Volume 51 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Xing Y, Yang J L. Research progress of impact-resistance strategies and biomimetic mechanism in animal evolution. Advances in Mechanics, 2021, 51(2): 295-341 doi: 10.6052/1000-0992-20-027
Citation: Xing Y, Yang J L. Research progress of impact-resistance strategies and biomimetic mechanism in animal evolution. Advances in Mechanics, 2021, 51(2): 295-341 doi: 10.6052/1000-0992-20-027

Research progress of impact-resistance strategies and biomimetic mechanism in animal evolution

doi: 10.6052/1000-0992-20-027
More Information
  • After a long period of natural selection, animals in nature have evolved a variety of efficient, reliable, and adaptable impact-resistance strategies and body-protective mechanisms to resist impact loads from the complex environment they live in, protecting the organisms from injury when they carry out the intense biological activities. These naturally biological defensive systems are characterized by superiorly impact-resistance tolerance, highly energy-dissipated efficiency, and reusability compared to the traditional protective structures used in engineering. In recent years, more and more researchers have paid attention to the study on biomechanical behavior and biomimetic mechanism of organisms in resisting impact loading. In this paper, combining the recent studies in this field, we reviewed the latest research progress in impact-resistance strategies and body-protective mechanisms of various animals in nature and related bio-inspired designs and engineering applications. In particular, we summarized and discussed the unique evolutionary process and extraordinary mechanical properties of biological impact-resistant structures under different loading environments and introduced the related investigations on the biomimetic applications in resisting impact loads. Finally, we analyzed the challenges and developments of the research on impact-resistance strategies and biomimetic mechanisms in animal evolution. This review provides practical data for researchers and engineers and offers a useful reference and bionic basis for the impact-resistance and protective designs of reusable energy absorption devices and aircraft structures.

     

  • loading
  • [1]
    柴辉, 李建华, 葛文杰. 2009. 基于可调齿轮-五杆机构的仿袋鼠跳跃机器人运动步态分析. 机器人, 31: 487-492 (Chai H, Li J H, Ge W J. 2009. Gait analysis on bionic kangaroo-hopping robot based on adjustable geared five-linkage mechanism. Robot, 31: 487-492). doi: 10.3321/j.issn:1002-0446.2009.06.002
    [2]
    刘延柱. 1982. 自由下落猫的转体运动. 力学学报, 4: 388-393 (Liu Y Z. 1982. On the turning motion of a free-falling cat. Chinese Journal of Theoretical and Applied Mechanics, 4: 388-393).
    [3]
    王国彪, 陈殿生, 陈科位, 张自强. 2015. 仿生机器人研究现状与发展趋势. 机械工程学报, 51: 27-44 (Wang G B, Chen D S, Chen K W, Zhang Z Q. 2015. The current research status and development strategy on biomimetic robot. Journal of Mechanical Engineering, 51: 27-44).
    [4]
    于晖. 2016. 基于仿生原理的新型缓冲与能量吸收装置的研究. 北京: 北京航空航天大学.
    [5]
    张铭, 葛文杰, 柏龙, 陈晓红. 2009. 星面探测仿生弹跳机器人设计、仿真及实验. 机器人, 31: 481-486 (Zhang M, Ge W J, Bai L, Chen X H. 2009. Design, simulation and experiment of a bionic hopper for planet exploration. Robot, 31: 481-486). doi: 10.3321/j.issn:1002-0446.2009.06.001
    [6]
    张晓鹏, 杨嘉陵, 于晖. 2012. 猫科动物脚掌肉垫缓冲力学特性分析. 生物医学工程学杂志, 29: 1098-1104 (Zhang X P, Yang J L, Yu H. 2012. Mechanical buffering characteristics of feline paw pads. Journal of Biomedical Engineering, 29: 1098-1104).
    [7]
    郑秀瑗. 2002. 现代运动生物力学. 北京: 国防工业出版社

    Zheng X Y. 2002. Modern Sports Biomechanics. Beijing: National Defense Industry Press
    [8]
    钟奉俄. 1985. 关于自由下落猫的双刚体模型. 力学学报, 17: 72-77 (Zhong F E. 1985. A two-rigid-body model of the free-falling cat. Chinese Journal of Theoretical and Applied Mechanics, 17: 72-77).
    [9]
    Achrai B, Bar-On B, Wagner H D. 2014. Bending mechanics of the red-eared slider turtle carapace. Journal of the Mechanical Behavior of Biomedical Materials, 30: 223-233. doi: 10.1016/j.jmbbm.2013.09.009
    [10]
    Achrai B, Bar-On B, Wagner H D. 2015. Biological armors under impact-effect of keratin coating, and synthetic bio-inspired analogues. Bioinspiration & Biomimetics, 10: 016009.
    [11]
    Achrai B, Wagner H D. 2013. Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta Biomaterialia, 9: 5890-5902. doi: 10.1016/j.actbio.2012.12.023
    [12]
    Achrai B, Wagner H D. 2015. The red-eared slider turtle carapace under fatigue loading: The effect of rib-suture arrangement. Materials Science and Engineering: C, 53: 128-133. doi: 10.1016/j.msec.2015.04.040
    [13]
    Alam M S. 2005. Damage tolerance in naturally compliant structures. International Journal of Damage Mechanics, 14: 365-384. doi: 10.1177/1056789505054313
    [14]
    Alam M S, Wahab M A, Jenkins C H. 2007. Mechanics in naturally compliant structures. Mechanics of Materials, 39: 145-160. doi: 10.1016/j.mechmat.2006.04.005
    [15]
    Alexander R M. 1976. Estimates of speeds of dinosaurs. Nature, 261: 129-130. doi: 10.1038/261129a0
    [16]
    Alexander R M. 1988. Elastic Mechanisms in Animal Movement. Cambridge: Cambridge University Press
    [17]
    Alexander R M. 2003. Principles of Animal Locomotion. Princeton: Princeton University Press
    [18]
    Alexander R M, Bennett M B, Ker R F. 1986. Mechanical properties and function of the paw pads of some mammals. Journal of Zoology, 209: 405-419. doi: 10.1111/j.1469-7998.1986.tb03601.x
    [19]
    Alexander R M, Jayes A S. 1983. A dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology, 201: 135-152.
    [20]
    Alexander R M, Vernon A. 1971. The mechanics of hopping by kangaroos (Macropodidae). Proceedings of the Zoological Society of London, 177: 265-303.
    [21]
    Andersen S O. 1979. Biochemistry of Insect Cuticle. Annual Review of Entomology, 24: 29-59. doi: 10.1146/annurev.en.24.010179.000333
    [22]
    Appel E, Heepe L, Lin C P, Gorb S N. 2015. Ultrastructure of dragonfly wing veins: Composite structure of fibrous material supplemented by resilin. Journal of Anatomy, 227: 561-582. doi: 10.1111/joa.12362
    [23]
    Bai L, Ge W, Chen X, Tang Q, Xiang R. 2015. Landing impact analysis of a bioinspired intermittent hopping robot with consideration of friction. Mathematical Problems in Engineering, 2: 1-12.
    [24]
    Balani K, Patel R R, Keshri A K, Lahiri D, Agarwal A. 2011. Multi-scale hierarchy of chelydra serpentina: microstructure and mechanical properties of turtle shell. Journal of the Mechanical Behavior of Biomedical Materials, 4: 1440-1451. doi: 10.1016/j.jmbbm.2011.05.014
    [25]
    Barbakadze N, Enders S, Gorb S, Arzt E. 2006. Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). Journal of Experimental Biology, 209: 722-730. doi: 10.1242/jeb.02065
    [26]
    Beer F P, Johnston E R, Dewolf J T, Mazurek D F. 2012. Mechanics of Materials. McGraw-Hill
    [27]
    Bennet-Clark H C. 1975. The energetics of the jump of the locust Schistocerca gregaria. Journal of Experimental Biology, 63: 53-83.
    [28]
    Bertram J E A, Gosline J M. 1986. Fracture-toughness design in horse hoof keratin. Journal of Experimental Biology, 125: 29-47.
    [29]
    Burrows M. 2003. Froghopper insects leap to new heights. Nature, 424: 509. doi: 10.1038/424509a
    [30]
    Burrows M. 2006a. Jumping performance of froghopper insects. Journal of Experimental Biology, 209: 4607-4621. doi: 10.1242/jeb.02539
    [31]
    Burrows M. 2006b. Morphology and action of the hind leg joints controlling jumping in froghopper insects. Journal of Experimental Biology, 209: 4622-4637. doi: 10.1242/jeb.02554
    [32]
    Burrows M. 2007. Kinematics of jumping in leafhopper insects (Hemiptera, Auchenorrhyncha, Cicadellidae). Journal of Experimental Biology, 210: 3579-3589. doi: 10.1242/jeb.009092
    [33]
    Burrows M. 2009. Jumping performance of planthoppers (Hemiptera, Issidae). Journal of Experimental Biology, 212: 2844-2855. doi: 10.1242/jeb.032326
    [34]
    Burrows M. 2013a. Jumping mechanisms in gum treehopper insects (Hemiptera, Eurymelinae). Journal of Experimental Biology, 216: 2682-2690. doi: 10.1242/jeb.085266
    [35]
    Burrows M. 2013b. Jumping mechanisms of treehopper insects (Hemiptera, Auchenorrhyncha, Membracidae). Journal of Experimental Biology, 216: 788-799.
    [36]
    Burrows M. 2014. Jumping mechanisms in dictyopharid planthoppers (Hemiptera, Dicytyopharidae). Journal of Experimental Biology, 217: 402-413. doi: 10.1242/jeb.093476
    [37]
    Burrows M, Cullen D A, Dorosenko M, Sutton G P. 2015. Mantises exchange angular momentum between three rotating body parts to jump precisely to targets. Current Biology, 25: 786-789. doi: 10.1016/j.cub.2015.01.054
    [38]
    Burrows M, Dorosenko M. 2014. Jumping mechanisms in lacewings (Neuroptera, Chrysopidae and Hemerobiidae). Journal of Experimental Biology, 217: 4252-4261. doi: 10.1242/jeb.110841
    [39]
    Burrows M, Dorosenko M. 2015a. Jumping mechanisms and strategies in moths (Lepidoptera). Journal of Experimental Biology, 218: 1655-1666. doi: 10.1242/jeb.120741
    [40]
    Burrows M, Dorosenko M. 2015b. Jumping mechanisms in adult caddis flies (Insecta, Trichoptera). Journal of Experimental Biology, 218: 2764-2774. doi: 10.1242/jeb.123471
    [41]
    Burrows M, Dorosenko M. 2017. Jumping performance of flea hoppers and other mirid bugs (Hemiptera, Miridae). Journal of Experimental Biology, 220: 1606-1617.
    [42]
    Burrows M, Morris O. 2002. Jumping in a winged stick insect. Journal of Experimental Biology, 205: 2399-2412.
    [43]
    Burrows M, Morris O. 2003. Jumping and kicking in bush crickets. Journal of Experimental Biology, 206: 1035-1049. doi: 10.1242/jeb.00214
    [44]
    Burrows M, Picker M D. 2010. Jumping mechanisms and performance of pygmy mole crickets (Orthoptera, Tridactylidae). Journal of Experimental Biology, 213: 2386-2398. doi: 10.1242/jeb.042192
    [45]
    Burrows M, Sutton G P. 2012. Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking. Journal of Experimental Biology, 215: 3501-3512. doi: 10.1242/jeb.071993
    [46]
    Chao W, Hao Z, Feng X. 2016. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts. Scientific Reports, 6: 35219. doi: 10.1038/srep35219
    [47]
    Chen C C, Li D G, Yano H, Abe K. 2019. Insect cuticle-mimetic hydrogels with high mechanical properties achieved via the combination of chitin nanofiber and gelatin. Journal of Agricultural and Food Chemistry, 67: 5571-5578. doi: 10.1021/acs.jafc.9b00984
    [48]
    Chen D, Chen K, Zhang Z, Zhang B. 2015. Mechanism of locust air posture adjustment. Journal of Bionic Engineering, 12: 418-431. doi: 10.1016/S1672-6529(14)60133-5
    [49]
    Chen Y K, Liao C P, Tsai F Y, Chi K J. 2013. More than a safety line: Jump-stabilizing silk of salticids. Journal of the Royal Society Interface, 10: 20130572. doi: 10.1098/rsif.2013.0572
    [50]
    Chintapalli R K, Mirkhalaf M, Dastjerdi A K, Barthelat F. 2014. Fabrication, testing and modeling of a new flexible armor inspired from natural fsh scales and osteoderms. Bioinspiration & Biomimetics, 9: 036005.
    [51]
    Cofer D, Cymbalyuk G, Heitler W J, Edwards D H. 2010. Control of tumbling during the locust jump. Journal of Experimental Biology, 213: 3378-3387. doi: 10.1242/jeb.046367
    [52]
    Combes S A, Daniel T L. 2003. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206: 2979-2987. doi: 10.1242/jeb.00523
    [53]
    Craig C L. 2010. The ecological and evolutionary interdependence between web architecture and web silk spun by orb web weaving spiders. Biological Journal of the Linnean Society, 30: 135-162.
    [54]
    Crevier N, Robin D, Pourcelot P, Falala S, Holden L, Estoup P, Desquilbet L, Denoix J, Chateau H. 2010. Ground reaction force and kinematic analysis of limb loading on two different beach sand tracks in harness trotters. Equine Veterinary Journal, 42: 544-551. doi: 10.1111/j.2042-3306.2010.00202.x
    [55]
    Damiens R, Rhee H, Hwang Y, Park S J, Hammi Y, Lim H, Horstemeyer M F. 2012. Compressive behavior of a turtle's shell: experiment, modeling, and simulation. Journal of the Mechanical Behavior of Biomedical Materials, 6: 106-112. doi: 10.1016/j.jmbbm.2011.10.011
    [56]
    Dawson T J, Taylor C R. 1973. Energetic cost of locomotion. Nature, 246: 313-314. doi: 10.1038/246313a0
    [57]
    Denny M. 1976. The physical properties of spider's silk and their role in design of orb webs. Journal of Experimental Biology, 65: 483-506.
    [58]
    DeVita P, Skelly W A. 1992. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Medicine and Science in Sports and Exercise, 24: 108-115.
    [59]
    Diamond J M. 1988. Why cats have nine lives. Nature, 332: 586-587. doi: 10.1038/332586a0
    [60]
    Diamond J M. 1989. How cats survive falls from new york skyscrapers. Natural History, 98: 20-26.
    [61]
    Dirks J H, Durr V. 2011. Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle. Journal of the Mechanical Behavior of Biomedical Materials, 4: 2031-2042. doi: 10.1016/j.jmbbm.2011.07.002
    [62]
    Douglas J, Mittal C, Thomason J, Jofriet J. 1996. The modulus of elasticity of equine hoof wall: Implications for the mechanical function of the hoof. Journal of Experimental Biology, 199: 1829-1836.
    [63]
    Drake A, Donahue T L H, Stansloski M, Fox K, Wheatley B B, Donahue S W. 2016. Horn and horn core trabecular bone of bighorn sheep rams absorbs impact energy and reduces brain cavity accelerations during high impact ramming of the skull. Acta Biomaterialia, 44: 41-50. doi: 10.1016/j.actbio.2016.08.019
    [64]
    Dunlop J W C, Weinkamer R, Fratzl P. 2011. Artful interfaces within biological materials. Materials Today, 14: 70-78. doi: 10.1016/S1369-7021(11)70056-6
    [65]
    Dutta A, Tekalur S A, Miklavcic M. 2013. Optimal overlap length in staggered architecture composites under dynamic loading conditions. Journal of the Mechanics and Physics of Solids, 61: 145-160. doi: 10.1016/j.jmps.2012.08.005
    [66]
    Dutta A, Vanderklok A, Tekalur S A. 2012. High strain rate mechanical behavior of seashell-mimetic composites: Analytical model formulation and validation. Mechanics of Materials, 55: 102-111. doi: 10.1016/j.mechmat.2012.08.003
    [67]
    Fenn W O. 1930. Frictional and kinetic factors in the work of sprint running. American Journal of Physiology, 93: 433-462. doi: 10.1152/ajplegacy.1930.93.2.433
    [68]
    Fernandes M C, Aizenberg J, Weaver J C, Bertoldi K. 2020. Mechanically robust lattices inspired by deep-sea glass sponges. Nature Materials, 267: 2687.
    [69]
    Fernandez J G, Ingber D E. 2012. Unexpected strength and toughness in chitosan-fibroin laminates inspired by insect cuticle. Advanced materials, 24: 480-484. doi: 10.1002/adma.201104051
    [70]
    Feughelman M. 1994. A model for the mechanical properties of the α-keratin cortex. Textile Research Journal, 64: 236-239. doi: 10.1177/004051759406400408
    [71]
    Fish J F, Stayton C T. 2014. Morphological and mechanical changes in juvenile red-eared slider turtle (Trachemys scripta elegans) shells during ontogeny. Journal of Morphology, 275: 391-397. doi: 10.1002/jmor.20222
    [72]
    Fraser R, MacRae T, Miller A. 1964. The coiled-coil model of a-keratin structure. Journal of Molecular Biology, 10: 147-156. doi: 10.1016/S0022-2836(64)80034-6
    [73]
    Fraser R, MacRae T, Suzuki E. 1976. Structure of the a-keratin microfibril. Journal of Molecular Biology, 108: 435-452. doi: 10.1016/S0022-2836(76)80129-5
    [74]
    Fudge D S, Gardner K H, Forsyth V T, Riekel C, Gosline J M. 2003. The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophysical Journal, 85: 2015-2027. doi: 10.1016/S0006-3495(03)74629-3
    [75]
    Fudge D S, Gosline J M. 2004. Molecular design of the a-keratin composite: Insights from a matrix-free model, hagfish slime threads. Proceedings of the Royal Society B: Biological Science, 271: 291-299. doi: 10.1098/rspb.2003.2591
    [76]
    Geist V. 1966a. The evolution of horn-like organs. Behaviour, 27: 175-214. doi: 10.1163/156853966X00155
    [77]
    Geist V. 1966b. The evolutionary significance of mountain sheep horns. Evolution; International Journal of Organic Evolution, 20: 558-566. doi: 10.1111/j.1558-5646.1966.tb03386.x
    [78]
    Ghara M, Kundanati L, Borges R M. 2011. Nature's Swiss Army Knives: Ovipositor structure mirrors ecology in a multitrophic fig wasp community. PloS One, 6: e23642. doi: 10.1371/journal.pone.0023642
    [79]
    Ghosh R, Ebrahimi H, Vaziri A. 2014. Contact kinematics of biomimetic scales. Applied Physics Letters, 105: 233701. doi: 10.1063/1.4903160
    [80]
    Gibson L J. 2006. Woodpecker pecking: How woodpeckers avoid brain injury. Journal of Zoology, 270: 462-465. doi: 10.1111/j.1469-7998.2006.00166.x
    [81]
    Gosline J M, Guerette P A, Ortlepp C S, Savage K N. 1999. The mechanical design of spider silks: From fibroin sequence to mechanical function. Journal of Experimental Biology, 202: 3295-3303.
    [82]
    Gosline J M, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K N. 2002. Elastic proteins: Biological roles and mechanical properties. Philosophical transactions-Royal Society. Biological Sciences, 357: 121-132. doi: 10.1098/rstb.2001.1022
    [83]
    Guarin-Zapata N, Gomez J, Yaraghi N, Kisailus D, Zavattieri P D. 2015. Shear wave filtering in naturally-occurring bouligand structures. Acta Biomaterialia, 23: 11-20. doi: 10.1016/j.actbio.2015.04.039
    [84]
    Guo Y, Chang Z, Li B, Zhao Z L, Zhao H P, Feng X Q, Gao H J. 2018. Functional gradient effects on the energy absorption of spider orb webs. Applied Physics Letters, 113: 103701. doi: 10.1063/1.5039710
    [85]
    Gurdjian E S. 1975. Re-evaluation of the biomechanics of blunt impact injury of the head. Surgery, Gynecology & Obstetrics, 140: 845-850.
    [86]
    Guyou M. 1894. Note relative a la Communication de M. Marey (in French). Comptes rendus hebdomadaires des seances del academie des sciences, 119: 717-718.
    [87]
    Ha N S, Lu G. 2020. A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites Part B: Engineering, 181: 107496. doi: 10.1016/j.compositesb.2019.107496
    [88]
    Hadley N F. 1986. The arthropod cuticle. Scientific American, 86: 104-112.
    [89]
    Hopkins T L, Kramer K J. 1992. Insect cuticle sclerotization. Annual Review of Entomology, 37: 273-302. doi: 10.1146/annurev.en.37.010192.001421
    [90]
    Huang W, Yaraghi N A, Yang W, Velazquez-Olivera A, Li Z Z, Ritchie R O, Kisailus D, Stover S M, McKittrick J. 2019. A natural energy absorbent polymer composite: The equine hoof wall. Acta Biomaterialia, 90: 267-277. doi: 10.1016/j.actbio.2019.04.003
    [91]
    Huang W, Zaheri A, Jung J Y, Espinosa H D, Mckittrick J. 2017. Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. Acta Biomaterialia, 64: 1-14. doi: 10.1016/j.actbio.2017.09.043
    [92]
    Huang Z W, Li H Z, Pan Z L, Wei Q M, Chao Y J, Li X D. 2011. Uncovering high-strain rate protection mechanism in nacre. Scientific Reports, 1: 00148. doi: 10.1038/srep00148
    [93]
    Huang Z W, Pan Z L, Li H Z, Wei Q M, Li X D. 2014. Hidden energy dissipation mechanism in nacre. Journal of Materials Research, 29: 1573-1578. doi: 10.1557/jmr.2014.179
    [94]
    James C R, Bates B T, Dufek J S. 2003. Classification and comparison of biomechanical response strategies for accommodating landing impact. Journal of Applied Biomechanics, 19: 106-118. doi: 10.1123/jab.19.2.106
    [95]
    Ji B, Gao H. 2004. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52: 1963-1990. doi: 10.1016/j.jmps.2004.03.006
    [96]
    Johnson K, Trim M, Francis D, Whittington W, Miller J, Bennett C, Horstemeyer M. 2017. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties. Acta Biomaterialia, 48: 300-308. doi: 10.1016/j.actbio.2016.10.033
    [97]
    Kane T R, Scher M P. 1969. A dynamical explanation of the falling cat phenomenon. International Journal of Solids and Structures, 5: 663-666. doi: 10.1016/0020-7683(69)90086-9
    [98]
    Kasapi M A, Gosline J M. 1997. Design complexity and fracture control in the equine hoof wall. Journal of Experimental Biology, 200: 1639-1659.
    [99]
    Kasapi M A, Gosline J M. 1999. Micromechanics of the equine hoof wall: optimizing crack control and material stiffness through modulation of the properties of keratin. Journal of Experimental Biology, 202: 377-391.
    [100]
    Kaya M, Leonard T R, Herzog W. 2006. Control of ground reaction forces by hindlimb muscles during cat locomotion. Journal of Biomechanics, 39: 2752-2766. doi: 10.1016/j.jbiomech.2005.10.012
    [101]
    Kitchener A. 1985. The effect of behavior and body-weight on the mechanical design of horns. Journal of Zoology, 205: 191-203. doi: 10.1111/j.1469-7998.1985.tb03528.x
    [102]
    Kitchener A. 1987. Fracture toughness of horns and a reinterpretation of the horning behaviour of bovids. Journal of Zoology, 213: 621-639. doi: 10.1111/j.1469-7998.1987.tb03730.x
    [103]
    Kitchener A. 1988. An analysis of the forces of fighting of the blackbuck (Antilope cervicapra) and the bighorn sheep (Ovis canadensis) and the mechanical design of the horn of bovids. Journal of Zoology, 214: 1-20. doi: 10.1111/j.1469-7998.1988.tb04983.x
    [104]
    Kitchener A, Vincent J F V. 1987. Composite theory and the effect of water on the stiffness of horn keratin. Journal of Materials Science, 22: 1385-1389. doi: 10.1007/BF01233138
    [105]
    Knipprath C, Bond I P, Trask R S. 2011. Biologically inspired crack delocalization in a high strain-rate environment. Journal of the Royal Society Interface, 9: rsif20110442.
    [106]
    Kram R, Dawson T J. 1998. Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus). Comparative Biochemistry and Physiology Part B, 120: 41-49. doi: 10.1016/S0305-0491(98)00022-4
    [107]
    Krauss S, Monsonego-O Pnan E, Zelzer E, Fratzl P, Shahar R. 2009. Mechanical function of a complex three-dimensional suture joining the bony elements in the shell of the red-eared slider turtle. Advanced Materials, 21: 407-412. doi: 10.1002/adma.200801256
    [108]
    Lacquaniti F, Taillanter M L, Lopiano L, Maioli C. 1990. The control of limb geometry in cat posture. Journal of Physiology, 426: 177-192. doi: 10.1113/jphysiol.1990.sp018132
    [109]
    Lanovaz J, Clayton H, Watson L. 1998. In vitro attenuation of impact shock in equine digits. Equine Veterinary Journal, 30: 96-102.
    [110]
    Lee H T, Kim H J, Kim C S, Gomi K, Taya M, Nomura S, Ahn S H. 2017. Site-specific characterization of beetle horn shell with micromechanical bending test in focused ion beam system. Acta Biomaterialia, 57: 395-403. doi: 10.1016/j.actbio.2017.04.026
    [111]
    Lee N, Horstemeyer M F, Rhee H, Nabors B, Liao J, Williams L N. 2014. Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. Journal of The Royal Society Interface, 11: 20140274. doi: 10.1098/rsif.2014.0274
    [112]
    Li D, Wang Q, Xu C, Cheng Y, Zhang Y, Ji B. 2020. How does nature evade the “Larger is Weaker” fate of ultralong silk β-sheet nanocrystallites. Nano Letters, 20: 8516-8523. doi: 10.1021/acs.nanolett.0c02968
    [113]
    Li Y, Ortiz C, Boyce M C. 2012. Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints. Physical Review E, 85: 031901. doi: 10.1103/PhysRevE.85.031901
    [114]
    Li Y, Ortiz C, Boyce M C. 2013. A generalized mechanical model for suture interfaces of arbitrary geometry. Journal of the Mechanics and Physics of Solids, 61: 1144-1167. doi: 10.1016/j.jmps.2012.10.004
    [115]
    Lin L H, Vollrath F, Edmonds D T. 1995. Structural engineering of an orb-spider's web. Nature, 373: 146-148. doi: 10.1038/373146a0
    [116]
    Liu G H, Lin H Y, Lin H Y, Chen S T, Lin P C. 2014. A Bio-Inspired Hopping Kangaroo Robot with an Active Tail. Journal of Bionic Engineering, 11: 541-555. doi: 10.1016/S1672-6529(14)60066-4
    [117]
    Liu P, Zhu D, Yao Y, Wang J, Bui T Q. 2016. Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system. Materials & Design, 99: 201-210.
    [118]
    Liu Y Z, Qiu X M, Ma H L, Fu W W, Yu T X. 2017. A study of woodpecker's pecking process and the impact response of its brain. International Journal of Impact Engineering, 108: 263-271. doi: 10.1016/j.ijimpeng.2017.05.016
    [119]
    Magwene P M, Socha J J. 2013. Biomechanics of turtle shells: How whole shells fail in compression. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 319: 86-98. doi: 10.1002/jez.1773
    [120]
    Marey M. 1894. Des mouvements que certains animaux executent pour retomber sur leurs pieds, lorsqu'ils sont precipites dun lieu leve. Comptes rendus hebdomadaires des seances del academie des sciences, 119: 714-717.
    [121]
    Martini R, Barthelat F. 2016. Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales. Bioinspiration & Biomimetics, 11: 066001.
    [122]
    Martins A F, Bennett N C, Clavel S, Groenewald H, Hensman S, Hoby S, Joris A, Manger P R, Milinkovitch M C. 2018. Locally-curved geometry generates bending cracks in the African elephant skin. Nature communications, 9: 3865. doi: 10.1038/s41467-018-06257-3
    [123]
    May P R A, Newman P, Fuster J M, Hirschman A. 1976. Woodpeckers and head injury. The Lancet, 307: 454-455. doi: 10.1016/S0140-6736(76)91477-X
    [124]
    Mccullough E L. 2014. Mechanical limits to maximum weapon size in a giant rhinoceros beetle. Proceedings Biological Sciences, 281: 70-84.
    [125]
    Mckinley P A, Smith J L, Gregor R J. 1983. Responses of elbow extensors to landing forces during jump downs in cats. Experimental Brain Research, 49: 218-228.
    [126]
    McKittrick J, Chen P Y, Bodde S G, Yang W, Novitskaya E E, Meyers M A. 2012. The structure, functions, and mechanical properties of keratin. JOM, 64: 449-468. doi: 10.1007/s11837-012-0302-8
    [127]
    McNitt-Gray J L. 1993. Kinetics of the lower extremities during drop landings from three heights. Journal of Biomechanics, 26: 1037-1046. doi: 10.1016/S0021-9290(05)80003-X
    [128]
    Meyers M A, Chen P Y, Lin A Y M, Seki Y. 2008. Biological materials: structure and mechanical properties. Progress in Materials Science, 53: 1-206. doi: 10.1016/j.pmatsci.2007.05.002
    [129]
    Michels J, Gorb S N. 2011. Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. Journal of Microscopy, 245: 1-16.
    [130]
    Milgram M, Bibring M, Aroch I. 2013. Epidemiological, clinical and hematological findings in feline high rise syndrome in israel: A retrospective case-controlled study of 107 cats. Israel Journal of Veterinary Medicine, 68: 28-37.
    [131]
    Miranda P, Pajares A, Meyers M A. 2019. Bioinspired composite segmented armour: Numerical simulations. Journal of Materials Research and Technology, 8: 1274-1287. doi: 10.1016/j.jmrt.2018.09.007
    [132]
    Mirkhalaf M, Dastjerdi A K, Barthelat F. 2014. Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nature Communications, 5: 3166. doi: 10.1038/ncomms4166
    [133]
    Mirkhalaf M, Zhou T, Barthelat F. 2018. Simultaneous improvements of strength and toughness in topologically interlocked ceramics. Proceedings of the National Academy of Sciences of the United States of America, 115: 9128-9133. doi: 10.1073/pnas.1807272115
    [134]
    Mohanty B, Katti K S, Katti D R. 2006. Dynamic nanomechanical response of nacre. Journal of Materials Research, 21: 2045-2051. doi: 10.1557/jmr.2006.0247
    [135]
    Morgan D L, Proske U, Warren D. 1978. Measurements of muscle stiffness and the mechanism of elastic storage of energy in hopping kangaroos. The Journal of Physiology, 282: 253-261. doi: 10.1113/jphysiol.1978.sp012461
    [136]
    Nadein K, Betz O. 2016. Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini). Journal of Experimental Biology, 219: 2015-2027. doi: 10.1242/jeb.140533
    [137]
    Neville A C. 1975. Biology of the Arthropod Cuticle. Berlin: Springer Press
    [138]
    Nukala P K V V, Simunovic S. 2005. Statistical physics models for nacre fracture simulation. Physical Review E, 72: 041919. doi: 10.1103/PhysRevE.72.041919
    [139]
    Parbhu A N, Bryson W G, Lal R. 1999. Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM. Biochemistry, 38: 11755-11761. doi: 10.1021/bi990746d
    [140]
    Parle E, Herbaj S, Sheils F, Larmon H, Taylor D. 2016a. Buckling failures in insect exoskeletons. Bioinspiration & Biomimetics, 11: 016003.
    [141]
    Parle E, Larmon H, Taylor D. 2016b. Biomechanical factors in the adaptations of insect tibia cuticle. PloS One, 11: e0159262. doi: 10.1371/journal.pone.0159262
    [142]
    Parsons K, Spence A, Morgan R, Thompson J, Wilson A. 2011. High speed field kinematics of foot contact in elite galloping horses in training. Equine Veterinary Journal, 43: 216-222. doi: 10.1111/j.2042-3306.2010.00149.x
    [143]
    Patek S N, Korff W L, Caldwell R L. 2004. Biomechanics: Deadly strike mechanism of a mantis shrimp. Nature, 428: 819. doi: 10.1038/428819a
    [144]
    Peisker H, Michels J, Gorb S N. 2013. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nature Communications, 4: 1661. doi: 10.1038/ncomms2576
    [145]
    Pollitt C C. 2004. Anatomy and physiology of the inner hoof wall. Clinical Techniques in Equine Practice, 3: 3-21. doi: 10.1053/j.ctep.2004.07.001
    [146]
    Porter M M, Ravikumar N, Barthelat F, Martini R. 2017. 3D-printing and mechanics of bio-inspired articulated and multi-material structures. Journal of the Mechanical Behavior of Biomedical Materials, 73: 114-126. doi: 10.1016/j.jmbbm.2016.12.016
    [147]
    Prilutsky B I, Herzog W, Leonard T R. 1996. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion. Journal of Biomechanics, 29: 417-434. doi: 10.1016/0021-9290(95)00085-2
    [148]
    Prochazka A, Schofield P, Westerman R A, Ziccone S P. 1977. Reflexes in cat ankle muscles after landing from falls. The Joumal of Physiology, 272: 705-719. doi: 10.1113/jphysiol.1977.sp012068
    [149]
    Quan H C, Yang W, Schaible E, Ritchie R O, Meyers M A. 2018. Novel defense mechanisms in the armor of the scales of the “living fossil” coelacanth fish. Advanced Functional Materials, 28: 1804237. doi: 10.1002/adfm.201804237
    [150]
    Rabiei R, Bekah S, Barthelat F. 2010. Failure mode transition in nacre and bone-like materials. Acta Biomaterialia, 6: 4081-4089. doi: 10.1016/j.actbio.2010.04.008
    [151]
    Rajabi H, Darvizeh A, Shafiei A, Taylor D, Dirks J H. 2015. Numerical investigation of insect wing fracture behaviour. Journal of Biomechanics, 48: 89-94. doi: 10.1016/j.jbiomech.2014.10.037
    [152]
    Rajabi H, Jafarpour M, Darvizeh A, Dirks J H, Gorb S N. 2017. Stiffness distribution in insect cuticle: A continuous or a discontinuous profile?. Journal of the Royal Society Interface, 14: 20170310. doi: 10.1098/rsif.2017.0310
    [153]
    Rajabi H, Shafiei A, Darvizeh A, Babaei H. 2016. Experimental and numerical investigations of crack propagation in dragonfly wing veins. AmirKabir Jounrnal of Science & Research Mechanical Engineering, 48: 61-64.
    [154]
    Rajabi H, Shafiei A, Darvizeh A, Gorb S N, Durr V, Dirks J H. 2018. Both stiff and compliant: Morphological and biomechanical adaptations of stick insect antennae for tactile exploration. Journal of the Royal Society Interface, 15: 20180246. doi: 10.1098/rsif.2018.0246
    [155]
    Rudykh S, Ortiz C, Boyce M C. 2015. Flexibility and protection by design: Imbricated hybrid microstructures of bio-inspired armor. Soft Matter, 11: 2547-2554. doi: 10.1039/C4SM02907K
    [156]
    Schmitt M, Buscher T H, Gorb S N, Rajabi H. 2018. How does a slender tibia resist buckling? The effect of material, structural and geometric characteristics on the buckling behaviour of the hindleg tibia in the postembryonic development of the stick insect Carausius morosus. Journal of Experimental Biology, 221: jeb173047. doi: 10.1242/jeb.173047
    [157]
    Seki Y, Kad B, Benson D, Meyers M A. 2006. The toucan beak: Structure and mechanical response. Materials Science and Engineering: C, 26: 1412-1420. doi: 10.1016/j.msec.2005.08.025
    [158]
    Seki Y, Schneider M S, Meyers M A. 2005. Structure and mechanical behavior of a toucan beak. Acta Materialia, 53: 5281-5296. doi: 10.1016/j.actamat.2005.04.048
    [159]
    Sensenig A T, Lorentz K A, Kelly S P, Blackledge T A. 2012. Spider orb webs rely on radial threads to absorb prey kinetic energy. Journal of the Royal Society Interface, 9: 1880-1891. doi: 10.1098/rsif.2011.0851
    [160]
    Setterbo J J, Garcia T C, Campbell I P, Reese J L, Morgan J M, Kim S Y, Hubbard M, Stover S M. 2009. Hoof accelerations and ground reaction forces of thoroughbred racehorses measured on dirt, synthetic, and turf track surfaces. American Journal of Veterinary Research, 70: 1220-1229. doi: 10.2460/ajvr.70.10.1220
    [161]
    Seyfarth A, Geyer H G M, Blickhan R. 2002. A movement criterion for running. Journal of Biomechanics, 35: 649-655. doi: 10.1016/S0021-9290(01)00245-7
    [162]
    Shao Y, Zhao H P, Feng X Q. 2014. On flaw tolerance of nacre: A theoretical study. Journal of The Royal Society Interface, 11: 20131016. doi: 10.1098/rsif.2013.1016
    [163]
    Shigley M B. 2015. Shigley's Mechanical Engineering Design. New York: McGraw-Hill
    [164]
    Signetti S, Pugno N M. 2014. Evidence of optimal interfaces in bio-inspired ceramiccomposite panels for superior ballistic protection. Journal of the European Ceramic Society, 34: 2823-2831. doi: 10.1016/j.jeurceramsoc.2013.12.039
    [165]
    Siwanowicz I, Burrows M. 2017. Three dimensional reconstruction of energy stores for jumping in planthoppers and froghoppers from confocal laser scanning microscopy. eLife, 6: e23824. doi: 10.7554/eLife.23824
    [166]
    Soons J, Herrel A, Genbrugge A, Adriaens D, Aerts P, Dirckx J. 2012. Multi-layered bird beaks: A finite-element approach towards the role of keratin in stress dissipation. Journal of the Royal Society Interface, 9: 1787-1796. doi: 10.1098/rsif.2011.0910
    [167]
    Spearman R I C. 1970. The Epidermis and its Keratinisation in the African Elephant (Loxodonta Africana). Zoologica Africana, 5: 327-338. doi: 10.1080/00445096.1970.11447400
    [168]
    Sullivan T N, Chon M, Ramachandramoorthy R, Roenbeck M R, Hung T T, Espinosa H D, Meyers M A. 2017a. Reversible attachment with tailored permeability: The feather vane and bioinspired designs. Advanced Functional Materials, 27: 1702954. doi: 10.1002/adfm.201702954
    [169]
    Sullivan T N, Hung T T, Velasco A, Meyers M A. 2019a. Bioinspired avian feather designs. Materials Science and Engineering: C, 105: 110066. doi: 10.1016/j.msec.2019.110066
    [170]
    Sullivan T N, Meyers M A, Arzt E. 2019b. Scaling of bird wings and feathers for efficient flight. Science Advances, 5: eaat4269. doi: 10.1126/sciadv.aat4269
    [171]
    Sullivan T N, Pissarenko A, Herrera S A, Kisailus D, Lubarda V A, Meyers M A. 2016. A lightweight, biological structure with tailored stiffness: The feather vane. Acta Biomaterialia, 41: 27-39. doi: 10.1016/j.actbio.2016.05.022
    [172]
    Sullivan T N, Wang B, Espinosa H D, Meyers M A. 2017b. Extreme lightweight structures: Avian feathers and bones. Materials Today, 20: 377-391. doi: 10.1016/j.mattod.2017.02.004
    [173]
    Sullivan T N, Zhang Y L, Zavattieri P D, Meyers M A. 2018. Hydration-induced shape and strength recovery of the feather. Advanced Functional Materials, 28: 1801250. doi: 10.1002/adfm.201801250
    [174]
    Sutton G P, Burrows M. 2011. Biomechanics of jumping in the flea. Journal of Experimental Biology, 214: 836-847. doi: 10.1242/jeb.052399
    [175]
    Sutton G P, Doroshenko M, Cullen D A, Burrows M. 2016. Take-off speed in jumping mantises depends on body size and a power limited mechanism. Journal of Experimental Biology, 219: 2127-2136. doi: 10.1242/jeb.133728
    [176]
    Taylor C R. 1978. Why change gaits? recruitment of muscles and muscle fibers as a function of speed and gait. American Zoologist, 18: 153-161. doi: 10.1093/icb/18.1.153
    [177]
    Timoshenko S P. 1961. Theory of Elastic Stability. New York: McGraw-Hill
    [178]
    Tombolato L, Novitskaya E E, Chen P Y, Sheppard F A, McKittrick J. 2010. Microstructure, elastic properties and deformation mechanisms of horn keratin. Acta Biomaterialia, 6: 319-330. doi: 10.1016/j.actbio.2009.06.033
    [179]
    Trim M W, Horstemeyer M F, Rhee H, Kadiri H E, Williams L N, Liao J, Walters K B, McKittrick J, Park S J. 2011. The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin. Acta Biomaterialia, 7: 1228-1240. doi: 10.1016/j.actbio.2010.11.024
    [180]
    Vernerey F J, Barthelat F. 2014. Skin and scales of teleost fish: Simple structure but high performance and multiple functions. Journal of the Mechanics and Physics of Solids, 68: 66-76. doi: 10.1016/j.jmps.2014.01.005
    [181]
    Vincent J F V, Wegst U G K. 2004. Design and mechanical properties of insect cuticle. Arthropod Structure & Development, 33: 187-199.
    [182]
    Vnuk D, Pirkic B, Maticic D, Radisic B, Stejskal M, Babic T, Kreszinger M, Lemo N. 2004. Feline high-rise syndrome: 119 cases (1998-2001). Journal of Feline Medicine & Surgery, 6: 305-312.
    [183]
    Vollrath F, Porter D. 2009. Silks as ancient models for modern polymers. Polymer, 50: 5623-5632. doi: 10.1016/j.polymer.2009.09.068
    [184]
    Wang B, Meyers M A. 2017. Light like a feather: A fibrous natural composite with a shape changing from round to square. Advanced Science, 4: 1600360. doi: 10.1002/advs.201600360
    [185]
    Wang L, Cheung T M, Pu F, Li D, Zhang M, Fan Y. 2011. Why do woodpeckers resist head impact injury: A biomechanical investigation. PloS One, 6: e26490. doi: 10.1371/journal.pone.0026490
    [186]
    Wang L Y, Jafarpour M, Lin C P, Appel E, Gorb S N, Rajabi H. 2019. Endocuticle sclerotisation increases the mechanical stability of cuticle. Soft Matter, 15: 8272-8278. doi: 10.1039/C9SM01687B
    [187]
    Wang L Y, Rajabi H, Ghoroubi N, Lin C P, Gorb S N. 2018. Biomechanical strategies underlying the robust body armour of an aposematic weevil. Frontiers in Physiology, 9: 1410. doi: 10.3389/fphys.2018.01410
    [188]
    Wang R Z, Suo Z, Evans A G. 2001. Deformation mechanisms in nacre. Journal of Materials Research, 16: 2485-2493. doi: 10.1557/JMR.2001.0340
    [189]
    Watt D G. 1976. Responses of cats to sudden falls: an otolith-originating reflex assisting landing. Journal of Neurophysiology, 39: 257-265. doi: 10.1152/jn.1976.39.2.257
    [190]
    Weaver J C, Milliron G W, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, William M, Brook S, Pablo Z, Elaine D, David K. 2012. The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science, 336: 6086.
    [191]
    Whitney W O, Mehlhaff C J. 1987. High-rise syndrome in cats. Journal of the American Veterinary Medical Association, 191: 1399-1403.
    [192]
    Windsor D E, Dagg A I. 1971. The gaits of the Macropodinae (Marsupialia). Journal of Zoology, 163: 165-175.
    [193]
    Xing Y, Yang J L. 2019. A compromise reveals buckling resistance strategy of a naturally slender tibia. Advanced Theory and Simulations, 2: 1900051. doi: 10.1002/adts.201900051
    [194]
    Xing Y, Yang J L. 2020a. Experimental investigations on the strategies of fighting crickets Velarifictorus micado to manipulate air resistance. Science China Physics, Mechanics & Astronomy, 63: 264611.
    [195]
    Xing Y, Yang J L. 2020b. Stiffness distribution in natural insect cuticle reveals an impact resistance strategy. Journal of Biomechanics, 109: 109952. doi: 10.1016/j.jbiomech.2020.109952
    [196]
    Yang T, Jia Z, Chen H S, Deng Z F, Liu W K, Chen L N, Li L. 2020. Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish. Proceedings of the National Academy of Sciences of the United States of America, 117: 23450-23459. doi: 10.1073/pnas.2009531117
    [197]
    Yang W, Chen I H, Gludovatz B, Zimmermann E A, Ritchie R O, Meyers M A. 2012. Natural flexible dermal armor. Advanced Materials, 25: 31-38.
    [198]
    Yang X F, Ma J G, Shi Y, Sun Y X, Yang J L. 2017. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load. Materials & Design, 135: 275-290.
    [199]
    Yang X F, Ma J G, Sun Y X, Yang J L. 2018a. Ripplecomb: A novel triangular tube reinforced corrugated honeycomb for energy absorption. Composite Structures, 202: 988-999. doi: 10.1016/j.compstruct.2018.05.019
    [200]
    Yang X F, Sun Y X, Yang J L, Pan Q. 2018b. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure. Thin-Walled Structures, 125: 1-11. doi: 10.1016/j.tws.2018.01.014
    [201]
    Yaraghi N A, Guarin-Zapata N, Grunenfelder L K, Hintsala E, Bhowmick S, Hiller J M, Betts M, Principe E L, Jung J Y, Sheppard L, Wuhrer R, McKittrick J, Zavattieri P D, Kisailus D. 2016. A sinusoidally-architected helicoidal biocomposite. Advanced Materials, 28: 6835-6844. doi: 10.1002/adma.201600786
    [202]
    Yin Z, Dastjerdi A K, Barthelat F. 2018. Tough and deformable glasses with bioinspired cross-ply architectures. Acta Biomaterialia, 75: 439-450. doi: 10.1016/j.actbio.2018.05.012
    [203]
    Yu H, Yang J L, Sun Y X. 2015a. Energy absorption of spider orb webs during prey capture: A mechanical analysis. Journal of Bionic Engineering, 12: 453-463. doi: 10.1016/S1672-6529(14)60136-0
    [204]
    Yu H, Zhang Z, Liu H, Yang J, Wang L, Yang L. 2015b. A new landing impact attenuation seat in manned spacecraft biologically-inspired by felids. Chinese Journal of Aeronautics, 28: 434-446. doi: 10.1016/j.cja.2015.02.012
    [205]
    Zeng Y, Lam K, Chen Y, Gong M, Xu Z, Dudley R. 2017. Biomechanics of aerial righting in wingless nymphal stick insects. Interface Focus, 7: 20160075. doi: 10.1098/rsfs.2016.0075
    [206]
    Zeng Y, Lin Y, Abundo A, Dudley R. 2015. The visual ecology of directed aerial descent in first-instar nymphs of the stick insect Extatosoma tiaratum. Journal of Experimental Biology, 218: 2305. doi: 10.1242/jeb.109553
    [207]
    Zhang F L, Jiang L, Wang S T. 2018. Repairable cascaded slide-lock system endows bird feathers with tear-resistance and superdurability. Proceedings of the National Academy of Sciences of the United States of America, 115: 10046-10051. doi: 10.1073/pnas.1808293115
    [208]
    Zhang Q B, Li C, Pan Y T, Shan G H, Cao P, He J, Lin Z S, Ao N J, Huang Y X. 2013. Microstructure and mechanical properties of horns derived from three domestic bovines. Materials Science and Engineering: C, 33: 5036-5043. doi: 10.1016/j.msec.2013.08.034
    [209]
    Zhang W, Wu C W, Zhang C Z, Chen Z. 2012. Numerical study of the mechanical response of turtle shell. Journal of Bionic Engineering, 9: 330-335. doi: 10.1016/S1672-6529(11)60129-7
    [210]
    Zhang Z, Yang J, Yu H. 2014a. Effect of flexible back on energy absorption during landing in cats: A biomechanical investigation. Journal of Bionic Engineering, 11: 506-516. doi: 10.1016/S1672-6529(14)60063-9
    [211]
    Zhang Z, Yu H, Yang J, Wang L, Yang L. 2014b. How cat lands: Insights into contribution of the forelimbs and hindlimbs to attenuating impact force. Science Bulletin, 59: 3325-3332. doi: 10.1007/s11434-014-0328-0
    [212]
    Zhang Z Q, Liu B H, Y, Hwang K C, Gao H. 2010. Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution. Journal of the Mechanics and Physics of Solids, 58: 1646-1660. doi: 10.1016/j.jmps.2010.07.004
    [213]
    Zhang Z Q, Yang J L. 2015. Biomechanical dynamics of cranial sutures during simulated impulsive loading. Applied Bionics and Biomechanics, 1: 1-11.
    [214]
    Zhu D J, Szewciwa L, Vernereyb F, Barthelat F. 2013. Puncture resistance of the scaled skin from striped bass: Collective mechanisms and inspiration for new flexible armor designs. Journal of the Mechanical Behavior of Biomedical Materials, 24: 30-40. doi: 10.1016/j.jmbbm.2013.04.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(1)

    Article Metrics

    Article views (2991) PDF downloads(655) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return