Volume 51 Issue 4
Nov.  2021
Turn off MathJax
Article Contents
Dong S W, Cheng C, Chen J Q, Yuan X X, Li W P. A review of the study on coherent structures in turbulence by the clustering method. Advances in Mechanics, 2021, 51(4): 792-830 doi: 10.6052/1000-0992-20-032
Citation: Dong S W, Cheng C, Chen J Q, Yuan X X, Li W P. A review of the study on coherent structures in turbulence by the clustering method. Advances in Mechanics, 2021, 51(4): 792-830 doi: 10.6052/1000-0992-20-032

A review of the study on coherent structures in turbulence by the clustering method

doi: 10.6052/1000-0992-20-032
More Information
  • Corresponding author: yuanxianxu@cardc.cn
  • Received Date: 2020-12-02
  • Accepted Date: 2021-04-06
  • Available Online: 2021-04-19
  • Publish Date: 2021-11-26
  • The intrinsic randomness of turbulence requires that the study of coherent structures has to be from the statistical point of view. The data-based clustering method is a powerful tool to realize the deep integration of coherent structures and statistics. It makes each continuous region, i.e., an individual structure, as a statistical sample. In addition, the spatial-temporal tracking method based on the spatial overlap of individual structure between consecutive snapshots makes the evolution of individual structure during its lifetime also as a statistical sample. Thus, both the kinematics and dynamics of coherent structures can be statistically described. We reviewed the history of this method and introduced the progress on Reynolds stress structures, velocity streaks, and cascades with emphasis. These results suggest that the clustering method extraordinarily extended our understanding of turbulence compared with the traditional point-wise statistics. Further prospects are also provided for future research.

     

  • loading
  • [1]
    黄真理. 2000. 湍流的分形特征. 力学进展, 30: 581-596 (Huang Z. 2000. Fractal nature in turbulence. Advances in Mechanics, 30: 581-596).
    [2]
    李存标, 佘振苏. 2001. 湍流级串的动力学过程. 钱学森技术科学思想与力学论文集.
    [3]
    许春晓. 2015. 壁湍流相干结构和减阻控制机理. 力学进展, 45: 201504 (Xu C X. 2015. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 45: 201504).
    [4]
    郑晓静, 王国华. 2020. 高雷诺数壁湍流的研究进展及挑战. 力学进展, 50: 202001 (Zheng X J, Wang G H. 2020. Progresses and challenges of high Reynolds number wall-bounded turbulence. Advances in Mechanics, 50: 202001).
    [5]
    Adrian R J. 2007. Hairpin vortex organization in wall turbulence. Phys. Fluids, 19: 041301. doi: 10.1063/1.2717527
    [6]
    Adrian R J, Meinhart C D, Tomkins C D. 2000. Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech., 422: 1-53. doi: 10.1017/S0022112000001580
    [7]
    Adrian R J, Moin P. 1988. Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech., 190: 531-559. doi: 10.1017/S0022112088001442
    [8]
    Atzori M, Vinuesa R, Lozano-Durán A, Schlatter P. 2019. Coherent structures in turbulent boundary layers over an airfoil. J. Phys. Conference Series, 1522: 012020.
    [9]
    del Álamo J C, Jiménez J, Zandonade P, Moser R D. 2004. Scaling of the energy spectra of turbulent channels. J. Fluid Mech., 500: 135-144. doi: 10.1017/S002211200300733X
    [10]
    del Álamo J C, Jiménez J, Zandonade P, Moser R D. 2006. Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech., 561: 329-358. doi: 10.1017/S0022112006000814
    [11]
    Bernard P S, Thomas J M, Handler R A. 1993. Vortex dynamics and the production of Reynolds stress. J. Fluid Mech., 253: 385-419. doi: 10.1017/S0022112093001843
    [12]
    van den Berg B, Elsenaar A, Lindhout A, Wesseling P. 1975. Measurements in an incompressible three-dimensional turbulent boundary layer, under infinite swept-wing conditions, and comparison with theory. J. Fluid Mech., 70: 127-148. doi: 10.1017/S0022112075001930
    [13]
    Bradshaw P, Pontikos N S. 1985. Measurements in the turbulent boundary layer on an ‘infinite’ swept wing. J. Fluid Mech., 159: 105-130. doi: 10.1017/S0022112085003123
    [14]
    Cardesa J I, Monty J P, Soria J, Chong M S. 2019. The structure and dynamics of backflow in turbulent channels. J. Fluid Mech., 880: R3. doi: 10.1017/jfm.2019.774
    [15]
    Cardesa J I, Vela-Martin A, Jiménez J. 2017. The turbulent cascade in five dimensions. Science, 357: 782-784. doi: 10.1126/science.aan7933
    [16]
    Christensen K T, Adrian R J. 2001. Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech., 431: 433-443. doi: 10.1017/S0022112001003512
    [17]
    Chandra D, Baidya R, Monty J P, Marusic I. 2017. Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers. J. Fluid Mech., 826: R1. doi: 10.1017/jfm.2017.359
    [18]
    Cheng C, Li W, Lozano-Durán A, Liu H. 2020a. Uncovering Townsend’s wall-attached eddies in low-Reynolds-number wall turbulence. J. Fluid Mech., 889: A29. doi: 10.1017/jfm.2020.100
    [19]
    Cheng C, Li W, Lozano-Durán A, Liu H. 2020b. On the structure of streamwise wall-shear stress fluctuations in turbulent channel flows. J. Fluid Mech., 903: A29. doi: 10.1017/jfm.2020.639
    [20]
    Chen J, Dong S, Chen X, Yuan X, Xu G. 2021. Stationary crossflow breakdown in a high-speed swept-wing boundary layer. Phys. Fluids, 33: 024108. doi: 10.1063/5.0039901
    [21]
    Coleman G N, Kim J, Spalart P R. 2000. A numerical study of strained three-dimensional wall-bounded turbulence. J. Fluid Mech., 416: 75-116. doi: 10.1017/S0022112000008806
    [22]
    Dong S. 2016. Coherent structures in statistically-stationary homogeneous shear turbulence. [PhD Thesis]. Madrid: School of Aeronauticos, U. Politecnica de Madrid.
    [23]
    Dong S, Lozano-Durán A, Sekimoto A, Jiménez J. 2017. Coherent structures in statistically stationary homogeneous shear turbulence. J. Fluid Mech., 816: 167-208. doi: 10.1017/jfm.2017.78
    [24]
    Dong S, Huang Y, Yuan X, Lozano-Durán A. 2020. The coherent structure of the kinetic energy transfer in shear turbulence. J. Fluid Mech., 892: A22. doi: 10.1017/jfm.2020.195
    [25]
    Degani A T, Smith F T, Walker J D A. 2013. The structure of a three dimensional turbulent boundary layer. J. Fluid Mech., 250: 43-68.
    [26]
    Deng S C, Pan C, Wang J J, He G S. 2018. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number. J. Fluid Mech., 844: 635-668. doi: 10.1017/jfm.2018.160
    [27]
    Encinar M P, Jiménez J. 2020. Momentum transfer by linearised eddies in turbulent channel flows. J. Fluid Mech., 895: A23. doi: 10.1017/jfm.2020.302
    [28]
    Flores O, Jiménez J, del Álamo J C. 2007. Vorticity organization in the outer layer of turbulent channels with disturbed walls. J. Fluid Mech., 591: 145-154. doi: 10.1017/S0022112007008506
    [29]
    Flores O, Jimenez J. 2010. Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids, 22: 071704. doi: 10.1063/1.3464157
    [30]
    Ganapathisubramani B. 2008. Statistical structure of momentum sources and sinks in the outer region of a turbulent boundary layer. J. Fluid Mech., 606: 225-237. doi: 10.1017/S0022112008001675
    [31]
    Gilles J. 2013. Empirical wavelet transform. IEEE Trans. Signal Process, 61: 3999-4010. doi: 10.1109/TSP.2013.2265222
    [32]
    Haidari A H, Smith C R. 1994. The generation and regeneration of single hairpin vortices. J. Fluid Mech., 277: 135-162. doi: 10.1017/S0022112094002715
    [33]
    Hamilton J M, Kim J, Waleffe F. 1995. Regeneration mechanisms of near wall turbulence structures. J. Fluid Mech., 287: 317-348. doi: 10.1017/S0022112095000978
    [34]
    Hernan M A, Jiménez J. 1982. Computer analysis of a high-speed film of the plane turbulent mixing layer. J. Fluid Mech., 119: 323-345. doi: 10.1017/S0022112082001372
    [35]
    Hong J, Katz J, Meneveau C, Schultz M P. 2012. Coherent structures and associated subgrid-scale energy transfer in a rough-wall turbulent channel flow. J. Fluid Mech., 712: 92-128. doi: 10.1017/jfm.2012.403
    [36]
    Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 454: 903-995. doi: 10.1098/rspa.1998.0193
    [37]
    Hultmark M, Vallikivi M, Bailey S C C, Smits A J. 2012. Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett., 108: 094501. doi: 10.1103/PhysRevLett.108.094501
    [38]
    Hwang J, Sung H J. 2018. Wall-attached structures of velocity fluctuations in a turbulent boundary layer. J. Fluid Mech., 856: 958-983. doi: 10.1017/jfm.2018.727
    [39]
    Hwang J, Sung H J. 2019. Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow. Phys. Fluids, 31: 055109. doi: 10.1063/1.5096433
    [40]
    Jeong J, Hussain F, Shoppa W, Kim J. 1997. Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech., 332: 185-214. doi: 10.1017/S0022112096003965
    [41]
    Jiménez J, Wray A A. 1998. On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech., 373: 255-285.
    [42]
    Jiménez J. 2012. Cascades in wall-bounded turbulence. Ann. Rev. Fluid Mech., 44: 27-45. doi: 10.1146/annurev-fluid-120710-101039
    [43]
    Jimenez J. 2013a. Near-wall turbulence. Phys. Fluids, 25: 101302. doi: 10.1063/1.4824988
    [44]
    Jiménez J. 2013b. How linear is wall-bounded turbulence? Phys. Fluids, 25: 110814.
    [45]
    Jiménez J. 2015. Direct detection of linearized bursts in turbulence. Phys. Fluids, 27: 065102. doi: 10.1063/1.4921748
    [46]
    Jiménez J. 2016. Optimal fluxes and Reynolds stresses. J. Fluid Mech., 809: 585-600. doi: 10.1017/jfm.2016.692
    [47]
    Jiménez J. 2018a. Coherent structures in wall-bounded turbulence. J. Fluid Mech., 842: 1-100. doi: 10.1017/jfm.2018.154
    [48]
    Jiménez J. 2018b. Machine-assisted turbulence theory. J. Fluid Mech., 854: R1. doi: 10.1017/jfm.2018.660
    [49]
    Jiménez J. 2020. Dipoles and streams in two-dimensional turbulence. J. Fluid Mech., 904: A39. doi: 10.1017/jfm.2020.769
    [50]
    Jiménez J, del Álamo J C, Flores O. 2004. The large scale dynamics of near-wall turbulence. J. Fluid Mech., 505: 179-199. doi: 10.1017/S0022112004008389
    [51]
    Jiménez J, Cogollos M, Bernal L P. 1985. A perspective view of the plane mixing layer. J. Fluid Mech., 152: 125-143. doi: 10.1017/S002211208500060X
    [52]
    Jiménez J, Kawahara G, Simens M, Nagata M, Shiba M. 2005. Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids, 17: 015105. doi: 10.1063/1.1825451
    [53]
    Jiménez J, Moin P. 1991. The minimal flow unit in near-wall turbulence. J. Fluid Mech., 225: 213-240. doi: 10.1017/S0022112091002033
    [54]
    Jiménez J, Navalon J L. 1982. Some experiments in image vectorization. IBM J. Res. Develop., 26: 724-734. doi: 10.1147/rd.266.0724
    [55]
    Jiménez J, Wray A A, Saffman P G, Rogallo R R. 1993. The structure of intense vorticity in isotropic turbulence. J. Fluid Mech., 255: 65-90. doi: 10.1017/S0022112093002393
    [56]
    Jovanović M R, Schimid P J, Nichols J W. 2014. Sparsity-promoting dynamic mode decomposition. Phys. Fluids, 26: 024103. doi: 10.1063/1.4863670
    [57]
    Kim J, Moin P. 1986. The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields. J. Fluid Mech., 162: 339-363. doi: 10.1017/S0022112086002070
    [58]
    Kim J, Moin P. 1987. The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech., 176: 33-66. doi: 10.1017/S0022112087000569
    [59]
    Kim J. 1985. Evolution of a vortical structure associated with the bursting event in a channel flow. Turbulent Shear Flows, 5: 221-232.
    [60]
    Kline S J, Reynolds W C, Schraub F A, Runstadler P W. 1967. The structure of turbulent boundary layers. J. Fluid Mech., 30: 741-773. doi: 10.1017/S0022112067001740
    [61]
    Kolmogrov A N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30: 301-305.
    [62]
    Lee J H, Sung H J. 2013. Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations. Phys. Fluids, 25: 045103. doi: 10.1063/1.4802048
    [63]
    Lee M, Moser R D. 2015. Direct numerical simulation of turbulent channel flow up to Re τ ≈ 5200. J. Fluid Mech., 774: 395-415. doi: 10.1017/jfm.2015.268
    [64]
    Li W, Fan Y, Modesti D, Cheng C. 2019. Decomposition of the mean skin-friction drag in compressible turbulent channel flows. J. Fluid Mech., 875: 101-123. doi: 10.1017/jfm.2019.499
    [65]
    Lozano-Durán A, Flores O, Jiménez J. 2012. The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech., 694: 100-130. doi: 10.1017/jfm.2011.524
    [66]
    Lozano-Durán A, Jiménez J. 2014a. Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascade. J. Fluid Mech., 759: 432-471. doi: 10.1017/jfm.2014.575
    [67]
    Lozano-Durán A, Bae H J, Encinar M P. 2020. Causality of energy-containing eddies in wall turbulence. J. Fluid Mech., 882: A2.
    [68]
    Lozano-Durán A, Borrell G. 2016. An efficient algorithm to compute the genus of discrete surfaces and applications to turbulent flows. ACM Trans. Math. Softw., 42: 34.
    [69]
    Lozano-Durán A, Jiménez J. 2014b. Effect of the computational domain on direct simulations of turbulent channels up to Re τ=4200. Phys. Fluids, 26: 011702. doi: 10.1063/1.4862918
    [70]
    Lozano-Durán A. 2015. Time-resolved evolution of coherent structures in turbulent channels. [PhD Thesis]. Madrid: School of Aeronauticos, U. Politecnica de Madrid.
    [71]
    Lozano-Durán A, Giometto M G, Park G I, Moin P. 2019. Non-equilibrium three-dimensional boundary layers at moderate Reynolds numbers. J. Fluid Mech., 883: A20.
    [72]
    Lumley J L. 1967. The structure of inhomogeneous turbulent flows//Proceedings of the International Colloquium on the Fine Scale Structure of the Atmosphere and Its Influence on Radio Wave Propagation, Doklady Akademii Nauk SSSR, Moscow.
    [73]
    Lu S S, Willmarth W W. 1973. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech., 60: 481-511. doi: 10.1017/S0022112073000315
    [74]
    Marusic I, Monty J P, Hultmark M, Smits A J. 2013. On the logarithmic region in wall turbulence. J. Fluid Mech., 716: R3. doi: 10.1017/jfm.2012.511
    [75]
    McKeon B J, Sharma A S. 2010. A critical-layer framework for turbulent pipe flow. J. Fluid Mech., 658: 336-382.
    [76]
    Mehrez A, Philip J, Yamamoto Y, Tsuji Y. 2019. Pressure and spanwise velocity fluctuations in turbulent channel flow: Logarithmic behacior of moment and coherent structures. Phys. Rev. Fluids, 4: 044601.
    [77]
    Meneveau C, Marusic I. 2013. Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech., 719: R11.
    [78]
    Mizuno Y, Jiménez J. 2013. Wall turbulence without walls. J. Fluid Mech., 723: 429-455. doi: 10.1017/jfm.2013.137
    [79]
    Moin P. 1987. Analysis of turbulence data generated by numerical simulations. AIAA Paper, 87-0194.
    [80]
    Moisy F, Jiménez J. 2004. Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech., 513: 111-133. doi: 10.1017/S0022112004009802
    [81]
    Needham M, Hodler A E. 2019. Graph Algorithms. O'Reilly Media, Inc.
    [82]
    Noack B R, Stankiewicz W, Morzyński M, Schmid P J. 2016. Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech., 809: 843-872. doi: 10.1017/jfm.2016.678
    [83]
    Obukhov A M. 1941. On the distribution of energy in the spectrum of turbulent flow. Izv. Akad. Nauk USSR, Ser. Geogr. Geofiz, 5: 453-466.
    [84]
    Örlü R, Fiorini T, Segalini A, Bellani G, Talamelli A, Alfredsson P H. 2017. Reynolds stress scaling in pipe flow turbulence-First results from CICLoPE. Philos. Trans. R. Soc. A, 375: 20160187. doi: 10.1098/rsta.2016.0187
    [85]
    Osawa K, Jiménez J. 2018. Intense structures of different momentum fluxes in turbulent channels. Phys. Rev. Fluids, 3: 084603. doi: 10.1103/PhysRevFluids.3.084603
    [86]
    Perry A E, Chong M S. 1982. On the mechanism of wall turbulence. J. Fluid Mech., 119: 173-217. doi: 10.1017/S0022112082001311
    [87]
    Piomelli U, Cabot W H, Moin P, Lee S. 1991. Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids, 3: 1766-1771.
    [88]
    Piomelli U, Yu Y, Adrian R J. 1996. Subgrid-scale energy transfer and near-wall turbulence structure. Phys. Fluids, 8: 215-224. doi: 10.1063/1.868829
    [89]
    Porté-Agel F, Pahlow M, Meneveau C, Parlange M B. 2001. Atmospheric stability effect on subgrid-scale physics for large-eddy simulation. Adv. Water Resour, 24: 1085-1102. doi: 10.1016/S0309-1708(01)00039-2
    [90]
    Porté-Agel F, Parlange M B, Meneveau C, Eichinger W E. 2002. A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J. Atmos. Sci., 58: 2673-2698.
    [91]
    Perry A E, Abell C J. 1977. Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. J. Fluid Mech., 79: 785-799. doi: 10.1017/S0022112077000457
    [92]
    Pirozzoli S, Bernadini M, Grasso F. 2008. Coherent structures in a supersonic boundary layer. J. Fluid Mech., 613: 205-231. doi: 10.1017/S0022112008003005
    [93]
    Pumir A. 1994. A numerical study of pressure fluctuations in three-dimensional incompressible, homogeneous, isotropic turbulence. Phys. Fluids, 6: 2071-2083. doi: 10.1063/1.868213
    [94]
    Pumir A. 1996. Turbulence in homogeneous shear flows. Phys. Fluids, 8: 3112-3127. doi: 10.1063/1.869100
    [95]
    Richardson L F. 1920. The supply of energy from and to atmospheric eddies. Proc. R. Soc. Lond. A, 97: 354-373. doi: 10.1098/rspa.1920.0039
    [96]
    Robinson S K, Kline S J, Spalart P R. 1989. A review of quasi-coherent structures in a numerically simulated turbulent boundary layer. NASA Technical Memorandum 102191.
    [97]
    Robinson S K. 1991. Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech., 23: 601-639. doi: 10.1146/annurev.fl.23.010191.003125
    [98]
    Rowley C W. 2005. Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcation Chaos, 15: 997-1013. doi: 10.1142/S0218127405012429
    [99]
    Ren J, Mao X, Fu S. 2021. Imaged-based flow decomposition using empirical wavelet transform. J. Fluid Mech., 906: A22.
    [100]
    Renard N, Deck S. 2016. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech., 790: 339-367. doi: 10.1017/jfm.2016.12
    [101]
    Schmid P J. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech., 656: 5-28. doi: 10.1017/S0022112010001217
    [102]
    Schoppa W, Hussain F. 2002. Coherent structure generation in near-wall turbulence. J. Fluid Mech., 453: 57-108. doi: 10.1017/S002211200100667X
    [103]
    Sekimoto A, Dong S, Jiménez J. 2016. Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids, 28: 035101. doi: 10.1063/1.4942496
    [104]
    Sekimoto A, Jiménez J. 2017. Vertically localised equilibrium solutions in large-eddy simulations of homogeneous shear flow. J. Fluid Mech., 827: 225-249. doi: 10.1017/jfm.2017.450
    [105]
    Sillero J, Jiménez J, Moser R D. 2013. One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+≈2000. Phys. Fluids, 25: 105102. doi: 10.1063/1.4823831
    [106]
    Sillero J. 2014. High Reynolds numbers turbulent boundary layers. [PhD Thesis]. Madrid: School of Aeronauticos, U. Politecnica de Madrid.
    [107]
    Sillero J, Jiménez J, Moser R D. 2014. Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to δ+ ≈ 2000. Phys. Fluids, 26: 105109. doi: 10.1063/1.4899259
    [108]
    Singer B A, Joslin R D. 1994. Metamorphosis of a hairpin vortex into a young turbulent spot. Phys. Fluids, 6: 3724-3736. doi: 10.1063/1.868363
    [109]
    Stanislas M, Perret L, Foucaut J M. 2008. Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech., 602: 327-382. doi: 10.1017/S0022112008000803
    [110]
    Stauffer D, Aharony A. 1994. Introduction to Percolation Theory. Abingdon: Taylor and Francis.
    [111]
    Suponitsky V, Avital E, Gaster M. 2005. On three-dimensionality and control of incompressible cavity flow. Phys. Fluids, 17: 104103. doi: 10.1063/1.2084230
    [112]
    Tanahashi M, Iwase S, Miyauchi T. 2001. Appearance and alignment of strain rate of coherent fine scale eddies in turbulent mixing layer. J. Turbul., 2: 1-17. doi: 10.1088/1468-5248/2/1/001
    [113]
    Towne A, Schmidt O T, Colonius T. 2018. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech., 847: 821-867. doi: 10.1017/jfm.2018.283
    [114]
    Townsend A A. 1976. The Structure of Turbulent Shear Flow, 2nd edn. Cambridge: Cambridge University Press.
    [115]
    Tuerke F, Jiménez J. 2013. Simulations of turbulent channels with prescribed velocity profiles. J. Fluid Mech., 723: 587-603. doi: 10.1017/jfm.2013.143
    [116]
    Wallace J M. 2012. Highlights from 50 years of turbulent boundary layer research. J. Turbul., 13: 1-70. doi: 10.1080/14685248.2011.633522
    [117]
    Wallace J M. 2016. Quadrant analysis in turbulence research: History and evolution. Annu. Rev. Fluid Mech., 48: 131-158. doi: 10.1146/annurev-fluid-122414-034550
    [118]
    Wallace J M, Brodkey R S, Eckelmann H. 1972. The wall region in turbulent shear flow. J. Fluid Mech., 54: 39-48. doi: 10.1017/S0022112072000515
    [119]
    Wang W, Pan C, Wang J. 2021. Energy transfer structures associated with large-scale motions in a turbulent boundary layer. J. Fluid Mech., 906: A21. doi: 10.1017/jfm.2020.785
    [120]
    Willmarth W W, Lu S S. 1972. Structure of the Reynolds stress near the wall. J. Fluid Mech., 55: 65-92. doi: 10.1017/S002211207200165X
    [121]
    Vela-Martin A, Encinar M P, Garcia-Gutierrez A, Jiménez J. 2019. A second-order consistent, low-storage method for time-resolved channel flow simulations up to Reτ = 5300, Technical Note, ETSIAE /MF-0219.
    [122]
    Xiong S, Yang Y. 2019. Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech., 874: 952-978. doi: 10.1017/jfm.2019.487
    [123]
    Yang Q, Willis A P, Hwang Y. 2019. Exact coherent states of attached eddies in channel flow. J. Fluid Mech., 862: 1029-1059. doi: 10.1017/jfm.2018.1017
    [124]
    Yang X, Baidya R, Lv Y, Marusic I. 2018. Hierarchical random additive model for the spanwise and wall-normal velocities in wall-bounded flows at high Reynolds numbers. Phys. Rev. Fluids, 3: 124606. doi: 10.1103/PhysRevFluids.3.124606
    [125]
    Yeung P K, Zhai X M, Sreenivasan K R. 2015. Extreme events in computational turbulence. PNAS, 112: 12633-12638. doi: 10.1073/pnas.1517368112
    [126]
    Yoon M, Hwang J, Yang J, Sung H J. 2020. Wall-attached structures of streamwise velocity fluctuations in an adverse-pressure-gradient turbulent boundary layer. J. Fluid Mech., 885: A12. doi: 10.1017/jfm.2019.950
    [127]
    Zhao Y, Yang Y, Chen S. 2016. Evolution of material surfaces in the temporal transition in channel flow. J. Fluid Mech., 793: 840-876. doi: 10.1017/jfm.2016.152
    [128]
    Zheng W, Yang Y, Chen S. 2016. Evolutionary geometry of Lagrangian structures in a transitional boundary layer. Phys. Fluids, 28: 035110. doi: 10.1063/1.4944047
    [129]
    Zhou J, Adrian R J, Balachandar S, Kendall T M. 1999. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech., 387: 353-396. doi: 10.1017/S002211209900467X
    [130]
    Zheng W, Ruan S, Yang Y, Chen S. 2019. Image-based modelling of the skin-friction coefficient in compressible boundary layer transition. J. Fluid Mech., 875: 1175-1203.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(30)  / Tables(2)

    Article Metrics

    Article views (2393) PDF downloads(265) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return