Volume 42 Issue 2
Mar.  2012
Turn off MathJax
Article Contents
YANG Yang, JIANG Zonglin, HU Zongmin. ADVANCES IN SHOCK WAVE REFLECTION PHENOMENA[J]. Advances in Mechanics, 2012, 42(2): 141-161. doi: 10.6052/1000-0992-2012-2-20120203
Citation: YANG Yang, JIANG Zonglin, HU Zongmin. ADVANCES IN SHOCK WAVE REFLECTION PHENOMENA[J]. Advances in Mechanics, 2012, 42(2): 141-161. doi: 10.6052/1000-0992-2012-2-20120203

ADVANCES IN SHOCK WAVE REFLECTION PHENOMENA

doi: 10.6052/1000-0992-2012-2-20120203
Funds:  The project was supported by the National Natural Foundation of China (90916028, 11142006).
More Information
  • Corresponding author: JIANG Zonglin
  • Received Date: 2011-06-08
  • Rev Recd Date: 2012-02-06
  • Publish Date: 2012-03-25
  • Advances in the study on shock wave reflection phenomena are reviewed. Some aspects of the advances are particularly elaborated in accordance with the research focuses of shock wave reflection phenomena in the past decade: weak shock reflection, wave con gurations and transition criteria of nonstationary shock wave reflection, wave con gurations of steady shock wave reflection, and the hysteresis of shock wave reflection. In view of their signi cances in practical applications, the advances in three-dimensional shock wave reflection phenomena are also presented and the problems confronted are discussed. In the mean time, directions of further studies on shock wave reflection are suggested.

     

  • loading
  • 1 Mach E. Uber den Verlauf von Funkenwellen in der Ebene und im Raume. Sitzugsbr Akad Wiss Wien, 1878, 78:819-838
    2 von Neumann J. Oblique reflection of shocks. Explos Res Rep 12, Navy Dept Bureau of ordinance, Washington DC, USA, 1943
    3 von Neumann J. Refraction, intersection and reflection of shock waves. NAVORD Rep 203-45, Navy Dept Bureau of ordinance, Washington DC, USA, 1943
    4 Ben-Dor G. Shock Wave Reflection Phenomena. 2nd Edition. Berlin: Springer-Verlag Press, 2007
    5 Goonko Y P, Latypov A F, Mazhul I I, et al. Structure of flow over a hypersonic inlet with side compression wedges. AIAA Journal, 2003, 41(3): 436-447
    6 Kleine H, Settles G S. The art of shock waves and their flowfields. Shock Waves, 2008, 17: 291-307
    7 滕宏辉, 张德良, 李辉煌, 等. 用环形激波聚焦实现爆轰波直 接起爆的数值模拟. 爆炸与冲击, 2005, 25(6): 512-518
    8 Ben-Dor G, Takayama K. The phenomena of shock wave reflection-a review of unsolved problems and future research needs. Shock Waves, 1992, 2: 211-223
    9 White D R. An experimental survey of the Mach reflection of shock waves: [PhD Thesis]. New Jersey: Princeton University, 1951
    10 Zaslavsky B I, Safarov P A. Mach reflection of weak shock waves from a rigid wall. J. Appl. Mech. Tech. Phys.,1973, 14(5): 624-629
    11 Henderson L F, Siegenthaler A. Experiments on the diffraction of weak blast waves: the von Neumann paradox. Proc. R. Soc. London, Ser. A, 1980, 369: 537-555
    12 Sasoh A, Takayama K. Characterization of disturbance propagation in weak shock wave reflections. J. Fluid Mech., 1994, 277: 331-345
    13 Colella P, Henderson L F. The von Neumann paradox for the diffraction of weak shock waves. J. Fluid Mech., 1990,213: 71-94
    14 Smith L G. Photographic investigation of the reflection of plane shocks in air. OSRD Rep 6271, Off Sci Res Dev, Washington DC, USA, 1945
    15 White D R. An experimental survey of the Mach reflection of shock waves. Department of Physics, Princeton University Technical Report No.II-10, 1951
    16 Courant R, Friedrichs K O. Supersonic flow and shock waves. New York: Wiley Interscience, 1948
    17 Ben-Dor G, Takayama K. The dynamics of the transition from Mach to regular reflection over concave cylinders. Israel J. Tech., 1986/7, 23: 71-74
    18 Lee J H, Glass I I. Pseudo-stationary oblique-shock wave reflection in frozen and equilibrium air. Prog. Aerospace Sci., 1984, 21: 33-80
    19 Kawamura R, Saito H. Reflection of shock waves-1.Pseudo-stationary case. J. Phys. Soc. Japan, 1956,11: 584-592
    20 Sternberg J. Triple-shock-wave intersections. Phys. Fluids, 1959, 2: 179-207
    21 Birkhoff G. Hydrodynamics: A Study in Logic, Fact, and Similitude, 2nd. New Jersey: Princeton University Press,1960
    22 Olim M, Dewey J M. A revised three-shock solution for the Mach reflection of weak shocks. Shock Waves, 1992,2: 167-176
    23 Skews B W. The flow in the vicinity of the three shock intersection. CASI Trans., 1972, 4: 99-107
    24 Dulov V G. Motion of triple configuration of shock waves with formation of wake behind branching point. J. Appl. Mech. Tech. Phys., 1973, 14: 791-797
    25 Shindyapin G P. Mach reflection and interaction of weak shock waves under the von Neumann paradox. Fluid Dyn.,1996, 31: 318-324
    26 Guderley K G. Considerations on the structure of mixed subsonic-supersonic flow patterns. Air Materiel Command Technical Report No. F-TR-2168-ND, ATI No. 22780, GS-AAF-Wright Field No. 39, US Wright-Patterson Air Force Base, Dayton, OH, 1947
    27 Guderley K G. The Theory of Transonic Flow. New York: Pergamon Press, 1962
    28 Vasilev E, Kraiko A. Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions. Comput. Math. Math. Phys., 1999, 39:1335-1345
    29 Hunter J K, Brio M. Weak shock reflection. J. Fluid Mech., 2000, 410: 235-261
    30 Zakharian A R, Brio M, Hunter J K, et al. The von Neumann paradox in weak shock reflection. J. Fluid Mech.,2000, 422: 193-205
    31 Skews B W, Ashworth J T. The physical nature of weak shock wave reflection. J. Fluid Mech., 2005, 542: 105-114
    32 Tesdall A M, Hunter J K. Self-similar solutions for weak shock reflection. Siam. J. Appl. Maths., 2002, 63: 42-61
    33 Vasilev E I, Elperin T, Ben-Dor G. Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge. Phys. Fluids, 2008, 20: 046101
    34 Skews B W, Li G, Paton R. Experiments on Guderley Mach reflection. Shock Waves, 2009, 19: 95-102
    35 Li H, Ben-Dor G. Reconsideration of pseudo-steady shock wave reflections and the transition criteria between them. Shock Waves, 1995, 5: 59-73
    36 Li H, Ben-Dor G. A shock dynamics theory based analytical solution of double Mach reflections. Shock Waves,1995, 5: 259-264
    37 Li H, Ben-Dor G. Analysis of double-Mach-reflection wave configuration with convexly curved Mach stems. Shock Waves, 1999, 9: 319-326
    38 Henderson L F, Vasilev E I, Ben-Dor G, et al. The walljetting effect in Mach reflection: theoretical consideration and numerical investigation. J. Fluid Mech., 2003, 479:259-286
    39 Ben-Dor G, Vasilev E I, Henderson L F, et al. The walljetting effect in Mach reflection: a numerical investigation. In: Proceedings of the 24th International Symposium on Shock Waves, Beijing, China, 2004. 461-466
    40 Vasilev E I, Ben-Dor G, Elperin T, et al. The wall-jetting effect in Mach reflection: Navier-Stokes simulations. J. Fluid Mech., 2004, 511: 363-379
    41 Morioka T, Suzuki Y, Honma H. Radiation observation of strong shock wave reflection in air. In: Proceedings of the 22th International Symposium on Shock Waves, Southampton, UK, 2000. 1201-1206
    42 高云亮. 超高速流动实验模拟方法及基础气动问题研究: [博 士论文]. 北京: 中国科学院力学研究所, 2008
    43 高云亮, 姜宗林. 准定常强激波反射马赫杆突出变形准则的 探讨. 爆炸与冲击, 2009, 29: 143-148
    44 Semenov A N, Betezkina M K, Krasovskaya I V. Classification of shock wave reflection from a wedge. Part 1: boundaries and domains of existence for different types of reflection. Technical Physics, 2009, 54(4): 491-496
    45 Semenov A N, Betezkina M K, Krasovskaya I V. Classification of shock wave reflection from a wedge. Part 2: experimental and numerical simulations of different types of Mach reflections. Technical Physics, 2009, 54(4): 497-503
    46 Ben-Dor G. Regions and transitions of nonstationary oblique shock wave diffractions in perfect and imperfect gases. UTIAS Pept., 1978. 232
    47 Bryson A E, Gross R W F. Diffraction of strong shocks by cones, cylinders and spheres. J. Fluid Mech., 1961, 10:1-16
    48 Takayama K, Sekiguchi H. Shock wave reflection by cones. Rept. Inst. High Speed Mech. Japan: Tohoku University,1976
    49 Han Z Y, Milton B E, Takayama K. The Mach reflection triple-point locus for internal and external conical diffraction of a moving shock wave. Shock Waves, 1992, 2: 5-12
    50 Milton B E, Archer R D. Conical Mach reflection of moving shock waves, Part 1: analytical considerations. Shock Waves, 1996, 6: 29-39
    51 Yang J, Sasoh A, Takayama K. The reflection of a shock wave over a cone. Shock Waves, 1996, 6: 267-273
    52 Milton B E, Takayama K. Conical Mach reflection of moving shock waves, Part 2: physical and CFD experimentation. Shock Waves, 1998, 8: 93-103
    53 Azevedo D J. Analytic prediction of shock patterns in a high-speed , wedge-bounded duct. [Ph.D. Thesis]. State University of New York, Buffalo, NY, 1989
    54 Azevedo D J, Liu C S. Engineering approach to the prediction of shock patterns in bounded high-speed flows. AIAA Journal, 1993, 31(1): 83-90
    55 Schotz M, Levy A, Ben-Dor G, et al. Analytical prediction of the wave configuration size in steady flow Mach reflections. Shock Waves, 1997, 7(6): 363-372
    56 Li H, Ben-Dor G. A parametric study of Mach reflection in steady flows. J. Fluid Mech., 1997, 341(1): 101-125
    57 Mouton C A, Hornung H G. Mach stem height and growth rate predictions. AIAA Journal, 2007, 45(8): 1977-1987
    58 高波. 二维定常超音速流中激波马赫反射的波系结构与转捩 研究: [博士论文]. 北京: 清华大学, 2010
    59 Gao B, Wu Z N. A study of the flow structure for Mach reflection in steady supersonic flow. J. Fluid Mech., 2010,656: 29-50
    60 Tan L H, Ren Y X, Wu Z N. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows. J. Fluid Mech., 2006, 546: 341-362
    61 Chpoun A, Leclerc E. Experimental investigation of the influence of down stream flow conditions on Mach stem height. Shock Waves, 1999, 9: 269-271
    62 Ben-Dor G, Elperin T, Li H, et al. The influence of the downstream pressure on the shock wave reflection phenomenon in steady flows. J. Fluid Mech., 1999, 386: 213-232
    63 Burtschell Y, Zeitoun D E, Ben-Dor G. Steady shock wave reflections in thermochemical nonequilibrium flows. Shock Waves, 2001, 11: 15-21
    64 Li H, Chpoun A, Ben-Dor G. Analytical and experimental investigations of the reflection of asymmetric shock waves in steady flows. J. Fluid Mech., 1999, 390: 25-43
    65 Hu Z M, Wang C, Zhang Y, et al. Computational confirmation of an abnormal Mach reflection configuration. Physics of Fluids, 2009, 21: 011702
    66 谭廉华. 平面与轴对称定常激波马赫反射中的激波形状研 究: [博士论文]. 北京: 清华大学, 2007
    67 Ben-Dor G. A state-of-the-knowledge review on pseudosteady shock-wave reflections and their transition criteria. Shock Waves, 2006, 15: 277-294
    68 Hornung H G, Oetel H, Sandemann R J. Transition to Mach reflection of shock waves in steady and pseudosteady flow with and without relaxation. J. Fluid Mech., 1979,90: 541-560
    69 Hornung H G, Robinson M L. Transition from regular to Mach reflection of shock waves. Part 2: the steady-flow criterion. J. Fluid Mech., 1982, 123: 155-164
    70 Ivanov M S, Gimelshein S F, Beylich A E. Hysteresis effect in stationary reflection of shock waves. Phys. Fluids,1995, 7(4): 685-687
    71 Chpoun A, Passerel D, Li H, et al. Reconsideration of oblique shock wave reflections in steady flows. Part 1: experimental investigation. J. Fluid Mech., 1995, 301: 19-35
    72 Chpoun A, Ben-Dor G. Numerical confirmation of the hysteresis phenomena in the regular to the Mach reflection transition in steady flows. Shock Waves, 1995, 5(4): 199-204
    73 Ivanov M S, Zeitoun D, Vuilon J, et al. Investigation of the hysteresis phenomena in steady shock reflection using kinetic and continuum methods. Shock Waves, 1996, 5(6):341-346
    74 Hadjadj A, Kudryavtsev A N, Ivanov M S, et al. Numerical investigation of hysteresis effects and slip surface instability in the steady Mach reflection. In: Proc. of 21st Int. Symp. on Shock Waves, 1998, 2: 841-847, Panther Publishing, Great Keppel, Australia
    75 Ivanov M S, Markelov G N, Kudryavtev A N, et al. Numerical analysis of shock wave reflection transition in steady flows. AIAA J., 1998, 36(11): 2079-2086
    76 Fomin V M, Ivanov M S, Kharitonov A M, et al. The study of transition between regular and Mach reflection of shock waves in different wind tunnel. In: Proc. of 12th Int. Mach Reflection Symp., 1996, 137-151, Pilananesberg, South Africa
    77 Ivanov M S, Klemenkov G P, Kudryavtsev A N, et al. Experimental and numerical study of the transition between regular and Mach reflections of shock waves in steady flows. In: Proc. of 21st Int. Symp. on ShockWaves, 1998,2: 819-824, Panther Publishing, Great Keppel, Australia
    78 Sudani N, Sato M, Watanabe M, et al. Three-dimensional effects on shock wave reflections in steady flows. AIAA paper 1999-0148, 1999
    79 Ivanov M S, Gimenlshein S F, Markelov G N, et al. Numerical investigation of shock-wave reflection problems in steady flows. In: Proc. of 20st Int. Symp. on Shock Waves, 1996. 471-476, World Scientific
    80 Li H, Ben-Dor G. Application of the principle of minimum entropy production to shock wave reflection. I: steady flows. J. Appl. Phys., 1996, 80(4): 2027-2037
    81 Hornung H G. On the stability of steady-flow regular and Mach reflection. Shock Waves, 1997, 7: 123-125
    82 Sudani N, Hornung H G. Stability and analogy of shock wave reflection in steady flow. Shock Waves, 1998, 8: 367-374
    83 Ivanov M S, Kudryavtsev A N, Nikiforov S B, et al. Experiments on shock wave reflection transition and hysteresis in low-noise wind tunnel. Phys. Fluids, 2003, 15(6):1807-1810
    84 Kudryyavtsev A N, Khotyanovsky D V, Ivanov M S, et al. Numerical investigations of transition between regular and Mach reflections caused by free-stream disturbances. Shock Waves, 2002, 12: 157-165
    85 Sudani N, Sato M, Karasawa T, et al. Irregular effects on the transition from regular to Mach reflection of shock waves in wind tunnel flow. J. Fluid Mech., 2002, 459:167-185
    86 Yan H, Adelgren R, Elliott G, et al. Laser energy deposition in intersecting shocks. AIAA paper 2002-2729, 2002
    87 Khotyanovsky D V, Kudryavtsev A N, Ivanov M S. Effects of a single-pulse energy deposition on steady shock wave reflection. Shock Waves, 2006, 15: 353-362
    88 Skews B W. Aspect ratio effects in wind tunnel studies of shock wave reflection transition. Shock Waves, 1997, 7:373-383
    89 Skews B W. Three-dimensional effects in wind tunnel studies of shock wave reflection. J. Fluid Mech., 2000,407: 85-104
    90 Ivanov M S, Vandromme D, Fomin V M, et al. Transition between regular and Mach reflection of shock waves: new numerical and experimental results. Shock Waves, 2001,11: 199-207
    91 Brown Y A, Skews B W. Three-dimensional effects on regular reflection in steady supersonic flows. Shock Waves,2004, 13: 339-349
    92 Ivanov M S, Ben-Dor G, Elperin T, et al. The reflection of asymmetric shock waves in steady flows: a numerical investigation. J. Fluid Mech., 2002, 469: 71-87
    93 Hu Z M, Myong R S, Kim M S, et al. Downtream flow condition effects on the RR!MR transition of asymmetric shock waves in steady flows. J. Fluid Mech., 2009, 620:43-62
    94 Ivanov M S, Ben-Dor G, Elperin T, et al. Mach-numbervariationinduced hysteresis in steady flow shock wave reflections. AIAA J., 2001, 39(5): 972-974
    95 Durand A, Chanetz B, Benay R, et al. Investigation of shock waves interference and associated hysteresis effect at variable-Mach-number upstream flow. Shock Waves,2003, 12: 469-477
    96 Ben-Dor G, Vasiliev E I, Elperin T, et al. Hysteresis phenomena in the interaction process of conical shock waves: experimental and numerical investigations. J. Fluid Mech., 2001, 448: 147-174
    97 Ben-Dor G, Elperin T, Vasiliev I. Floe-Mach-numberinduced hysteresis phenomena in the interaction of conical shock waves-a numerical investigation. J. Fluid Mech.,2003, 496: 335-354
    98 Ben-Dor G, Elperin T, Li H, et al. Downstream pressure induced hysteresis in the regular-Mach reflection transition in steady flows. Phys. Fluids, 1997, 9: 3036
    99 Numata D, Ohtani K, Takayama K. Diffuse holographic interferometric observation of shock wave reflection from a skewed wedge. Shock Waves, 2009, 19: 103-112
    100 Meguro T, Takayama K, Onodera O. Three-dimensional shock wave reflection over a corner of two intersecting wedges. Shock Waves, 1997, 7: 107-121
    101 Goonko Y P, Kudryavtsev A N, Chpoun A. 3D interaction of shock waves in corner flow. In: Proc. of 24st Int. Symp. on Shock Waves, 2004. 437-442, Springer, Beijing, China
    102 Goonko Y P, Kudryavtsev A N, Rakhimov R D. Supersonic inviscid corner flows with regular and irregular shock interaction. Fluid dynamics, 2004, 39(2): 304-318
    103 Zambelli J, Skews B W. Shock wave propagation into a surface depression. Shock Waves, 2008, 18: 79-87
    104 Jiang Z,Wang C, Miura Y, et al. Three-dimensional propagation of the transmitted shock wave in a square crosssectional chamber. Shock Waves, 2003, 13: 103-111
    105 Yang Y, Teng H, Jiang Z, et al. Numerical investigation on three-dimensional shock wave reflection over two perpendicularly intersecting wedges. Shock Waves, 2012, DOI 10.1007/s00193-011-0350-y
    106 杨旸, 滕宏辉, 姜宗林. 三维双楔面定常超声速流动研究. 空气动力学学报, 2012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2941) PDF downloads(2072) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return