Citation: | Xu F, Yang Y F, Wang T. Curvature-affected instabilities in membranes and surfaces: A review. Advances in Mechanics, 2021, 51(2): 342-363 doi: 10.6052/1000-0992-20-038 |
[1] |
曹进军, 张卉婷, 张亮, 彭福军, 恽卫东. 2019. 对角受拉方膜褶皱变形幅值的理论预测及实验验证. 力学学报, 51: 1403-1410 (Cao J J, Zhang H T, Zhang L, Peng F J, Yun W D. 2019. Theoretical prediction and experimental verification of wrinkle amplitude in a square membrane subjected to diagonal tension. Chinese Journal of Theoretical and Applied Mechanics, 51: 1403-1410). doi: 10.6052/0459-1879-19-109
|
[2] |
冯西桥, 曹艳平, 李博. 2017. 软材料表面失稳力学. 北京: 科学出版社
Feng X Q, Cao Y P, Li B. 2017. Surface Wrinkling Mechanics of Soft Materials. Beijing: Science Press
|
[3] |
倪勇, 刘佩琳, 马龙, 李世琛, 何陵辉. 2018. 基底上薄膜结构的非线性屈曲力学进展. 固体力学学报, 39: 113-138 (Ni Y, Liu P L, Ma L, Li S C, He L H. 2018. Nonlinear buckling mechanics of film-substrate systems: Recent progress. Chinese Journal of Solid Mechanics, 39: 113-138).
|
[4] |
胡海岩. 2016. 太阳帆航天器的关键技术. 深空探测学报, 3: 334-344 (Hu H Y. 2016. Key technologies of solar sail spacecraft. Journal of Deep Space Exploration, 3: 334-344).
|
[5] |
彭福军, 谢超, 张良俊. 2017. 面向空间应用的薄膜可展开结构研究进展及技术挑战. 载人航天, 23: 427-439 (Peng F J, Xie C, Zhang L J. 2017. Advancement and technical challenges of deployable membrane structure in space application. Manned Spaceflight, 23: 427-439). doi: 10.3969/j.issn.1674-5825.2017.04.001
|
[6] |
杜星文, 王长国, 万志敏. 2006. 空间薄膜结构的褶皱研究进展. 力学进展, 36: 187-199 (Du X W, Wang C G, Wan Z M. 2006. Advances of the study on wrinkles of space membrane sturcures. Advances in Mechanics, 36: 187-199).
|
[7] |
王长国, 杜星文, 万志敏. 2007. 空间薄膜结构褶皱的数值模拟最新研究进展. 力学进展, 37: 389-397 (Wang C G, Du X W, Wan Z M. 2007. Advances in the numerical investigations on wrinkles in space membrane structures. Advances in Mechanics, 37: 389-397).
|
[8] |
Allen H G. 1969. Analysis and Design of Structural Sandwich Panels. New York: Pergamon Press.
|
[9] |
Audoly B, Boudaoud A. 2008. Buckling of a stiff film bound to a compliant substrate—Part I: formulation, linear stability of cylindrical patterns, secondary bifurcations. Journal of the Mechanics and Physics of Solids, 56: 2401-2421. doi: 10.1016/j.jmps.2008.03.003
|
[10] |
Auguste A, Yang J, Jin L, Chen D, Suo Z, Hayward R C. 2018. Formation of high aspect ratio wrinkles and ridges on elastic bilayers with small thickness contrast. Soft Matter, 14: 8545-8551. doi: 10.1039/C8SM01345D
|
[11] |
Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau C N. 2009. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotechnology, 4: 562-566. doi: 10.1038/nnano.2009.191
|
[12] |
Bažant Z P. 2000. Structural stability. International Journal of Solids and Structures, 37: 55-67. doi: 10.1016/S0020-7683(99)00078-5
|
[13] |
Ben Amar M, Jia F. 2013. Anisotropic growth shapes intestinal tissues during embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 110: 10525-10530. doi: 10.1073/pnas.1217391110
|
[14] |
Bende N P, Evans A A, Innes-Gold S, Marin L A, Cohen I, Hayward R C, Santangelo C D. 2015. Geometrically controlled snapping transitions in shells with curved creases. Proceedings of the National Academy of Sciences of the United States of America, 112: 11175-11180. doi: 10.1073/pnas.1509228112
|
[15] |
Biot M A. 1963. Surface instability of rubber in compression. Applied Scientific Research, 12: 168-182. doi: 10.1007/BF03184638
|
[16] |
Bowden N, Brittain S, Evans A G, Hutchinson J W, Whitesides G W. 1998. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature, 393: 146-149. doi: 10.1038/30193
|
[17] |
Brau F, Vandeparre H, Sabbah A, Poulard C, Boudaoud A, Damman P. 2011. Multiple-lengthscale elastic instability mimics parametric resonance of nonlinear oscillators. Nature Physics, 7: 56-60. doi: 10.1038/nphys1806
|
[18] |
Breid D, Crosby A J. 2013. Curvature-controlled wrinkle morphologies. Soft Matter, 9: 3624-3630. doi: 10.1039/c3sm27331h
|
[19] |
Budday S, Andres S, Steinmann P, Kuhl E. 2015b. Primary and secondary instabilities in soft bilayered systems. Proceedings in Applied Mathematics and Mechanics, 15: 281-282. doi: 10.1002/pamm.201510131
|
[20] |
Budday S, Kuhl E, Hutchinson J W. 2015a. Period-doubling and period-tripling in growing bilayered systems. Philosophical Magazine, 95: 3208-3224. doi: 10.1080/14786435.2015.1014443
|
[21] |
Budday S, Steinmann P, Goriely A, Kuhl E. 2015. Size and curvature regulate pattern selection in the mammalian brain. Extreme Mechanics Letter, 4: 193-198. doi: 10.1016/j.eml.2015.07.004
|
[22] |
Cai S, Breid D, Crosby A J, Suo Z, Hutchinson J W. 2011. Periodic patterns and energy states of buckled films on compliant substrates. Journal of the Mechanics Physics of Solids, 59: 1094-1114. doi: 10.1016/j.jmps.2011.02.001
|
[23] |
Cao G, Chen X, Li C, Ji A, Cao Z. 2008. Self-assembled triangular and labyrinth buckling patterns of thin films on spherical substrates. Physical Review Letters, 100: 036102-1-036102-4.
|
[24] |
Cao Y, Hutchinson J W. 2012. Wrinkling phenomena in neo-Hookean film/substrate bilayers. Journal of Applied Mechanics, 79: 031019-1-031019-9.
|
[25] |
Cerda E, Mahadevan L. 2003. Geometry and physics of wrinkling. Physical Review Letters, 90: 074302-1-074302-4.
|
[26] |
Cerda E, Ravi-Chandar K, Mahadevan L. 2002. Wrinkling of an elastic sheet under tension. Nature, 419: 579-580.
|
[27] |
Chen P Y, Liu M, Wang Z, Hurt R H, Wong I Y. 2017. From flatland to space land: higher dimensional patterning with two-dimensional materials. Advanced Materials, 29: 1605096-1-1605096-31.
|
[28] |
Chen X, Hutchinson J W. 2004. Herringbone buckling patterns of compressed thin films on compliant substrates. Journal of Applied Mechanics, 71: 597-603. doi: 10.1115/1.1756141
|
[29] |
Chen X, Yin J. 2010. Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter, 6: 5667-5680. doi: 10.1039/c0sm00401d
|
[30] |
Cheng Z, Xu F. 2021. Intricate evolutions of multiple-period post-buckling patterns in bilayers, Science China: Physics. Mechanics & Astronomy, 64: 214611-1-214611-10.
|
[31] |
Chung J Y, Nolte A J, Stafford C M. 2011. Surface wrinkling: A versatile platform for measuring thin-film properties. Advanced Materials, 23: 349-368. doi: 10.1002/adma.201001759
|
[32] |
Ding M, Xu F, Wang T, Fu C. 2021. Nanosleeves: Morphology transitions of infilled carbon nanotubes. Journal of the Mechanics and Physics of Solids, 152: 104398-1-104398-19.
|
[33] |
Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J. 2005. Nested self-similar wrinkling patterns in skins. Nature Materials, 4: 293-297. doi: 10.1038/nmat1342
|
[34] |
Friedl N, Rammerstorfer F G, Fischer F D. 2000. Buckling of stretched strips. Computers and Structures, 78: 185-190.
|
[35] |
Fu C, Wang T, Xu F, Huo Y, Potier-Ferry M. 2019. A modeling and resolution framework for wrinkling in hyperelastic sheets at finite membrane strain. Journal of the Mechanics and Physics of Solids, 124: 446-470. doi: 10.1016/j.jmps.2018.11.005
|
[36] |
Fu C, Xu F, Huo Y. 2018. Photo-controlled patterned wrinkling of liquid crystalline polymer films on compliant substrates. International Journal of Solids and Structures, 132-133: 264-277. doi: 10.1016/j.ijsolstr.2017.10.018
|
[37] |
Genzer J, Groenewold J. 2006. Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter, 2: 310-323. doi: 10.1039/b516741h
|
[38] |
Healey T J, Li Q, Cheng R B. 2013. Wrinkling behavior of highly stretched rectangular elastic films via parametric global bifurcation. Journal of Nonlinear Science, 23: 777-805. doi: 10.1007/s00332-013-9168-3
|
[39] |
Hu X, Dou Y, Li J, Liu Z. 2019. Buckled structures: fabrication and applications in wearable electronics. Small, 15: 1804805-1-1804805-26.
|
[40] |
Huang Z Y, Hong W, Suo Z. 2005. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. Journal of the Mechanics and Physics of Solids, 53: 2101-2118. doi: 10.1016/j.jmps.2005.03.007
|
[41] |
Irvine W T M, Vitelli V, Chaikin P M. 2010. Pleats in crystals on curved surfaces. Nature, 468: 947-951. doi: 10.1038/nature09620
|
[42] |
Janssens S D, Sutisna B, Giussani A, Vázquez-Cortés D, Fried E. 2020. Boundary curvature effect on the wrinkling of thin suspended films. Applied Physics Letters, 116: 193702-1-193702-5.
|
[43] |
Jacques N, Potier-Ferry M. 2005. On mode localization in tensile plate buckling. Comptes Rendus Mecanique, 333: 804-809. doi: 10.1016/j.crme.2005.10.013
|
[44] |
Jia F, Pearce S P, Goriely A. 2018. Curvature delays growth-induced wrinkling. Physical Review E, 98: 033003-1-033003-11.
|
[45] |
Jiang H, Khang D Y, Song J, Sun Y, Huang Y, Rogers J A. 2007. Finite deformation mechanics in buckled thin films on compliant supports. Proceedings of the National Academy of Sciences of the United States of America, 104: 15607-15612. doi: 10.1073/pnas.0702927104
|
[46] |
Jiang Y, Korpas L M, Raney J R. 2019. Bifurcation-based embodied logic and autonomous actuation. Nature Communications, 10: 128-1-128-10. doi: 10.1038/s41467-019-09322-7
|
[47] |
Khang D Y, Jiang H, Huang Y, Rogers J A. 2006. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 311: 208-212. doi: 10.1126/science.1121401
|
[48] |
Kim T Y, Puntel E, Fried E. 2016. Numerical study of the wrinkling of a stretched thin sheet. International Journal of Solids and Structures, 49: 771-782.
|
[49] |
Li B, Cao Y P, Feng X Q, Gao H. 2012. Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter, 8: 5728-5745. doi: 10.1039/c2sm00011c
|
[50] |
Li B, Jia F, Cao Y P, Feng X Q, Gao H. 2011. Surface wrinkling patterns on a core-shell soft sphere. Physical Review Letters, 106: 234301-1-234301-4.
|
[51] |
Li Q, Han X, Hou J, Yin J, Jiang S, Lu C. 2015. Patterning poly (dimethylsiloxane) microspheres via combination of oxygen plasma exposure and solvent treatment. Journal of Physical Chemistry B, 119: 13450-13461.
|
[52] |
Li Q, Healey T J. 2016. Stability boundaries for wrinkling in highly stretched elastic sheets. Journal of the Mechanics and Physics of Solids, 97: 260-274. doi: 10.1016/j.jmps.2015.12.001
|
[53] |
Liang H, Mahadevan L. 2011. From the Cover: Growth, geometry, and mechanics of a blooming lily. Proceedings of the National Academy of Sciences of the United States of America, 108: 5516-5521. doi: 10.1073/pnas.1007808108
|
[54] |
Liu F, Xu F, Fu C. 2019. Orientable wrinkles in stretched orthotropic films. Extreme Mechanics Letters, 33: 100579-1-100579-9.
|
[55] |
López Jiménez F, Stoop N, Lagrange R, Dunkel J, Reis P M. 2016. Curvature-controlled defect localization in elastic surface crystals. Physical Review Letter, 116: 104301-1-104301-5.
|
[56] |
Luo Y, Xing J, Kang Z, Zhan J, Li M. 2020. Uncertainty of membrane wrinkling behaviors considering initial thickness imperfections. International Journal of Solids and Structures, 191-192: 264-277. doi: 10.1016/j.ijsolstr.2020.01.022
|
[57] |
Luo Y, Xing J, Niu Y, Li M, Kang Z. 2017. Wrinkle-free design of thin membrane structures using stress-based topology optimization. Journal of the Mechanics and Physics of Solids, 102: 277-293. doi: 10.1016/j.jmps.2017.02.003
|
[58] |
Ma L, Liu X, Soh A K, He L, Wu C, Ni Y. 2019. Growth of curved crystals: competition between topological defect nucleation and boundary branching. Soft Matter, 15: 4391-4400. doi: 10.1039/C9SM00507B
|
[59] |
Mitchell N P, Koning V, Vitelli V, Irvine W T M. 2017. Fracture in sheets draped on curved surfaces. Nature Materials, 16: 89-93. doi: 10.1038/nmat4733
|
[60] |
Ohzono T, Monobe H. 2012. Microwrinkles: shape-tunability and applications. Journal of Colloid and Interface Science, 368: 1-8. doi: 10.1016/j.jcis.2011.11.075
|
[61] |
Paulsen J D, Hohlfeld E, King H, Huang J, Qiu Z, Russell T P, Menon N, Vella D, Davidovitch B. 2016. Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. Proceedings of the National Academy of Sciences of the United States of America, 113: 1144-1149. doi: 10.1073/pnas.1521520113
|
[62] |
Pezzulla M, Stoop N, Steranka M P, Bade A J, Holmes D P. 2018. Curvature-induced instabilities of shells. Physical Review Letters, 120: 048002-1-048002-5.
|
[63] |
Pikul J H, Li S, Bai H, Hanlon R T, Cohen I, Shepherd R F. 2017. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science, 358: 210-214. doi: 10.1126/science.aan5627
|
[64] |
Pocivavsek L, Dellsy R, Kern A, Johnson S, Lin B, Lee K Y C, Cerda E. 2008. Stress and fold localization in thin elastic membranes. Science, 320: 912-916. doi: 10.1126/science.1154069
|
[65] |
Pocivavsek L, Pugar J, O'Dea R, Ye S H, Wagner W, Tzeng E, Velankar S, Cerda E. 2018. Topography-driven surface renewal. Nature Physics, 14: 948-953. doi: 10.1038/s41567-018-0193-x
|
[66] |
Poncharal P, Wang Z L, Ugarte D, de Heer W A. 1999. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 283: 1513-1516. doi: 10.1126/science.283.5407.1513
|
[67] |
Puntel E, Deseri L, Fried E. 2011. Wrinkling of a stretched thin sheet. Journal of Elasticity, 105: 137-170. doi: 10.1007/s10659-010-9290-5
|
[68] |
Rafsanjani A, Jin L, Deng B, Bertoldi K. 2019. Propagation of pop ups in kirigami shells. Proceedings of the National Academy of Sciences of the United States of America, 116: 8200-8205. doi: 10.1073/pnas.1817763116
|
[69] |
Reis P M, Brau F, Damman P. 2018. The mechanics of slender structures. Nature Physics, 14: 1150-1151. doi: 10.1038/s41567-018-0369-4
|
[70] |
Reis P M. 2015. A perspective on the revival of structural (in) stability with novel opportunities for function: From buckliphobia to buckliphilia. Journal of Applied Mechanics, 82: 111001-1-111001-4.
|
[71] |
Rodríguez-Hernández J. 2015. Wrinkled interfaces: taking advantage of surface instabilities to pattern polymer surfaces. Progress in Polymer Science, 42: 1-41. doi: 10.1016/j.progpolymsci.2014.07.008
|
[72] |
Siéfert E, Reyssat E, Bico J, Roman B. 2019. Bio-inspired pneumatic shape-morphing elastomers. Nature Materials, 18: 24-28. doi: 10.1038/s41563-018-0219-x
|
[73] |
Sipos A A, Fehér E. 2016. Disappearance of stretch-induced wrinkles of thin sheets: a study of orthotropic film. International Journal of Solids and Structures, 97-98: 275-283. doi: 10.1016/j.ijsolstr.2016.07.021
|
[74] |
Song J, Jiang H, Huang Y, Rogers J A. 2009. Mechanics of stretchable inorganic electronic materials. Journal of Vacuum Science & Technology A, 27: 1107-1125.
|
[75] |
Stoop N, Lagrange R, Terwagne D, Reis P M, Dunkel J. 2015. Curvature-induced symmetry breaking determines elastic surface patterns. Nature Materials, 14: 337-342. doi: 10.1038/nmat4202
|
[76] |
Sultan E, Boudaoud A. 2008. The buckling of a swollen thin gel layer bound to a compliant substrate. Journal of Applied Mechanics, 75: 051002-1-051002-5.
|
[77] |
Sun J Y, Xia S, Moon M W, Oh K H, Kim K S. 2012. Folding wrinkles of a thin stiff layer on a soft substrate. Proceedings of The Royal Society A: Mathematical Physical and Engineering Sciences, 468: 932-953.
|
[78] |
Tallinen T, Chung J Y, Rousseau F, Girard N, Lefèvre J, Mahadevan L. 2016. On the growth and form of cortical convolutions. Nature Physics, 12: 588-593. doi: 10.1038/nphys3632
|
[79] |
Tan Y, Yan J, Chu Z. 2019. Thermal-shrinking-induced ringpatterned boron nitride wrinkles on carbon fibers. Carbon, 152: 532-536. doi: 10.1016/j.carbon.2019.06.058
|
[80] |
Taylor, M, Shirani, M, Dabiri, Y, Guccione, J M, Steigmann, D J. 2019. Finite elastic wrinkling deformations of incompressible fiber-reinforced plates. International Journal of Engineering Science, 144: 103138-1-103138-21.
|
[81] |
Terwagne D, Brojan M, Reis P M. 2014. Smart morphable surfaces for aerodynamic drag control. Advanced Materials, 26: 6608-6611. doi: 10.1002/adma.201401403
|
[82] |
Vandeparre H, Piñeirua M, Brau F, Roman B, Bico J, Gay C, Bao W, Lau C N, Reis P M, Damman P. 2011. Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains. Physical Review Letters, 106: 224301-1-224301-4.
|
[83] |
van der Heijden A M A. 2009. W.T. Koiter's Elastic Stability of Solids and Structures. Cambridge: Cambridge University Press.
|
[84] |
Wang C G, Liu Y P, Lan L, Li L, Tan H F. 2016. Post-wrinkling analysis of a torsionally sheared annular thin film by using a compound series method. International Journal of Mechanical Sciences, 110: 22-33. doi: 10.1016/j.ijmecsci.2016.02.011
|
[85] |
Wang T, Fu C, Xu F, Huo Y, Potier-Ferry M. 2019. On the wrinkling and restabilization of highly stretched sheets. International Journal of Engineering Science, 136: 1-16. doi: 10.1016/j.ijengsci.2018.12.002
|
[86] |
Wang T, Yang Y, Fu C, Liu F, Wang K, Xu F. 2020. Wrinkling and smoothing of a soft shell. Journal of the Mechanics and Physics of Solids, 134: 103738-1-103738-20.
|
[87] |
Xu F, Abdelmoula R, Potier-Ferry M. 2017. On the buckling and post-buckling of core-shell cylinders under thermal loading. International Journal of Solids and Structures, 126-127: 17-36. doi: 10.1016/j.ijsolstr.2017.07.024
|
[88] |
Xu F, Koustawa Y, Potier-Ferry M, Belouettar S. 2015. Instabilities in thin films on hyperelastic substrates by 3D finite elements. International Journal of Solids and Structures, 69-70: 71-85. doi: 10.1016/j.ijsolstr.2015.06.007
|
[89] |
Xu F, Potier-Ferry M. 2017. Quantitative predictions of diverse wrinkling patterns in film/substrate systems. Scientific Reports, 7: 18081-1-18081-10.
|
[90] |
Xu F, Potier-Ferry M, Belouettar S, Cong Y. 2014. 3D finite element modeling for instabilities in thin films on soft substrates. International Journal of Solids and Structures, 51: 3619-3632. doi: 10.1016/j.ijsolstr.2014.06.023
|
[91] |
Xu F, Potier-Ferry M. 2016. On axisymmetric/diamond-like mode transitions in axially compressed core-shell cylinders. Journal of the Mechanics and Physics of Solids, 94: 68-87. doi: 10.1016/j.jmps.2016.04.025
|
[92] |
Xu F, Fu C, Yang Y. 2020a. Water affects morphogenesis of growing aquatic plant leaves. Physical Review Letters, 124: 038003-1-038003-6.
|
[93] |
Xu F, Zhao S, Lu C, Potier-Ferry M. 2020b. Pattern selection in core-shell spheres. Journal of the Mechanics and Physics of Solids, 137: 103892-1-103892-14.
|
[94] |
Xu F, Zhao S. 2020. Thermal wrinkling of liquid crystal polymer shell/core spheres. Extreme Mechanics Letters, 40: 100860-1-100860-11.
|
[95] |
Yamaki N. 1984. Elastic Stability of Circular Cylindrical Shells. North Holland, Amsterdam.
|
[96] |
Yan D, Chang J, Zhang H, Liu J, Song H, Xue Z, Zhang F, Zhang Y. 2020. Soft three-dimensional network materials with rational bio-mimetic designs. Nature Communications, 11: 1180-1-1180-11.
|
[97] |
Yan D, Zhang K, Peng F, Hu G. 2014. Tailoring the wrinkle pattern of a microstructured membrane. Applied Physics Letters, 105: 071905-1-071905-4.
|
[98] |
Yang X, Zhao Y, Xie J, Han X, Wang J, Zong C, Ji H, Zhao J, Jiang S, Cao Y, Lu C. 2016. Bioinspired fabrication of free-standing conducting films with hierarchical surface wrinkling patterns. ACS Nano, 10: 3801-3808. doi: 10.1021/acsnano.6b00509
|
[99] |
Yang Y, Dai H H, Xu F, Potier-Ferry M. 2018. Pattern transitions in a soft cylindrical shell. Physical Review Letters, 120: 215503-1-215503-5.
|
[100] |
Yang Y, Fu C, Xu F. 2020. A finite strain model predicts oblique wrinkles in stretched anisotropic films. International Journal of Engineering Science, 155: 103354-1-103354-14.
|
[101] |
Yin J, Chen X, Sheinman I. 2009. Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. Journal of the Mechanics and Physics of Solids, 57: 1470-1484. doi: 10.1016/j.jmps.2009.06.002
|
[102] |
Yin J, Han X, Cao Y, Lu C. 2014. Surface wrinkling on polydimethylsiloxane microspheres via wet surface chemical oxidation. Scientific Reports, 4: 5710-1-5710-8.
|
[103] |
Yuan H, Wu K, Zhang J, Wang Y, Liu G, Sun J. 2019. Curvature-controlled wrinkling surfaces for friction. Advanced Materials, 31: 1900933-1-1900933-6.
|
[104] |
Zhang C, Hao Y K, Li B, Feng X Q, Gao H. 2018. Wrinkling patterns in soft shells. Soft Matter, 14: 1681-1688. doi: 10.1039/C7SM02261A
|
[105] |
Zhao S, Xu F, Fu C, Huo Y. 2019. Controllable wrinkling patterns on liquid crystal polymer film/substrate systems by laser illumination. Extreme Mechanics Letters, 30: 100502-1-100502-12.
|
[106] |
Zhao S, Xu F, Fu C, Huo Y. 2021. Oblique wrinkling patterns on liquid crystal polymer core-shell cylinders under thermal load. International Journal of Solids and Structures, 208-209: 181-193. doi: 10.1016/j.ijsolstr.2020.11.005
|
[107] |
Zhao Y, Cao Y, Feng X Q, Ma K. 2014. Axial compression-induced wrinkles on a core-shell soft cylinder: Theoretical analysis, simulations and experiments. Journal of the Mechanics and Physics of Solids, 73: 212-227. doi: 10.1016/j.jmps.2014.09.005
|
[108] |
Zhao Y, Han X, Li G, Lu C, Cao Y, Feng X Q, Gao H. 2015. Effect of lateral dimension on the surface wrinkling of a thin film on compliant substrate induced by differential growth/swelling. Journal of the Mechanics and Physics of Solids, 83: 129-145. doi: 10.1016/j.jmps.2015.06.003
|
[109] |
Zhao Y, Zhu H, Jiang C, Cao Y, Feng X Q. 2020. Wrinkling pattern evolution on curved surfaces. Journal of the Mechanics and Physics of Solids, 135: 103798-1-103798-15.
|
[110] |
Zheng L. 2009. Wrinkling of dielectric elastomer membranes. [PhD Thesis] Pasadena, USA: California Institute of Technology.
|
[111] |
Zhu J, Zhang X, Wierzbicki T. 2018. Stretch-induced wrinkling of highly orthotropic thin film. International Journal of Solids and Structures, 139-140: 238-249. doi: 10.1016/j.ijsolstr.2018.02.005
|