Volume 36 Issue 1
Feb.  2006
Turn off MathJax
Article Contents
ADVANCES OF NUMERICAL METHODS FOR GENERAL DYNAMIC EQUATION DESCRIBING DISPERSED SYSTEM[J]. Advances in Mechanics, 2006, 36(1): 125-141. doi: 10.6052/1000-0992-2006-1-J2004-140
Citation: ADVANCES OF NUMERICAL METHODS FOR GENERAL DYNAMIC EQUATION DESCRIBING DISPERSED SYSTEM[J]. Advances in Mechanics, 2006, 36(1): 125-141. doi: 10.6052/1000-0992-2006-1-J2004-140

ADVANCES OF NUMERICAL METHODS FOR GENERAL DYNAMIC EQUATION DESCRIBING DISPERSED SYSTEM

doi: 10.6052/1000-0992-2006-1-J2004-140
  • Publish Date: 2006-02-25
  • The time evolution of particle size distribution (PSD)in dispersed systems is described by the General Dynamic Equation (GDE),taking accout of coagulation, breakage, condensation/evaporation, nucleation,deposition, etc. GDE is a typical partially integro-differentialequation.Consequently, normal numerical methods can hardly be used to solve it.The paper discusses the theoretical foundations, advantages anddisadvantages, and the recent development of some numerical methods for GDE,including the moments of method, sectional method, discrete method,discrete-sectional method, and Monte Carlo method. The paper paysspecial attention to the MonteCarlo method, including the ``time-driven'' Monte Carlo method, ``event-driven''Monte Carlo method, constant number method, constant volume method.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2101) PDF downloads(768) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return