Volume 51 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Chen Y, Zhang Q, Zhang Y F, Xia B Z, Liu X N, Zhou X M, Chen C Q, Hu G K. Research progress of elastic topological materials. Advances in Mechanics, 2021, 51(2): 189-256 doi: 10.6052/1000-0992-21-015
Citation: Chen Y, Zhang Q, Zhang Y F, Xia B Z, Liu X N, Zhou X M, Chen C Q, Hu G K. Research progress of elastic topological materials. Advances in Mechanics, 2021, 51(2): 189-256 doi: 10.6052/1000-0992-21-015

Research progress of elastic topological materials

doi: 10.6052/1000-0992-21-015
More Information
  • Corresponding author: hugeng@bit.edu.cn
  • Received Date: 2021-03-29
  • Accepted Date: 2021-05-25
  • Available Online: 2021-06-07
  • Publish Date: 2021-06-25
  • Topological insulators, originated in quantum systems, are recently generalized to electromagnetic, acoustic, and elastic wave fields due to interesting wave controlling provides, such as unidirectional and dissipationless energy transportation. This new kind of materials provide unprecedented possibilities for engineering wave flows. This paper will introduce the basic theory of topological insulators and summarize the research progress of topological insulators in elastic fields. Based on one-dimensional and two-dimensional discrete models, preliminary concepts of topological insulators, such as Dirac cone, band inversion, Berry curvatures, topological invariants, are introduced. The design and progress of valley Hall insulators, Chern insulators as well as spin Hall insulators are introduced afterward, followed by discussions on high-order topological insulators. The last part of this paper covers topological phenomena in static mechanics, including topological solitons and toplogical zero energy modes.

     

  • loading
  • [1]
    郭柏林. 1987. 孤立子. 北京: 科学出版社

    Guo B L. 1987. Solitons. Beijing: Science Press.
    [2]
    Achenbach J. 2012. Wave Propagation in Elastic Solids. Amsterdam: North-Holland.
    [3]
    Altland A, Zirnbauer M R. 1997. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Physical Review B, 55: 1142-1161. doi: 10.1103/PhysRevB.55.1142
    [4]
    Asbóth J K, Oroszlány L, Pályi A. 2016. A Short Course on Topological Insulators. New York: Springer.
    [5]
    Bansil A, Lin H, Das T. 2016. Colloquium: Topological band theory. Reviews of Modern Physics, 88: 21004. doi: 10.1103/RevModPhys.88.021004
    [6]
    Bao J, Zou D, Zhang W, He W, Sun H, Zhang X. 2019. Topoelectrical circuit octupole insulator with topologically protected corner states. Physical Review B, 100: 201406. doi: 10.1103/PhysRevB.100.201406
    [7]
    Bartolo D, Carpentier D. 2019. Topological elasticity of nonorientable ribbons. Physical Review X, 9: 41058.
    [8]
    Benalcazar W A, Bernevig B A, Hughes T L. 2017. Quantized electric multipole insulators. Science, 357: 61-66. doi: 10.1126/science.aah6442
    [9]
    Bernevig B A, Hughes T L, Zhang S. 2006. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314: 1757-1761. doi: 10.1126/science.1133734
    [10]
    Brun M, Jones I S, Movchan A B. 2012. Vortex-type elastic structured media and dynamic shielding. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 468: 3027-3046. doi: 10.1098/rspa.2012.0165
    [11]
    Cage M E, Klitzing K, Chang A M, Duncan F, Haldane M, Laughlin R B, Pruisken A, Thouless D J. 2012. The Quantum Hall Effect. New York: Springer.
    [12]
    Calladine C R. 1978. Buckminster Fuller's “tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames. International Journal of Solids and Structures, 14: 161-172. doi: 10.1016/0020-7683(78)90052-5
    [13]
    Cha J, Kim K W, Daraio C. 2018. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature, 564: 229-233. doi: 10.1038/s41586-018-0764-0
    [14]
    Chaikin P M, Lubensky T C, Witten T A. 1995. Principles of Condensed Matter Physics. Cambridge: Cambridge University Press.
    [15]
    Chaunsali R, Chen C, Yang J. 2018. Experimental demonstration of topological waveguiding in elastic plates with local resonators. New Journal of Physics, 20: 113036. doi: 10.1088/1367-2630/aaeb61
    [16]
    Chen B G, Upadhyaya N, Vitelli V. 2014. Nonlinear conduction via solitons in a topological mechanical insulator. Proceedings of the National Academy of the United States of America, 111: 13004-13009. doi: 10.1073/pnas.1405969111
    [17]
    Chen H, Nassar H, Huang G L. 2018a. A study of topological effects in 1D and 2D mechanical lattices. Journal of the Mechanics and Physics of Solids, 117: 22-36. doi: 10.1016/j.jmps.2018.04.013
    [18]
    Chen H, Nassar H, Norris A N, Hu G, Huang G. 2018b. Elastic quantum spin-Hall effect in Kagome lattices. Physical Review B, 98: 094302. doi: 10.1103/PhysRevB.98.094302
    [19]
    Chen Y, Liu X, Hu G. 2019. Topological phase transition in mechanical honeycomb lattice. Journal of the Mechanics and Physics of Solids, 122: 54-68. doi: 10.1016/j.jmps.2018.08.021
    [20]
    Daraio C, Nesterenko V F, Herbold E B, Jin S. 2006. Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Physical Review E, 73: 26610. doi: 10.1103/PhysRevE.73.026610
    [21]
    Dauxois T, Peyrard M. 2006. Physics of Solitons. Cambridge: Cambridge University Press.
    [22]
    Deng B, Mo C, Tournat V, Bertoldi K, Raney J R. 2019b. Focusing and mode separation of elastic vector solitons in a 2D soft mechanical metamaterial. Physical Review Letters, 123: 24101. doi: 10.1103/PhysRevLett.123.024101
    [23]
    Deng B, Raney J R, Tournat V, Bertoldi K. 2017. Elastic vector solitons in soft architected materials. Physical Review Letters, 118: 204102. doi: 10.1103/PhysRevLett.118.204102
    [24]
    Deng B, Tournat V, Wang P, Bertoldi K. 2019a. Anomalous collisions of elastic vector solitons in mechanical metamaterials. Physical Review Letters, 122: 44101. doi: 10.1103/PhysRevLett.122.044101
    [25]
    Deng B, Wang P, He Q, Tournat V, Bertoldi K. 2018. Metamaterials with amplitude gaps for elastic solitons. Nature Communications, 9: 1-8. doi: 10.1038/s41467-017-02088-w
    [26]
    Dusuel S, Michaux P, Remoissenet M. 1998. From kinks to compactonlike kinks. Physical Review E, 57: 2320. doi: 10.1103/PhysRevE.57.2320
    [27]
    Fan H, Xia B, Tong L, Zheng S, Yu D. 2019. Elastic higher-order topological insulator with topologically protected corner states. Physical Review Letters, 122: 204301. doi: 10.1103/PhysRevLett.122.204301
    [28]
    Fan H, Xia B, Zheng S, Tong L. 2020. Elastic phononic topological plate with edge and corner sates based on pseudospin-valley-coupling. Journal of Physics D: Applied Physics, 53: 395304. doi: 10.1088/1361-6463/ab94e2
    [29]
    Fraternali F, Carpentieri G, Amendola A, Skelton R E, Nesterenko V F. 2014. Multiscale tunability of solitary wave dynamics in tensegrity metamaterials. Applied Physics Letters, 105: 201903. doi: 10.1063/1.4902071
    [30]
    Frazier M J, Kochmann D M. 2017. Atomimetic mechanical structures with nonlinear topological domain evolution kinetics. Advanced Materials, 29: 1605800. doi: 10.1002/adma.201605800
    [31]
    Ganti S S, Liu T, Semperlotti F. 2020. Weyl points and topological surface states in a three-dimensional sandwich-type elastic lattice. New Journal of Physics, 22: 083001. doi: 10.1088/1367-2630/ab9e31
    [32]
    Gao H, Xue H, Wang Q, Gu Z, Liu T, Zhu J, Zhang B. 2020. Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal. Physical Review B, 101: 180303. doi: 10.1103/PhysRevB.101.180303
    [33]
    Gao N, Qu S, Si L, Wang J, Chen W. 2021. Broadband topological valley transport of elastic wave in reconfigurable phononic crystal plate. Applied Physics Letters, 118: 63502. doi: 10.1063/5.0036840
    [34]
    Guest S, Hutchinson J. 2003. On the determinacy of repetitive structures. Journal of the Mechanics and Physics of Solids, 51: 383-391. doi: 10.1016/S0022-5096(02)00107-2
    [35]
    Haldane F D M. 1988. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly". Physical Review Letters, 61: 2015. doi: 10.1103/PhysRevLett.61.2015
    [36]
    Hasan M Z, Kane C L. 2010. Colloquium: Topological insulators. Reviews of Modern Physics, 82: 3045. doi: 10.1103/RevModPhys.82.3045
    [37]
    Hatsugai Y. 1993. Chern number and edge states in the integer quantum Hall effect. Physical Review Letters, 71: 3697. doi: 10.1103/PhysRevLett.71.3697
    [38]
    Hutchinson R G, Fleck N A. 2006. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids, 54: 756-782. doi: 10.1016/j.jmps.2005.10.008
    [39]
    Kane C L, Lubensky T C. 2014. Topological boundary modes in isostatic lattices. Nature Physics, 10: 39-45. doi: 10.1038/nphys2835
    [40]
    Kane C L, Mele E J. 2005a. Quantum spin Hall effect in graphene. Physical Review Letters, 95: 226801. doi: 10.1103/PhysRevLett.95.226801
    [41]
    Kane C L, Mele E J. 2005b. Z2 topological order and the quantum spin Hall effect. Physical Review Letters, 95: 146802. doi: 10.1103/PhysRevLett.95.146802
    [42]
    Klitzing K V, Dorda G, Pepper M. 1980. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 45: 494. doi: 10.1103/PhysRevLett.45.494
    [43]
    Laughlin R B. 1981. Quantized Hall conductivity in two dimensions. Physical Review B, 23: 5632. doi: 10.1103/PhysRevB.23.5632
    [44]
    Leykam D, Bliokh K Y, Huang C, Chong Y, Nori F. 2017. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Physical Review Letters, 118: 040401. doi: 10.1103/PhysRevLett.118.040401
    [45]
    Li G, Ma T, Wang Y, Wang Y. 2020. Active control on topological immune of elastic wave metamaterials. Scientific Reports, 10: 1-8. doi: 10.1038/s41598-019-56847-4
    [46]
    Li S, Zhao D, Niu H, Zhu X, Zang J. 2018. Observation of elastic topological states in soft materials. Nature Communications, 9: 1370. doi: 10.1038/s41467-018-03830-8
    [47]
    Liu T, Semperlotti F. 2018. Tunable acoustic valley–hall edge states in reconfigurable phononic elastic waveguides. Physical Review Applied, 9: 14001. doi: 10.1103/PhysRevApplied.9.014001
    [48]
    Long Y, Ren J, Chen H. 2018. Intrinsic spin of elastic waves. Proceedings of the National Academy of Sciences of the United States of America, 115: 9951-9955. doi: 10.1073/pnas.1808534115
    [49]
    Lu J, Qiu C, Xu S, Ye Y, Ke M, Liu Z. 2014. Dirac cones in two-dimensional artificial crystals for classical waves. Physical Review B, 89: 134302. doi: 10.1103/PhysRevB.89.134302
    [50]
    Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F, Liu Z. 2016. Observation of topological valley transport of sound in sonic crystals. Nature Physics, 13: 369-374.
    [51]
    Machon T, Alexander G P, Goldstein R E, Pesci A I. 2016. Instabilities and solitons in minimal strips. Physical Review Letters, 117: 17801. doi: 10.1103/PhysRevLett.117.017801
    [52]
    Manton N, Sutcliffe P. 2004. Topological Solitons. Cambridge: Cambridge University Press.
    [53]
    Mao X, Lubensky T C. 2018. Maxwell lattices and topological mechanics. Annual Review of Condensed Matter Physics, 9: 413-433. doi: 10.1146/annurev-conmatphys-033117-054235
    [54]
    Maxwell J C. 1864. On the calculation of the equilibrium and stiffness of frames. Philosophical Magazine, 27: 294-299.
    [55]
    Miniaci M, Pal R K, Morvan B, Ruzzene M. 2018. Experimental observation of topologically protected helical edge modes in patterned elastic plates. Physical Review. X, 8: 31074.
    [56]
    Mo C, Singh J, Raney J R, Purohit P K. 2019. Cnoidal wave propagation in an elastic metamaterial. Physical Review E, 100: 13001. doi: 10.1103/PhysRevE.100.013001
    [57]
    Mousavi S H, Khanikaev A B, Wang Z. 2015. Topologically protected elastic waves in phononic metamaterials. Nature Communications, 6: 8682. doi: 10.1038/ncomms9682
    [58]
    Nadkarni N, Arrieta A F, Chong C, Kochmann D M, Daraio C. 2016. Unidirectional transition waves in bistable lattices. Physical Review Letters, 116: 244501. doi: 10.1103/PhysRevLett.116.244501
    [59]
    Nadkarni N, Daraio C, Kochmann D M. 2014. Dynamics of periodic mechanical structures containing bistable elastic elements: From elastic to solitary wave propagation. Physical Review E, 90: 23204. doi: 10.1103/PhysRevE.90.023204
    [60]
    Nash L M, Kleckner D, Read A, Vitelli V, Turner A M, Irvine W T M. 2015. Topological mechanics of gyroscopic metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 112: 14495-14500. doi: 10.1073/pnas.1507413112
    [61]
    Nesterenko V F. 1983. Propagation of nonlinear compression pulses in granular media. Journal of Applied Mechanics and Technical Physics, 24: 136-148.
    [62]
    Ni X, Weiner M, Alu A, Khanikaev A B. 2019. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nature Materials, 18: 113-120. doi: 10.1038/s41563-018-0252-9
    [63]
    Noh J, Benalcazar W A, Huang S, Collins M J, Chen K P, Hughes T L, Rechtsman M C. 2018. Topological protection of photonic mid-gap defect modes. Nature Photonics, 12: 408-415. doi: 10.1038/s41566-018-0179-3
    [64]
    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O. 2019. Topological photonics. Reviews of Modern Physics, 91: 15006. doi: 10.1103/RevModPhys.91.015006
    [65]
    Pal R K, Ruzzene M. 2017. Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect. New Journal of Physics, 19: 25001. doi: 10.1088/1367-2630/aa56a2
    [66]
    Paulose J, Chen B G, Vitelli V. 2015b. Topological modes bound to dislocations in mechanical metamaterials. Nature Physics, 11: 153-156. doi: 10.1038/nphys3185
    [67]
    Paulose J, Meeussen A S, Vitelli V. 2015a. Selective buckling via states of self-stress in topological metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 112: 7639-7644. doi: 10.1073/pnas.1502939112
    [68]
    Pellegrino S. 1993. Structural computations with the singular value decomposition of the equilibrium matrix. International Journal of Solids and Structures, 30: 3025-3035. doi: 10.1016/0020-7683(93)90210-X
    [69]
    Peyrard M, Bishop A R. 1989. Statistical mechanics of a nonlinear model for DNA denaturation. Physical Review Letters, 62: 2755. doi: 10.1103/PhysRevLett.62.2755
    [70]
    Qi X, Zhang S. 2011. Topological insulators and superconductors. Reviews of Modern Physics, 83: 1057. doi: 10.1103/RevModPhys.83.1057
    [71]
    Qi X, Hughes T L, Zhang S. 2008. Topological field theory of time-reversal invariant insulators. Physical Review B, 78: 195424. doi: 10.1103/PhysRevB.78.195424
    [72]
    Raney J R, Nadkarni N, Daraio C, Kochmann D M, Lewis J A, Bertoldi K. 2016. Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of the United States of America, 113: 9722-9727. doi: 10.1073/pnas.1604838113
    [73]
    Remoissenet M. 2013. Waves Called Solitons: Concepts and Experiments. New York: Springer.
    [74]
    Russell J S. 1845. Report on waves. In Report of the fourteenth meeting of the British Association for the Advancement of Science, 311-390.
    [75]
    Ryu S, Schnyder A P, Furusaki A, Ludwig A W W. 2010. Topological insulators and superconductors: tenfold way and dimensional hierarchy. New Journal of Physics, 12: 65010. doi: 10.1088/1367-2630/12/6/065010
    [76]
    Sato K, Tanaka R. 2018. Solitons in one-dimensional mechanical linkage. Physical Review E, 98: 13001. doi: 10.1103/PhysRevE.98.013001
    [77]
    Scott A C. 1969. A nonlinear Klein-Gordon equation. American Journal of Physics, 37: 52-61. doi: 10.1119/1.1975404
    [78]
    Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D. 2018. Observation of a phononic quadrupole topological insulator. Nature, 555: 342-345. doi: 10.1038/nature25156
    [79]
    Shen H, Zhen B, Fu L. 2018. Topological band theory for non-Hermitian Hamiltonians. Physical Review Letters, 120: 146402. doi: 10.1103/PhysRevLett.120.146402
    [80]
    Shen S. 2017. Topological Insulators: Dirac Equation in Condensed Matter. Singapore: Springer.
    [81]
    Simon B. 1983. Holonomy, the quantum adiabatic theorem, and Berry's phase. Physical Review Letters, 51: 2167. doi: 10.1103/PhysRevLett.51.2167
    [82]
    Sisan T B, Lichter S. 2014. Solitons transport water through narrow carbon nanotubes. Physical Review Letters, 112: 44501. doi: 10.1103/PhysRevLett.112.044501
    [83]
    Snee D D, Ma Y. 2019. Edge solitons in a nonlinear mechanical topological insulator. Extreme Mechanics Letters, 30: 100487. doi: 10.1016/j.eml.2019.100487
    [84]
    Stroh A N. 1962. Steady state problems in anisotropic elasticity. Journal of Mathematics and Physics, 41: 77-103. doi: 10.1002/sapm196241177
    [85]
    Suesstrunk R, Huber S D. 2015. Observation of phononic helical edge states in a mechanical topological insulator. Science, 349: 47-50. doi: 10.1126/science.aab0239
    [86]
    Sun K, Mao X. 2021. Fractional solitons in non-Euclidian elastic plates. arXiv preprint arXiv: 2101.04186.
    [87]
    Sun K, Mao X. 2020. Continuum theory for topological edge soft modes. Physical Review Letters, 124: 207601. doi: 10.1103/PhysRevLett.124.207601
    [88]
    Teo J C, Kane C L. 2010. Topological defects and gapless modes in insulators and superconductors. Physical Review B, 82: 115120. doi: 10.1103/PhysRevB.82.115120
    [89]
    Thouless D J, Kohmoto M, Nightingale M P, Den Nijs M. 1982. Quantized Hall conductance in a two-dimensional periodic potential. Physical Review Letters, 49: 405. doi: 10.1103/PhysRevLett.49.405
    [90]
    Tong L, Fan H, Xia B. 2020. Elastic phononic plates with first-order and second-order topological phases. Journal of Physics D: Applied Physics, 53: 115303. doi: 10.1088/1361-6463/ab6055
    [91]
    Tworzyd O J, Rycerz A, Beenakker C W J. 2007. Valley filter and valley valve in graphene. Nature, 3: 172-175.
    [92]
    Vila J, Pal R K, Ruzzene M. 2017. Observation of topological valley modes in an elastic hexagonal lattice. Physical Review B, 96: 124307.
    [93]
    Wang P, Lu L, Bertoldi K. 2015a. Topological phononic crystals with one-way elastic edge waves. Physical Review Letters, 115: 104302. doi: 10.1103/PhysRevLett.115.104302
    [94]
    Wang Y, Luan P, Zhang S. 2015b. Coriolis force induced topological order for classical mechanical vibrations. New Journal of Physics, 17: 73031. doi: 10.1088/1367-2630/17/7/073031
    [95]
    Willard S. 2012. General Topology. New York: Courier Corporation.
    [96]
    Wu L H, Hu X. 2015. Scheme for achieving a topological photonic crystal by using dielectric material. Physical Review Letters, 114: 223901. doi: 10.1103/PhysRevLett.114.223901
    [97]
    Wu L, Hu X. 2016. Topological properties of electrons in honeycomb lattice with detuned hopping energy. Scientific Reports, 6: 24347. doi: 10.1038/srep24347
    [98]
    Wu Q, Chen H, Li X, Huang G. 2020. In-plane second-order topologically protected states in elastic Kagome lattices. Physical Review Applied, 14: 14084. doi: 10.1103/PhysRevApplied.14.014084
    [99]
    Xia B, Zheng S, Liu T, Jiao J, Chen N, Dai H, Yu D, Liu J. 2018. Observation of valleylike edge states of sound at a momentum away from the high-symmetry points. Physical Review B, 97: 155124. doi: 10.1103/PhysRevB.97.155124
    [100]
    Xiao D, Yao W, Niu Q. 2007. Valley-contrasting physics in graphene: magnetic moment and topological transport. Physical Review Letters, 99: 236809. doi: 10.1103/PhysRevLett.99.236809
    [101]
    Yan M, Lu J, Li F, Deng W, Huang X, Ma J, Liu Z. 2018. On-chip valley topological materials for elastic wave manipulation. Nature Materials, 17: 993-998. doi: 10.1038/s41563-018-0191-5
    [102]
    Yasuda H, Miyazawa Y, Charalampidis E G, Chong C, Kevrekidis P G, Yang J. 2019. Origami-based impact mitigation via rarefaction solitary wave creation. Science Advances, 5: eaau2835. doi: 10.1126/sciadv.aau2835
    [103]
    Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P, Chen Y F. 2018. Elastic pseudospin transport for integratable topological phononic circuits. Nature Communications, 9: 3072. doi: 10.1038/s41467-018-05461-5
    [104]
    Zak J. 1989. Berry's phase for energy bands in solids. Physical Review Letters, 62: 2747. doi: 10.1103/PhysRevLett.62.2747
    [105]
    Zhang Q, Chen Y, Zhang K, Hu G. 2019a. Programmable elastic valley Hall insulator with tunable interface propagation routes. Extreme Mechanics Letters, 28: 76-80. doi: 10.1016/j.eml.2019.03.002
    [106]
    Zhang Q, Chen Y, Zhang K, Hu G. 2020. Dirac degeneracy and elastic topological valley modes induced by local resonant states. Physical Review B, 101: 014101. doi: 10.1103/PhysRevB.101.014101
    [107]
    Zhang Y, Li B, Zheng Q S, Genin G M, Chen C Q. 2019c. Programmable and robust static topological solitons in mechanical metamaterials. Nature Communications, 10: 5605. doi: 10.1038/s41467-019-13546-y
    [108]
    Zhang Y, Wang Y, Chen C Q. 2019d. Ordered deformation localization in cellular mechanical metamaterials. Journal of the Mechanics and Physics of Solids, 123: 28-40. doi: 10.1016/j.jmps.2018.08.025
    [109]
    Zhang Z, Long H, Liu C, Shao C, Cheng Y, Liu X. Christensen J. 2019b. Deep‐subwavelength holey acoustic second‐order topological insulators. Advanced Materials, 31: 1904682. doi: 10.1002/adma.201904682
    [110]
    Zhang Z, López M R, Cheng Y, Liu X, Christensen J. 2019. Non-Hermitian sonic second-order topological insulator. Physical Review Letters, 122: 195501. doi: 10.1103/PhysRevLett.122.195501
    [111]
    Zhao Y, Zhou X, Huang G. 2020. Non-reciprocal Rayleigh waves in elastic gyroscopic medium. Journal of the Mechanics and Physics of Solids, 143: 104065. doi: 10.1016/j.jmps.2020.104065
    [112]
    Zheng S, Xia B, Man X, Tong L, Jiao J, Duan G, Yu D. 2020. Three-dimensional higher-order topological acoustic system with multidimensional topological states. Physical Review B, 102: 104113. doi: 10.1103/PhysRevB.102.104113
    [113]
    Zhou Y, Chen B G, Upadhyaya N, Vitelli V. 2017. Kink-antikink asymmetry and impurity interactions in topological mechanical chains. Physical Review E, 95: 22202. doi: 10.1103/PhysRevE.95.022202
    [114]
    Zhu H, Liu T, Semperlotti F. 2018. Design and experimental observation of valley-Hall edge states in diatomic-graphene-like elastic waveguides. Physical Review B, 97: 174301. doi: 10.1103/PhysRevB.97.174301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(53)  / Tables(1)

    Article Metrics

    Article views (4667) PDF downloads(1201) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return