Volume 42 Issue 2
Mar.  2012
Turn off MathJax
Article Contents
SUN Chengwei, ZHAO Jianhengy, WANG Guiji, ZHANG Hongping, TAN Fuli, WANG Ganghua. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advances in Mechanics, 2012, 42(2): 206-219. doi: 10.6052/1000-0992-2012-2-20120208
Citation: SUN Chengwei, ZHAO Jianhengy, WANG Guiji, ZHANG Hongping, TAN Fuli, WANG Ganghua. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advances in Mechanics, 2012, 42(2): 206-219. doi: 10.6052/1000-0992-2012-2-20120208

Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching

doi: 10.6052/1000-0992-2012-2-20120208
Funds:  The project was supported by the National Natural Science Foundation of China (10927201, 11002130, 11176002), and the Science and Technology Foundations of China Academy of Engineering Physics (2010A0201006, 2011A01001).
More Information
  • Corresponding author: ZHAO Jianhengy
  • Received Date: 2011-05-03
  • Rev Recd Date: 2012-03-10
  • Publish Date: 2012-03-25
  • It is a new loading technique characterized as ramp wave loading developted to explore the rapid response of material at pressures, temperatures and stress or strain rate not attainable in conventional shock experiments, which was firstly developed on Sandia Z accelerator in 1999. In this paper, its principle; and progress in loading apparatus and methodology for the analysis of experimental data are presented, and its applications in the study of EOS data and dynamic response of material characterization are reviewed.

     

  • loading
  • 1 Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading. Rev. Sci. Instrum., 2001, 72(9):3587-3595
    2 Cauble R, Reisamn D B, Asay J R, et al. Isentropic compression experiments to 1mbar using magnetic pressure. J. Phys.: Condens. Matter, 2002, 14: 10821-10824
    3 Pollington M, Thompson P, Maw J. Equations of state. Discovery: The Science and Technology Journal of AWE,2002, 5: 16-25
    4 Asay J, Hall C A, Knudson M. Recent advances in highpressure equation-of-state capabilities. SAND2000-0849C
    5 High-energy-density physics study report. A Comprehensive Study of the Role of High-EnergyDensity Physics in the Stockpile Stewardship Program, National Nuclear Security Administration, U.S.Department of Energy, April 2001. http://www.dp.doe.gov/dp web/doc/HEDP Study Report April 2001.pdf
    6 Savage M. The Z pulsed power driver since refurbishment. In: The 13th International Conference on Megagauss Magnetic Field Generation and Related Topics Suzhou, China, July 8-10, 2010
    7 赵剑衡, 孙承纬, 谭福利, 等. 一维平面磁驱动等熵加载发射 飞片技术. 爆炸与冲击, 2005, 25(4): 303-308
    8 Knoepfel H. Pulsed High Magnetic Fields. Amsterdam: North-Holland Pub. Co., 1970. 104-129
    9 经福谦, 陈俊祥. 动高压原理与技术. 北京: 国防工业出版 社, 2006. 220-292
    10 Aidun J B, Gupta Y M. Analysis of Lagrangian gauge measurements of simple and nonsimple plane waves. J. Appl. Phys., 1991, 69(10): 6998-7014
    11 Hayes D. Backward integration of the equations of motion to correct for free surface perturbaritz. SAND2001-1440, Sandia National Laboratories, 2001
    12 Hayes D, Vorthman J, Fritz J. Backward integration of a spall VISAR record to the spall plane. LA-13830-MS, Los Alamos National Laboratory, 2001
    13 Rothman S D. Characteristics analysis of isentropic compression experiments (ICE). PPN05/05, Atomic Weapons Establishment (AWE) Report 151/05, Feb. 2005
    14 Maw J R. A characteristics code for analysis of isentropic compression experiments. Shock Compression of Condensed Matter–2003, 2004. 1217-1220
    15 Rothman S D, Maw J R. Characteristics analysis of isentropic compression experiments (ICE). J. of Physics IV (Proceedings), 2006, 134:745-750
    16 Cowperthwaite M, Williams R F. Determination of constitutive relationships with multiple gauges in nondivergent waves. J. Appl. Phys., 1971 42(1): 456-462
    17 Davison L. Traditional analysis of nonlinear wave propagation in solids. In: Horie Y, Moshsen S, Davison L, et al., High-Pressure Shock Compression of Solids vol.IV, Old Paradigms & New Challenges, Springer, N.Y., 2003
    18 Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading. International J. of Plasticity, 2009, 25: 671-694
    19 Grady D, Young E. Evaluating constitutive properties from velocity interferometer data. Sandia National Laboratories,1975, SAND75-0650
    20 Tasker D G, Fowler C M, Goforth J H, et al. Isentropic compression experiments using high explosive pulsed power, MEGAGAUSS-9. In: Proc. 9th Int. Conf. Megagauss Magnetic Field Generation and Related Topics, 765-771, Moscow-St.-Petersburg, Russia, July 2002
    21 Tasker D G, Goforth J H, Oona H, et al. Advances in isentropic compression experiments (ICE) using high explosive pulsed power. Shock Compression of Condensed Matter–2003, 2004. 1239-1242
    22 Goforth J H, Atchison W L, Fowler C M, et al. Design of high explosive pulsed power systems for 20MB isentropic compression experiments, MEGAGAUSS-9. In: Proc. 9th Int. Conf. Megagauss Magnetic Field Generation and Related Topics, 137-147, Moscow-St.-Petersburg, Russia, July 2002
    23 Hereil P L, Lassalle F, Avrilland G, et al. GEPI: An ICE generator for dynamic material characterization and hypervelocity impact, Shock Compression of Condensed Matter–2003, 2004. 1209-1212
    24 Avrillaud G, Courtois L, Guerre J, et al. GEPI: a compact pulsed power driver for isentropic compression experiments and for non shocked high velocity flyer plates. In: 14th IEEE International Pulsed Power Conf., 2003.913-916
    25 Ao T, Asay J R, Chantrenne S, et al. A compact strip-line pulsed power generator for isentropic compression experimemnts. Rev. Sci. Instrum., 2008 79: 013903
    26 孙承纬. 磁驱动等熵压缩和高速飞片的实验技术. 高能量密 度物理, 2006, 1: 1-7
    27 Glover S F, Davis J P, Puissant J G, et al. Genesis: a 5-ma programmable pulsed-power driver for isentropic compression experiments. IEEE Transactions on Plasma Science,2010, 38(10): 2620-2626
    28 赵剑衡, 孙承纬, 唐小松, 等. 高效能电炮实验装置的研制. 实验力学, 2006, 21(3): 369-375
    29 Sun C W, Wang G J, Zhao J H, et al. Magnetically driven isentropic compression and flyer plate experiments using a compact capacitor bank. Shock Compression of Condensed Matter–2007, 2007. 1196-1199
    30 Wang G J, Sun C W, Zhao J H, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments. Rev. Sci. Instrum., 2008, 79(5): 053904
    31 Trainor R J, Parsons W M, Ballard E O, et al. Overview of the Atlas project. In: Proc. 11th IEEE Int’l Pulsed Power Conf., 37-46, Baltimore, MD USA, June 1997
    32 Davis J P, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator. Physics of Plasma, 2005, 12: 056310
    33 Davis J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa. J. Appl. Phys., 2006, 99: 103512
    34 Hall C A, Asay J R, Knudson M D, et al. Recent advances in quasi-isentropic compression experiments (ICE) on the Sandia Z accelerator, Shock Compression of Condensed Matter–2001, 2002. 1163-1168
    35 Hayes D B, Hall C A, Asay J R, et al. Measurement of the compression isentrope for 6061-T6 aluminum to 185 GPa and 46% volumetric strain using pulsed magnetic loading. J. Appl. Phys., 2004, 96(10): 5520-5527
    36 Davis Jean-Paul, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator. Phys. Plasmas, 2005, 12: 056310
    37 Reisman D B, Torr A, Cauble R C. Magnetically driven isentropic compression experiments on the Z accelerator. J. Appl. Phys., 2001, 89(3): 1625-1633
    38 Hall C A. Isentropic compression experiments on the Sandia Z accelerator. Phys. Plasmas, 2000, 7(5): 2069-2075
    39 Hereil P L, Avrillaud G. J. IV France, 2006, 134: 535-540
    40 Rothman S D, Evans A M, Graham P, et al. Measurements of the equation of state of lead under varying conditions by multiple methods. Shock Compression of Condensed Matter–2001, 2002. 79-82
    41 Rothman S D, Parker K W, Davis J P, et al. Isentropic compression of lead and lead alloy using the Z machine. Shock Compression of Condensed Matter–2003,2004. 1235-1238
    42 Eggert J, Bastea M, Reisman D B, et al. Ramp wave stress-density measurements of Ta and W. Shock Compression of Condensed Matter–2007, 2007. 1177-1180
    43 Asay J R, Lipkin J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material. J. Appl. Phys., 1978, 49(7): 4242-4247
    44 Asay J R, Ao T, Davis J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression. J. Appl. Phys., 2008, 103: 083514
    45 Ding J L, Asay J R. Material characterization with ramp wave experiments. J. Appl. Phys., 2007, 101: 073517
    46 Huang H, Asay J R. Compressive strength measurements in aluminum dor shock compression over the stress range of 4-22 GPa. J. Appl. Phys., 2005, 98: 033524
    47 Ao T, Asay J R, Davis J P, et al. High-pressure quasiisentropic compression loading and unloading of interferometer windows on the Veloce pulsed power generator. In: Proc. of the Conference on Shock Compression of Condensed Matter-2007, Waikoloa, Hawaii, U.S.A, June 24-29,2007. 1157-1160
    48 Ao T, Knudson M D, Asay J R, et al. Strength of lithium fluoride under shockless compression to 114 GPa. Jour. Appl. Phys., 2009, 106: 103507
    49 Asay J R, Ao T, Vogler T J, et al. Yield strength of tantalum for shockless compression to 18GPa. Jour. Appl. Phys., 2009, 106: 073515
    50 Wise J L, Jones S C, Hall C A, et al. Dynamic response of Kovar to shock and ramp wave compression. In: Proc. of the Conference on Shock Compression of Condensed Matter-2007, Waikoloa, Hawaii, U.S.A, June 24-29, 2007.1024-1027
    51 Lawrence R J, Grady D E, Hall C A. The response of ceramic powders to high-level quasi-isentropic dynamic loads. In: 13th APS Topical conference on Shock Compression of Condensed Matter, 2003. 1213-1216
    52 Baer M R, Hall C A, Gustavsen R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents. J. Appl. Phys., 2007, 101: 034906
    53 Baer M R, Hall C A, Gustavsen R L, et al., Isentropic Compression Experiments for Mesoscale Studies of Energetic Composites. AIP Conference Proceedings, 2006,845: 1307-1310
    54 Hare D E, Reisman D B, Garcia F, et al. The Isentrope of Unreacted LX-04 to 170 kbar, Michael D F, Yogendra M G, Jerry W F, Eds. AIP, 2004. 145-148
    55 Hare D E, Forbes J W, Reisman D B, et al. Isentropic compression loading of octahydro-1,3,5,7tetranitro-1,3,5,7-tetrazocine (HMX) and the pressureinduced phase transition at 27 GPa. Applied Physics Letters, 2004, 85: 949-951
    56 Reisman D B, Forbes J W, Tarver C M, et al. Isentropic Compression of LX-04 on the Z Accelerator. In: Michael D F, Naresh N T, Yasuyuki H, eds. AIP, 2002. 849-852
    57 Hooks D E, Hayes D B, Hare D E, et al. Isentropic compression of cyclotetramethylene tetranitramine (HMX) single crystals to 50 GPa. Journal of Applied Physics,2006, 99: 124901
    58 Asay J R, Hall C A, Holland K G, et al. Isentropic compression on iron with the Z accelerator, Shock Compression of Condensed Matter–1999, 2000. 1151-1154
    59 Hereil P L, Lassalle F, Avrillaud G. GEPI: a nice generator for dynamic material characterisation and hypervelocity impact. In: Furnish M D, Gupta Y M Forbes J W, eds. Shock Compression of Condensed Matter-2003, 2004.1209-1212
    60 Hall C A, Knudson M D, Asay J R, et al. High velocity flyer plate launch capability on the sandia z accelerator. Int,l J. Impact Eng'g, 2001, 26: 275-287
    61 Matzen M K, Sweeney M A, Adams R G, et al. Pulsedpowerdriven high energy density physics and inertial confinement fusion research. Phys. Plasmas, 2005, 12:055503
    62 Knudson M D, Lemke R W, Hayes D B, et al. Nearabsolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. J. Appl. Phys., 2003, 94(7): 4420-4431
    63 Bergstresser T, Becker S. Temperature measurement of isentropically accelerated flyer plates. Shock Compression of Condensed Matter–2001, 2002. 1169-1172
    64 Knudson M D, Asay J R, Deeney C. Adiabatic release measurements in aluminum from 240to 500-GPa states on the principal Hugoniot. J. Appl. Phys., 2005, 97:073514
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1943) PDF downloads(2787) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return