amorphous solids. Phys. Rev. E, 78: 026124. doi: 10.1103/PhysRevE.78.026124
    [10]
    Bouchbinder E, Langer J S. 2009a. Nonequilibrium thermodynamics of driven amorphous materials. I. Internal degrees of freedom and volume deformation. Phys. Rev. E, 80: 031131. doi: 10.1103/PhysRevE.80.031131
    [11]
    Bouchbinder E, Langer J S. 2009b. Nonequilibrium thermodynamics of driven amorphous materials. II. Effective-temperature theory. Phys. Rev. E, 80: 031132. doi: 10.1103/PhysRevE.80.031132
    [12]
    Bouchbinder E, Langer J S. 2009c. Nonequilibrium thermodynamics of driven amorphous materials. III. Shear-transformation-zone plasticity. Phys. Rev. E, 80: 031133. doi: 10.1103/PhysRevE.80.031133
    [13]
    Bouchbinder E, Langer J S. 2010. Nonequilibrium thermodynamics of the Kovacs effect. Soft Matter, 6: 3065-73. doi: 10.1039/c001388a
    [14]
    Brader J M, Voigtmann T, Fuchs M, Larson RG, Cates M. 2009. Glass rheology: From mode-coupling theory to a dynamical yield criterion. Proc. Natl. Acad. ci. USA, 106: 15186-91. doi: 10.1073/pnas.0905330106
    [15]
    Cao A J, Cheng Y, Ma E. 2009. Structural processes that initiate shear localization in metallic glass. Acta Mater., 57: 5146. doi: 10.1016/j.actamat.2009.07.016
    [16]
    Cohen M, Turnbull D. 1959. Molecular transport in liquids and glasses. J. Chem. Phys., 31: 1164-69. doi: 10.1063/1.1730566
    [17]
    Coleman B D, Gurtin M E. 1967. Thermodynamics with internal state variables. J. Chem. Phys., 47: 597-613. doi: 10.1063/1.1711937
    [18]
    Coleman B D, Noll W. 1963. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal., 13: 167-78. doi: 10.1007/BF01262690
    [19]
    Daub E G, Carlson J M. 2010. Friction, Fracture and Earthquakes. Annu. Rev. Condens. Matter Phys., 1: 397-418. doi: 10.1146/annurev-conmatphys-070909-104025
    [20]
    Daub E G, Manning M L, Carlson J M. 2008. Shear strain localization in elastodynamic rupture simulations. Geophys. Res. Lett., 35: L12310.
    [21]
    Dieter G E. 1986. Mechanical Metallurgy. London: McGraw-Hill
    [22]
    Eastgate L, Langer J S, Pechenik L. 2003. Dynamics of large-scale plastic deformation and the necking instability in amorphous solids. Phys. Rev. Lett., 90: 045506. doi: 10.1103/PhysRevLett.90.045506
    [23]
    Edwards S F, Oakeshott R B S. 1989. Theory of powers. Physica A, 157: 1080-90. doi: 10.1016/0378-4371(89)90034-4
    [24]
    Falk M L, Langer J S. 1998. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E, 57: 7192-205. doi: 10.1103/PhysRevE.57.7192
    [25]
    Falk M L, Maloney C E. 2010. Simulating the mechanical response of amorphous solids using atomistic methods. Eur. Phys. J. B, 75: 405-13. doi: 10.1140/epjb/e2010-00157-7
    [26]
    Falk M L, Langer J S, Pechenik L. 2004. Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data. Phys. Rev. E, 70: 011507. doi: 10.1103/PhysRevE.70.011507
    [27]
    Goldstein M. 1969. Viscous liquids and glass transition – a potential energy barrier picture. J. Chem. Phys., 51: 3728-39. doi: 10.1063/1.1672587
    [28]
    Götze W. 1991. In Liquids, Freezing and Glass Transition, ed. J-P Hansen, D Levesque, J Zinn-Justin pp. 289–504. Amsterdam: North-Holland
    [29]
    Götze W, Sjögren L. 1992. Relaxation processes in supercooled liquids. Rep. Prog. Phys., 55: 241-376. doi: 10.1088/0034-4885/55/3/001
    [30]
    Gurtin M E, Fried E, Anand L. 2010. The Mechanics and Thermodynamics of Continua. New York: Cambridge Univ. Press
    [31]
    Haxton T K, Liu A J. 2007. Activated dynamics and effective temperature in a steady state sheared glass. Phys. Rev. Lett., 99: 195701. doi: 10.1103/PhysRevLett.99.195701
    [32]
    Heggen M, Spaepen F, Feuerbacher M. 2005. Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys., 97: 033506. doi: 10.1063/1.1827344
    [33]
    Hentschel H G E, Karmakar S, Lerner E, Procaccia I. 2010. Size of plastic events in strained amorphous solids at finite temperatures. Phys. Rev. Lett., 104: 025501. doi: 10.1103/PhysRevLett.104.025501
    [34]
    Langer J S, Pechenik L. 2003. Dynamics of shear-transformation zones in amorphous plasticity: Energetic constraints in a minimal theory. Phys. Rev. E, 68: 061507. doi: 10.1103/PhysRevE.68.061507
    [35]
    Langer J S. 2004. Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature. Phys. Rev. E, 70: 041502. doi: 10.1103/PhysRevE.70.041502
    [36]
    Langer J S. 2008. Shear-transformation-zone theory of plastic deformation near the glass transition. Phys. Rev. E, 77: 021502. doi: 10.1103/PhysRevE.77.021502
    [37]
    Langer J S, Manning M L. 2007. Steady-state, effective-temperature dynamics in a glassy material. Phys. Rev. E, 76: 056107. doi: 10.1103/PhysRevE.76.056107
    [38]
    Langer J S, Bouchbinder E, Lookman T. 2010. Thermodynamic theory of dislocation-mediated plasticity. Acta Mater., 58: 3718. doi: 10.1016/j.actamat.2010.03.009
    [39]
    Lemaitre A. 2002. Rearrangements and dilatancy for sheared dense materials. Phys. Rev. Lett., 89: 195503. doi: 10.1103/PhysRevLett.89.195503
    [40]
    Lemaitre A. 2006. In Lecture Notes in Physics: Jamming, Yielding, and Irreversible Deformation in Condensed Matter, ed. C Miguel, M Rubi, 688: 129–36. Berlin: Springer-Verlag
    [41]
    Lemaitre A, Caroli C. 2007. Plastic response of a two-dimensional amorphous solid to quasistatic shear: Transverse particle diffusion and phenomenology of dissipative events. Phys. Rev. E, 76: 036104. doi: 10.1103/PhysRevE.76.036104
    [42]
    Lemaitre A, Caroli C. 2009. Rate-dependent avalanche size in athermally sheared amorphous solids. Phys. Rev. Lett., 103: 065501. doi: 10.1103/PhysRevLett.103.065501
    [43]
    Lerner E, Procaccia I. 2009. Locality and nonlocality in elastoplastic responses of amorphous solids. Phys. Rev. E, 79: 066109. doi: 10.1103/PhysRevE.79.066109
    [44]
    Lewandowski J J, Greer A L. 2006. Temperature rise at shear bands in metallic glasses. Nat. Mater., 5: 15-18. doi: 10.1038/nmat1536
    [45]
    Li Q K, Li M. 2005. Effects of surface imperfections on deformation and failure of amorphous metals. Appl. Phys. Lett., 87: 031910. doi: 10.1063/1.1999013
    [46]
    Lu J, Ravichandran G, Johnson W L. 2003. Deformation behavior of the Zr41.2Ti13.8CU12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater., 51: 3429-43. doi: 10.1016/S1359-6454(03)00164-2
    [47]
    Lubliner J. 1990. Plasticity Theory. New York: Macmillan
    [48]
    Lundberg M, Krishnan K, Xu N, O’Hern CS, Dennin M. 2008. Reversible plastic events in amorphous materials. Phys. Rev. E., 77: 041505. doi: 10.1103/PhysRevE.77.041505
    [49]
    Maloney C, Lemaitre A. 2004a. Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow. Phys. Rev. Lett., 93: 016001. doi: 10.1103/PhysRevLett.93.016001
    [50]
    Maloney C, Lemaitre A. 2004. Universal breakdown of elasticity at the onset of material failure. Phys. Rev. Lett., 93: 195501. doi: 10.1103/PhysRevLett.93.195501
    [51]
    Maloney C, Robbins M. 2009. Anisotropic power law strain correlations in sheared amorphous 2D solids. Phys. Rev. Lett., 102: 225502. doi: 10.1103/PhysRevLett.102.225502
    [52]
    Manning M L, Daub E G, Langer J S, Carlson J M. 2009. Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids. Phys. Rev. E, 79: 016110. doi: 10.1103/PhysRevE.79.016110
    [53]
    Manning M L, Langer J S, Carlson J M. 2007. Strain localization in a shear transformation zone model for amorphous solids. Phys. Rev. E, 76: 056106. doi: 10.1103/PhysRevE.76.056106
    [54]
    Maugin G A. 1999. The Thermomechanics of Nonlinear Irreversible Behaviors. Singapore: World Sci.
    [55]
    Mehta A, Edwards S F. 1989. Statistical-mechanics of power mixtures. Physica A, 157: 1091-97. doi: 10.1016/0378-4371(89)90035-6
    [56]
    Nemat-Nasser S. 2004. Plasticity. Cambridge, UK: Cambridge Univ. Press
    [57]
    Pechenik L. 2005. Dynamics of shear-transformation zones in amorphous plasticity: nonlinear theory at low temperatures. Phys. Rev. E, 72: 021507. doi: 10.1103/PhysRevE.72.021507
    [58]
    Rycroft C H, Gibou F. 2012. Simulations of a stretching bar using a plasticity model from the shear transformation zone theory. J. Chem. Phys., 231: 2155-79.
    [59]
    Shi Y, Falk M L. 2006. Atomic-scale simulations of strain localization in three-dimensional model amorphous solids. Phys. Rev. B, 73: 214201. doi: 10.1103/PhysRevB.73.214201
    [60]
    Shi Y, Katz M B, Li H, Falk M L. 2007. Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids. Phys. Rev. Lett., 98: 185505. doi: 10.1103/PhysRevLett.98.185505
    [61]
    Shi Y, Falk M. 2005. Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett., 95: 095502. doi: 10.1103/PhysRevLett.95.095502
    [62]
    Sollich P. 1998. Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E, 58: 738-59. doi: 10.1103/PhysRevE.58.738
    [63]
    Sollich P, Lequeux F, Hebraud P, Cates M E. 1997. Rheology of soft glassy materials. Phys. Rev. Lett., 78: 2020-23. doi: 10.1103/PhysRevLett.78.2020
    [64]
    Spaepen F. 1977. Mircroscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall., 25: 407-15. doi: 10.1016/0001-6160(77)90232-2
    [65]
    Spaepen F, Taub A. 1981. In Physics of Defects, ed. R Balian, M Kleman, p. 133. Les Houches Lect. XXV. Amsterdam: North-Holland
    [66]
    Stillinger F H. 1988. Supercooled liquids, glass transitions, and the Kauzmann paradox. J. Chem. Phys., 88: 7818-25. doi: 10.1063/1.454295
    [67]
    Stillinger F H, Weber T A. 1982. Hidden structure in liquids. Phys. Rev. A, 25: 978-89. doi: 10.1103/PhysRevA.25.978
    [68]
    Tool A Q. 1946. Relation between inelastic deformability and thermal expansion of glass in its anneling range. J. Am. Ceram. Soc., 29: 240-53. doi: 10.1111/j.1151-2916.1946.tb11592.x
    [69]
    Turnbull D, Cohen M H. 1970. On free-volume model of liquid-glass transition. J. Chem. Phys., 52: 3038. doi: 10.1063/1.1673434
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1417) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return