Volume 42 Issue 2
Mar.  2012
Turn off MathJax
Article Contents
JIANG Zonglin, TENG Honghui, LIU Yunfeng. SOME RESEARCH PROGRESS ON GASEOUS DETONATION PHYSICS[J]. Advances in Mechanics, 2012, 42(2): 129-140. doi: 10.6052/1000-0992-2012-2-20120202
Citation: JIANG Zonglin, TENG Honghui, LIU Yunfeng. SOME RESEARCH PROGRESS ON GASEOUS DETONATION PHYSICS[J]. Advances in Mechanics, 2012, 42(2): 129-140. doi: 10.6052/1000-0992-2012-2-20120202

SOME RESEARCH PROGRESS ON GASEOUS DETONATION PHYSICS

doi: 10.6052/1000-0992-2012-2-20120202
Funds:  The project was supported by the National Natural Science Foundation of China (90916028).
More Information
  • Corresponding author: JIANG Zonglin
  • Received Date: 2011-06-08
  • Rev Recd Date: 2011-07-11
  • Publish Date: 2012-03-25
  • Research on the detonation phenomena has been conducted for over one hundred years, and many important progresses in the detonation physics have been achieved. In this paper, the classic detonation theories and the multi-wave structure of cellular detonation are reviewed as well as the mechanism of detonation initiation and propagation. Then scientific meaning and limitation are commented and potential future research directions are pointed out. These progresses include the CJ theory and ZND model, detonation multi-wave structure, characteristics of the detonation cell, direct initiation and DDT, hot spot initiation mechanism, detonation stability, the propagation of the disturbed detonation, et al. Gaseous detonations are self-sustained supersonic combustion phenomena, involving shock wave interaction, combustion chemical reactions, turbulence, and hydrodynamic instability. Therefore they are very complicated and have also meaningful theoretical importance. On the other hand, the detonation achieves very efficient heat release and has potential applications in the advanced thermal propulsion technology, which constitutes important engineering background for related studies.

     

  • loading
  • 1 Kailasanath K. Recent developments in the research on pulse detonation engines. AIAA Journal, 2003, 41(2):145-159
    2 Roy G E, Frolov S M, Borisov A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci, 2004, 30(6): 545-672
    3 Viguier C, Gourara A, Desbordes D. There-dimensional structure of stabilization of oblique detonation wave in hypersonic flow. Proceedings of the Combustion Institute,1998, 27(2): 2207-2214
    4 Kasahara J, Fujiwara T, Endo T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles. AIAA Journal, 2001, 39(8): 1553-1561
    5 Bykovskii F A, Zhdam S A, Vedernikov E F. Realization and modeling of continuous spin detonation of a hydrogenoxygen mixture in flow-type combustors. Combustion, Explosion and Shock Waves, 2009, 45(6): 716-728
    6 Wolanski P, Kindracki J, Fujiwara T. An experimental study of small rotating detonation engine. In: Roy G, Frolov S, Sinibaldi J. eds. Pulsed and Continuous Detonations. Moscow: Torus Press, 2006. 332-338
    7 Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations. Shock Waves, 2009, 19(1): 1-10
    8 俞鸿儒, 李斌, 陈宏. 激波管氢氧爆轰驱动技术的发展进程. 力学进展, 2005, 35(3): 315-322
    9 Jiang Z, Zhao W, Yu H R. Demonstration of some concepts for developing long-test duration shock tunnels. In: Proceedings of 28th Symp on Shock Waves, July 16-23,2011
    10 Hillebrandt W, Niemeyer J C. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys., 2000,38(1): 191-230
    11 Berthelot M, Vieille E. On the velocity of propagation of explosive processes in gases. C. R. Hebd. Sceances Acad. Sci., 1881, 93: 18-21
    12 Chapman D L. On the rate of explosion in gases. Philos. Mag., 1899, 47: 90-104
    13 Jouguet E. On the propagation of chemical reactions in gases. J. De Mathematiques Pures et Appliqquees, 1905,1: 347-425
    14 Zel’dovich Y B. On the theory of the propagation of detonation in gaseous systems. Journal of experimental and theoretical physics, 1940, 10: 543-568
    15 von Neumann J. Theory of detonation waves. In: John von Neumann. Collected Works. Vol.6, ed. A.J. Taub. New York: Macmillam, 1942
    16 Döring W. On detonation processes in gases. Ann. Phys.,1943, 43: 421-436
    17 White D R. Turbulent structure in gaseous detonations. Phys. Fluids, 1961, 4: 465-480
    18 Soloukhin R. Multi-headed structure of gaseous detonation. Combust. Flame, 1965, 9: 51-58
    19 Wang C, Jiang Z, Gao Y. Half -cell law of regular cellular detonation. Chinese Physics Letters, 2008, 25(10):3704-3707
    20 Liu Y, Jiang Z. Reconsideration on the role of the specific heat ratio in Arrhenius law applications. Acta Mechanic Sinica, 2008, 24(1): 261-266
    21 Lee J H S. Initiation of gaseous detonation. Ann. Rev. Phys. Chem, 1977, 28: 75-104
    22 Zel’dovich Y B, Librovich V B, Makhviladze G M, et al. On the development of detonation in a non-uniformly preheated gas. Astronautica Acta, 1970, 15: 312-321
    23 Lee J H S, Lee B H K, Knystautas R. Direct initiation of cylindrical gaseous detonations. Phys. Fluids, 1966, 9:221-222
    24 Lee J H S. Dynamic parameters of gaseous detonations. Ann. Rev. Fluid Mech., 1984, 16: 311-336
    25 Lee J H S, Knystautas R, Frieman A. High-speed turbulent deflagration and transition to detonation in H2-Air mixtures. Combust. Flame, 1984, 56: 227-239
    26 Urtiew P, Oppenheim A K. Experimental observation of the transition to detonation in an explosive gas. Proc. Roy. Soc. A, 1966, 295: 13-28
    27 Lee J H S, Higgins A J. Comments on criteria for direct initiation of detonation. Phil. Trans. R. Soc. Lond. A,1999, 357: 3503-3521
    28 Radulescu M I, Higgins A J, Murray S B. An experimental investigation of the direction initiation of cylindrical detonations. J. Fluid Mech., 2003, 480(1): 1-24
    29 Lee J H S, Knystautas R, Yoshikawa N. Photochemical initiation of gaseous detonations. Acta Astronautica, 1978,5:971-982
    30 Thomas G O, Jones A. Some observations of the jet initiation of detonation. Combust. Flame, 2000, 120: 392-398
    31 Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: the role of hot spots. Combust. Flame, 1999, 119: 400-416
    32 Bartenev A M, Gelfand B E. Spontaneous initiation of detonations. Progress in Energy and Combustion Science,2002, 26: 29-55
    33 Montgomery C J, Khokhlov A M, Oran E S. The effect of mixing irregularities on mixed-region critical length for deflagration-to-detonation transition. Combust. Flame,1998, 115: 38-50
    34 Sharpe G J, Short M. Detonation ignition from a temperature gradient for a two-step chain-branching kinetics model. J. Fluid Mech., 2003, 476: 267-292
    35 Ng H D, Lee J H S. Direct initiation of detonation with a multi-step reaction scheme. J. Fluid Mech., 2003, 476(1):179-211
    36 Gu X J, Emerson D R, Bradley D. Modes of reaction front propagation from hot spots. Combust. Flame, 2003, 133:63-74
    37 Teng H, Jiang Z. Gasdynamics characteristics of toroidal shock and detonation waves focusing. Science in China Series G-Physics and Astronomy, 2005, 48(6): 739-749
    38 王春, 张德良, 姜宗林. 多障碍物通道中激波诱导气相爆轰 的数值研究. 力学学报, 2006, 38(5): 586-592
    39 Oran E S, Gamezo V N. Origins of the deflagration-todetonation transition in gas-phase combustion. Combust. Flame, 2007, 148: 4-47, 586-592
    40 Brailovsky I, Sivashinsky G. Hydraulic resistance as a mechanism for deflagrationto-detonation transition. Combust. Flame, 2000, 122: 492-499
    41 Kagan L, Sivashinsky G. The transition from deflagration to detonation in thin channels. Combust. Flame, 2003,134: 389-397
    42 Kaneshige K, Shepherd J E. Detonation database, explosion dynamics laboratory report FM97-8. California Institute of Technology, Pasadena, CA, September, 1999
    43 Gavrikov A I, Efimenko A A, Dorofeev S B. A model for detonation cell size prediction from chemical kinetics. Combust. Flame, 2000, 120: 19-33
    44 Oran E S, Weber J W, Stefaniw E I, et al. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. Combust. Flame, 1998,113: 147-163
    45 Gamezo V N, Desbordes D, Oran E S. Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves, 1999, 9: 11-17
    46 Gamezo V N, Desbordes D, Oran E S. Formation and evolution of two-dimensional cellular detonations. Combust. Flame, 1999, 116: 154-165
    47 Radulescu M I, Lee J H S. The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame, 2002, 131: 29-46
    48 Sharpe G J. Transverse waves in numerical simulations of cellular detonations. J. Fluid Mech., 2001, 447(1): 31-51
    49 Pintgen F, Eckett C A, Austin J M, et al. Direct observations of reaction zone structure in propagating detonations. Combust. Flame, 2003, 133: 211-229
    50 Mass L, Austin J M, Jackson T L. Triple-point shear layers in gaseous detonation waves. J. Fluid Mech., 2007,586(2): 205-248
    51 Jiang Z, Han G, Wang C, et al. Self-organized generation of transverse waves in diverging cylindrical detonations. Combust. Flame, 2009, 156(8): 1653-1661
    52 Williams D N, Bauwens L, Oran E S. Detailed structure and propagation of three-dimensional detonations. Proceedings of the Combustion Institute, 1996, 26(2): 2991-2998
    53 Tsuboi N, Katoh S, Hayashi A K. Three-dimensional numerical simulation for hydrogen/air detonation: rectangular and diagonal structures. Proceedings of the Combustion Institute, 2002, 29(2): 2783-2788
    54 Tsuboi N, Eto K, Hayashi A K. Detailed structure of spinning detonation in a circular tube. Combust. Flame, 2007,149: 144-161
    55 Tsuboi N, Daimon Y, Hayashi A K. Three-demensional numerical simulation of detonations in coaxial tubes. Shock Waves, 2008, 18(5): 379-392
    56 Li C, Kailasanath K, Oran E S. Detonation structures behind oblique shocks. Physics of Fluids, 1994, 6(4): 1600-1611
    57 Choi J Y, Kim D W, Jeung I S. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute,2007, 31(2): 2473-2480
    58 董刚, 范宝春, 李鸿志. 圆锥激波诱导的爆燃和爆轰不稳定性 研究. 兵工学报, 2010, 31(4): 401-408
    59 Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations. Journal of Propulsion and Power, 2006,22(6) : 1204-1216
    60 张旭东, 范宝春, 归明月, 等. 旋转爆轰的三维结构和侧向稀 疏波的影响. 爆炸与冲击, 2010, 30(4): 338-341
    61 邵业涛, 王健平, 唐新猛, 等. 连续旋转爆轰发动机流场三维 数值模拟. 航空动力学报, 2010, 25(8): 1717-1722
    62 Erpenbeck J J. Stability of idealized one-reaction detonations. Phys. Fluids, 1964, 7: 684-696
    63 Erpenbeck J J. Nonlinear theory of two-dimensional detonations. Phys. Fluids, 1970, 13: 2007-2026
    64 He L, Lee J H S. The dynamical limit of one-dimensional detonations. Phys. Fluids, 1995, 7(5): 1151-1158
    65 Sharpe G J, Falle S A E G. One-dimensional numerical simulations of idealized detonations. Proc. R. Soc. Lond. A, 1999, 455: 1203-1214
    66 Ng H D, Radulescu M I, Higgins A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combustion Theory and Modelling, 2005, 9: 385-401
    67 Short M, Quirk J J. On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction. J. Fluid Mech., 1997, 339(1):89-119
    68 Watt S D, Sharpe G J. Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves. J. Fluid Mech., 2005, 522: 329-356
    69 Clavin P, He L, Willams F A. Multidimensional stability analysis of overdriven gaseous detonations. Phys. Fluids,1997, 9 (12): 3764-3785
    70 Clavin P, Denet B. Diamond patterns in the cellular front of an overdriven detonation. Physical Review Letters,2002, 88: 044502
    71 Yao J, Stewart D S. On the dynamics of multi-dimensional detonation waves. J. Fluid Mech., 1996, 309: 225-275
    72 Stewart D S. The shock dynamics of multidimensional condensed and gas-phase detonations. Proceedings of the Combustion Institute, 1998, 27(2): 2189-2205
    73 Ohyagi S, Obara T, Hoshi S, et al. Diffraction and reinitiation of detonations behind a backward-facing step. Shock Waves, 2002, 12: 221-226
    74 Jones D A, Kemister G, Tonello N A, et al. Numerical simulation of detonation reignition in H2-O2 mixtures in area expansions. Shock Waves, 2000, 10: 33-41
    75 Arient M, Shepherd J E. A numerical study of detonation diffraction. J. Fluid Mech., 2005, 529: 117-146
    76 李辉煌, 朱雨建, 杨基明. 爆轰波通过扩张喷管的双曝光全 息实验和数值研究. 爆炸与冲击, 2005, 25(5): 445-450
    77 邓博, 胡宗民, 滕宏辉, 等. 变截面管道中爆轰胞格演变机 制的数值模拟研究. 中国科学G 辑: 物理学力学天文学,2008, 38(2): 206-216
    78 Li H, Ben-Dor G. A modified CCW theory for detonation waves. Combust. Flame, 1998, 113(1): 1-12
    79 Thomas G O, Williams R L. Detonation interaction with wedges and bends. Shock Waves, 2002, 11: 481-492
    80 Guo C M, Zhang D L, Xie W. The mach reflection of a detonation based on soot track measurements. Combust. Flame, 2001, 127: 2051-2058
    81 胡宗民, 高云亮, 张德良, 等. 爆轰波在楔面上反射数值分析. 力学学报, 2004, 7(4): 385-392
    82 Hu Z, Jiang Z. Wave dynamic processes in cellular detonation reflection from wedges. Acta Mechanica Sinica,2007, 23(1): 33-41
    83 Chao J, Lee J H S. The propagation mechanism of high speed turbulent deflagrations. Shock Waves, 2003, 12:277-289
    84 朱雨建, 杨基明, Lee J H S. 两种不同气体中的高速爆燃波 及其向爆轰的转变. 实验力学, 2008, 23(2): 110-117
    85 Wang C J, Xu S L, Guo C M. Gaseous detonation propagation in a bifurcated tube. J. Fluid Mech., 2008, 599(1):81-110
    86 王昌建, 徐胜利, 费立森, 等. 弯管内爆轰波传播的流场显示 和数值模拟. 力学学报, 2006, 38(1): 9-15
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2161) PDF downloads(1810) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return