Citation: | Falk M L, Langer J S, Chen Y trans, Wang Y J proof. Deformation and failure of amorphous, solidlike materials. Advances in Mechanics, 2021, 51(2): 406-426 doi: 10.6052/1000-0992-21-034 |
[1] |
Angell C A, Ngai K L, McKenna G B, McMillan PF, Martin S W. 2000. Relaxation in glassforming liquids and amorphous solids. Appl. Phys. Rev., 88: 3113-57. doi: 10.1063/1.1286035
|
[2] |
Argon A S. 1979. Plastic-deformation in metallic glasses. Acta Metall., 27: 47-58. doi: 10.1016/0001-6160(79)90055-5
|
[3] |
Argon A S, Shi L T. 1983. Development of visco-plastic deformation in metallic glasses. Acta Metall., 31: 499-507. doi: 10.1016/0001-6160(83)90038-X
|
[4] |
Bailey N P, Schiotz J, Jacobsen K W. 2006. Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses. Phys. Rev. B, 73: 064108. doi: 10.1103/PhysRevB.73.064108
|
[5] |
Bouchbinder E, Langer J S, Procaccia I. 2007a. Athermal shear-transformation-zone theory of amorphous plastic deformation. I. Basic principles. Phys. Rev. E, 75: 036107. doi: 10.1103/PhysRevE.75.036107
|
[6] |
Bouchbinder E, Langer J S, Procaccia I. 2007b. Athermal shear-transformation-zone theory of amorphous plastic deformation. II. Analysis of simulated amorphous silicon. Phys. Rev. E, 75: 036108. doi: 10.1103/PhysRevE.75.036108
|
[7] |
Bouchbinder E, Langer J S, Lo T S, Procaccia I. 2007c. Free-boundary dynamics in elastoplastic amorphous solids: the circular hole problem. Phys. Rev. E, 76: 026115. doi: 10.1103/PhysRevE.76.026115
|
[8] |
Bouchbinder E, Lo T S, Procaccia I. 2008a. Dynamic failure in amorphous solids via a cavitation instability. Phys. Rev. E, 77: 025101. doi: 10.1103/PhysRevE.77.025101
|
[9] |
Bouchbinder E, Lo T S, Procaccia I, Shtilerman E. 2008b. Stability of an expanding circular cavity and the failure of amorphous solids. Phys. Rev. E, 78: 026124. doi: 10.1103/PhysRevE.78.026124
|
[10] |
Bouchbinder E, Langer J S. 2009a. Nonequilibrium thermodynamics of driven amorphous materials. I. Internal degrees of freedom and volume deformation. Phys. Rev. E, 80: 031131. doi: 10.1103/PhysRevE.80.031131
|
[11] |
Bouchbinder E, Langer J S. 2009b. Nonequilibrium thermodynamics of driven amorphous materials. II. Effective-temperature theory. Phys. Rev. E, 80: 031132. doi: 10.1103/PhysRevE.80.031132
|
[12] |
Bouchbinder E, Langer J S. 2009c. Nonequilibrium thermodynamics of driven amorphous materials. III. Shear-transformation-zone plasticity. Phys. Rev. E, 80: 031133. doi: 10.1103/PhysRevE.80.031133
|
[13] |
Bouchbinder E, Langer J S. 2010. Nonequilibrium thermodynamics of the Kovacs effect. Soft Matter, 6: 3065-73. doi: 10.1039/c001388a
|
[14] |
Brader J M, Voigtmann T, Fuchs M, Larson RG, Cates M. 2009. Glass rheology: From mode-coupling theory to a dynamical yield criterion. Proc. Natl. Acad. ci. USA, 106: 15186-91. doi: 10.1073/pnas.0905330106
|
[15] |
Cao A J, Cheng Y, Ma E. 2009. Structural processes that initiate shear localization in metallic glass. Acta Mater., 57: 5146. doi: 10.1016/j.actamat.2009.07.016
|
[16] |
Cohen M, Turnbull D. 1959. Molecular transport in liquids and glasses. J. Chem. Phys., 31: 1164-69. doi: 10.1063/1.1730566
|
[17] |
Coleman B D, Gurtin M E. 1967. Thermodynamics with internal state variables. J. Chem. Phys., 47: 597-613. doi: 10.1063/1.1711937
|
[18] |
Coleman B D, Noll W. 1963. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal., 13: 167-78. doi: 10.1007/BF01262690
|
[19] |
Daub E G, Carlson J M. 2010. Friction, Fracture and Earthquakes. Annu. Rev. Condens. Matter Phys., 1: 397-418. doi: 10.1146/annurev-conmatphys-070909-104025
|
[20] |
Daub E G, Manning M L, Carlson J M. 2008. Shear strain localization in elastodynamic rupture simulations. Geophys. Res. Lett., 35: L12310.
|
[21] |
Dieter G E. 1986. Mechanical Metallurgy. London: McGraw-Hill
|
[22] |
Eastgate L, Langer J S, Pechenik L. 2003. Dynamics of large-scale plastic deformation and the necking instability in amorphous solids. Phys. Rev. Lett., 90: 045506. doi: 10.1103/PhysRevLett.90.045506
|
[23] |
Edwards S F, Oakeshott R B S. 1989. Theory of powers. Physica A, 157: 1080-90. doi: 10.1016/0378-4371(89)90034-4
|
[24] |
Falk M L, Langer J S. 1998. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E, 57: 7192-205. doi: 10.1103/PhysRevE.57.7192
|
[25] |
Falk M L, Maloney C E. 2010. Simulating the mechanical response of amorphous solids using atomistic methods. Eur. Phys. J. B, 75: 405-13. doi: 10.1140/epjb/e2010-00157-7
|
[26] |
Falk M L, Langer J S, Pechenik L. 2004. Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data. Phys. Rev. E, 70: 011507. doi: 10.1103/PhysRevE.70.011507
|
[27] |
Goldstein M. 1969. Viscous liquids and glass transition – a potential energy barrier picture. J. Chem. Phys., 51: 3728-39. doi: 10.1063/1.1672587
|
[28] |
Götze W. 1991. In Liquids, Freezing and Glass Transition, ed. J-P Hansen, D Levesque, J Zinn-Justin pp. 289–504. Amsterdam: North-Holland
|
[29] |
Götze W, Sjögren L. 1992. Relaxation processes in supercooled liquids. Rep. Prog. Phys., 55: 241-376. doi: 10.1088/0034-4885/55/3/001
|
[30] |
Gurtin M E, Fried E, Anand L. 2010. The Mechanics and Thermodynamics of Continua. New York: Cambridge Univ. Press
|
[31] |
Haxton T K, Liu A J. 2007. Activated dynamics and effective temperature in a steady state sheared glass. Phys. Rev. Lett., 99: 195701. doi: 10.1103/PhysRevLett.99.195701
|
[32] |
Heggen M, Spaepen F, Feuerbacher M. 2005. Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys., 97: 033506. doi: 10.1063/1.1827344
|
[33] |
Hentschel H G E, Karmakar S, Lerner E, Procaccia I. 2010. Size of plastic events in strained amorphous solids at finite temperatures. Phys. Rev. Lett., 104: 025501. doi: 10.1103/PhysRevLett.104.025501
|
[34] |
Langer J S, Pechenik L. 2003. Dynamics of shear-transformation zones in amorphous plasticity: Energetic constraints in a minimal theory. Phys. Rev. E, 68: 061507. doi: 10.1103/PhysRevE.68.061507
|
[35] |
Langer J S. 2004. Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature. Phys. Rev. E, 70: 041502. doi: 10.1103/PhysRevE.70.041502
|
[36] |
Langer J S. 2008. Shear-transformation-zone theory of plastic deformation near the glass transition. Phys. Rev. E, 77: 021502. doi: 10.1103/PhysRevE.77.021502
|
[37] |
Langer J S, Manning M L. 2007. Steady-state, effective-temperature dynamics in a glassy material. Phys. Rev. E, 76: 056107. doi: 10.1103/PhysRevE.76.056107
|
[38] |
Langer J S, Bouchbinder E, Lookman T. 2010. Thermodynamic theory of dislocation-mediated plasticity. Acta Mater., 58: 3718. doi: 10.1016/j.actamat.2010.03.009
|
[39] |
Lemaitre A. 2002. Rearrangements and dilatancy for sheared dense materials. Phys. Rev. Lett., 89: 195503. doi: 10.1103/PhysRevLett.89.195503
|
[40] |
Lemaitre A. 2006. In Lecture Notes in Physics: Jamming, Yielding, and Irreversible Deformation in Condensed Matter, ed. C Miguel, M Rubi, 688: 129–36. Berlin: Springer-Verlag
|
[41] |
Lemaitre A, Caroli C. 2007. Plastic response of a two-dimensional amorphous solid to quasistatic shear: Transverse particle diffusion and phenomenology of dissipative events. Phys. Rev. E, 76: 036104. doi: 10.1103/PhysRevE.76.036104
|
[42] |
Lemaitre A, Caroli C. 2009. Rate-dependent avalanche size in athermally sheared amorphous solids. Phys. Rev. Lett., 103: 065501. doi: 10.1103/PhysRevLett.103.065501
|
[43] |
Lerner E, Procaccia I. 2009. Locality and nonlocality in elastoplastic responses of amorphous solids. Phys. Rev. E, 79: 066109. doi: 10.1103/PhysRevE.79.066109
|
[44] |
Lewandowski J J, Greer A L. 2006. Temperature rise at shear bands in metallic glasses. Nat. Mater., 5: 15-18. doi: 10.1038/nmat1536
|
[45] |
Li Q K, Li M. 2005. Effects of surface imperfections on deformation and failure of amorphous metals. Appl. Phys. Lett., 87: 031910. doi: 10.1063/1.1999013
|
[46] |
Lu J, Ravichandran G, Johnson W L. 2003. Deformation behavior of the Zr41.2Ti13.8CU12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater., 51: 3429-43. doi: 10.1016/S1359-6454(03)00164-2
|
[47] |
Lubliner J. 1990. Plasticity Theory. New York: Macmillan
|
[48] |
Lundberg M, Krishnan K, Xu N, O’Hern CS, Dennin M. 2008. Reversible plastic events in amorphous materials. Phys. Rev. E., 77: 041505. doi: 10.1103/PhysRevE.77.041505
|
[49] |
Maloney C, Lemaitre A. 2004a. Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow. Phys. Rev. Lett., 93: 016001. doi: 10.1103/PhysRevLett.93.016001
|
[50] |
Maloney C, Lemaitre A. 2004. Universal breakdown of elasticity at the onset of material failure. Phys. Rev. Lett., 93: 195501. doi: 10.1103/PhysRevLett.93.195501
|
[51] |
Maloney C, Robbins M. 2009. Anisotropic power law strain correlations in sheared amorphous 2D solids. Phys. Rev. Lett., 102: 225502. doi: 10.1103/PhysRevLett.102.225502
|
[52] |
Manning M L, Daub E G, Langer J S, Carlson J M. 2009. Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids. Phys. Rev. E, 79: 016110. doi: 10.1103/PhysRevE.79.016110
|
[53] |
Manning M L, Langer J S, Carlson J M. 2007. Strain localization in a shear transformation zone model for amorphous solids. Phys. Rev. E, 76: 056106. doi: 10.1103/PhysRevE.76.056106
|
[54] |
Maugin G A. 1999. The Thermomechanics of Nonlinear Irreversible Behaviors. Singapore: World Sci.
|
[55] |
Mehta A, Edwards S F. 1989. Statistical-mechanics of power mixtures. Physica A, 157: 1091-97. doi: 10.1016/0378-4371(89)90035-6
|
[56] |
Nemat-Nasser S. 2004. Plasticity. Cambridge, UK: Cambridge Univ. Press
|
[57] |
Pechenik L. 2005. Dynamics of shear-transformation zones in amorphous plasticity: nonlinear theory at low temperatures. Phys. Rev. E, 72: 021507. doi: 10.1103/PhysRevE.72.021507
|
[58] |
Rycroft C H, Gibou F. 2012. Simulations of a stretching bar using a plasticity model from the shear transformation zone theory. J. Chem. Phys., 231: 2155-79.
|
[59] |
Shi Y, Falk M L. 2006. Atomic-scale simulations of strain localization in three-dimensional model amorphous solids. Phys. Rev. B, 73: 214201. doi: 10.1103/PhysRevB.73.214201
|
[60] |
Shi Y, Katz M B, Li H, Falk M L. 2007. Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids. Phys. Rev. Lett., 98: 185505. doi: 10.1103/PhysRevLett.98.185505
|
[61] |
Shi Y, Falk M. 2005. Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett., 95: 095502. doi: 10.1103/PhysRevLett.95.095502
|
[62] |
Sollich P. 1998. Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E, 58: 738-59. doi: 10.1103/PhysRevE.58.738
|
[63] |
Sollich P, Lequeux F, Hebraud P, Cates M E. 1997. Rheology of soft glassy materials. Phys. Rev. Lett., 78: 2020-23. doi: 10.1103/PhysRevLett.78.2020
|
[64] |
Spaepen F. 1977. Mircroscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall., 25: 407-15. doi: 10.1016/0001-6160(77)90232-2
|
[65] |
Spaepen F, Taub A. 1981. In Physics of Defects, ed. R Balian, M Kleman, p. 133. Les Houches Lect. XXV. Amsterdam: North-Holland
|
[66] |
Stillinger F H. 1988. Supercooled liquids, glass transitions, and the Kauzmann paradox. J. Chem. Phys., 88: 7818-25. doi: 10.1063/1.454295
|
[67] |
Stillinger F H, Weber T A. 1982. Hidden structure in liquids. Phys. Rev. A, 25: 978-89. doi: 10.1103/PhysRevA.25.978
|
[68] |
Tool A Q. 1946. Relation between inelastic deformability and thermal expansion of glass in its anneling range. J. Am. Ceram. Soc., 29: 240-53. doi: 10.1111/j.1151-2916.1946.tb11592.x
|
[69] |
Turnbull D, Cohen M H. 1970. On free-volume model of liquid-glass transition. J. Chem. Phys., 52: 3038. doi: 10.1063/1.1673434
|