This review begins with the description of a new challenge in solid mechanics: multiphysics andmultiscale coupling, and its current situations. By taking spallation as an example, it is illustratedthat the fundamental difficulty in these multiscale nonequilibrium problems is due to the hierarchyand evolution of microstructures with various physics and rates at various length levels in solids.Then, some distinctive thoughts to pinpoint the obstacles and outcomeare outlined. Section 3highlights some paradigms of statistical averaging and new thoughts to deal with the problemsinvolving multiple space and time scales, in particular the nonequilibrium damage evolution tomacroscopic failure. In Sec.4, several frameworks of mesomechanics linking multiple space andtime scales, like dislocation theory, physical mesomechanics, Weibull theory, and stochastic theory,are briefly reviewed and the mechanisms underlying the trans-scale coupling are elucidated. Thenwe turn to the frameworks mainly concerning damage evolution in Sec.5, namely, statisticalmicrodamage mechanics and its trans-scale approximation. Based on various trans-scaleframeworks, some possible mechanisms governing the trans-scale coupling are reviewed andcompared in Sec.6. Since the insight into the very catastrophic transition at failure is closelyrelated to strong trans-scale coupling, some new concepts on nonequilibrium and stronginteraction are discussed in Sec.7. Finally, this review is concluded with a short summary andsome suggestions.