Volume 50 Issue 1
Oct.  2020
Turn off MathJax
Article Contents
LIU Zhiyong, LUO Zhenbing, YUAN Xianxu, TU Guohua. Review of controlling flow separation over airfoils with periodic excitation[J]. Advances in Mechanics, 2020, 50(1): 202007. doi: 10.6052/1000-0992-19-019
Citation: LIU Zhiyong, LUO Zhenbing, YUAN Xianxu, TU Guohua. Review of controlling flow separation over airfoils with periodic excitation[J]. Advances in Mechanics, 2020, 50(1): 202007. doi: 10.6052/1000-0992-19-019

Review of controlling flow separation over airfoils with periodic excitation

doi: 10.6052/1000-0992-19-019
More Information
  • Corresponding author: LUO Zhenbing
  • Received Date: 2019-10-21
  • Publish Date: 2020-10-08
  • Active flow control is one of the most promising techniques that are employed in aeronautics and astronautics engineering in the 21st century. It will be a new degree of freedom of design for future air vehicles. Using this technique to control flow separation over airfoils is very meaningful for both fundamental research and applied research. Since periodic excitation is an efficient and convenient control method, it is significant to review the investigations on controlling flow separation over airfoils with periodic excitation. An evaluating parameter is introduced firstly, which is followed by some discussions about excitation frequency, intensity, location, and Reynolds number. Three aspects which are extracted from publications and should receive appropriate attention are presented. One is the evaluation criterion of efficiency, which can guide the design of forcing devices and operation modes. Another is the acoustic-dominated mode, which is observed in the high-frequency forcing cases. This mode may exacerbate flow separation. The third one is a phenomenon of drag anomaly that, in certain conditions, form drag is larger than total drag with excitation. At last, some recommendations for future research are made. This review is helpful for applications of flow separation control with periodic excitation.

     

  • loading
  • [1]
    崔尔杰 . 2007. 分离流、涡运动及流动控制——纪念陆士嘉先生逝世20周年. 空气动力学学报, 25:1-8

    (Cui E J . 2007. Flow separation, vortex motion and flow control—Commemorate the 20th anniversary of the death of Professor Lu Shi-jia. Acta Aerodynamica Sinica, 25: 1-8).
    [2]
    邓进军, 苑伟政, 罗剑, 马炳和, 姜澄宇 . 2010. MEMS技术在流动分离主动控制中的应用. 西北工业大学学报, 28:381-387

    (Deng J J, Yuan W Z, Luo J, Ma B H, Jiang C Y . 2010. Two MEMS actuators for application-oriented active control of flow separation. Journal of Northwestern Polytechnical University, 28: 381-387).
    [3]
    付勇 . 2014. 可压缩性对脉冲射流控制流动分离的影响及其分析. [博士论文]. 南京: 南京航空航天大学

    (Fu Y . 2014. The effects and analysis of compressibility on pulsed jet control flow separation. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics).
    [4]
    高传强, 张伟伟, 叶正寅 . 2015. 基于谐振舵面的跨声速抖振抑制探究. 航空学报, 36:3208-3217

    (Gao C Q, Zhang W W, Ye Z Y . 2015. Study on transonic buffet suppression with flapping rudder. Acta Aeronautica et Astronautica Sinica, 36: 3208-3217).
    [5]
    耿子海, 史志伟, 金启刚 . 2016. 油膜干涉测量翼型壁面摩阻低速风洞试验技术. 空气动力学学报, 34:80-85

    (Geng Z H, Shi Z W, Jin Q G . 2016. Investigation of skin-friction measurements using oil-film interferometry on airfoil wall in low speed wind tunnel. Acta Aerodynamica Sinica, 34: 80-85).
    [6]
    韩忠华, 乔志德, 宋文萍 . 2007. 零质量射流推迟翼型失速的数值模拟. 航空学报, 28:1040-1046

    (Han Z H, Qiao Z D, Song W P . 2007. Numerical simulation of active flow control to airfoil stall using local synthetic jet. Acta Aeronautica et Astronautica Sinica, 28: 1040-1046).
    [7]
    黄勇, 王万波, 黄宗波, 张鑫, 王勋年, 沈志洪 . 2011. 等离子体对翼型流动分离控制历程的PIV试验研究. 实验流体力学, 25:23-27

    (Huang Y, Wang W B, Huang Z B, Zhang X, Wang X N, Shen Z H . 2011. PIV measurement on airfoil flow separation control course by plasma actuation. Journal of Experiments in Fluid Mechanics, 25: 23-27).
    [8]
    黄湛, 王宏伟, 魏连风, 张淼, 程攀 . 2016. 基于荧光油膜的全局表面摩阻测量技术研究. 空气动力学学报, 34:373-378

    (Huang Z, Wang H W, Wei L F, Zhang M, Cheng P . 2016. Research of global skin friction measurement based on fluorescent oil film. Acta Aerodynamica Sinica, 34: 373-378).
    [9]
    李应红, 梁华, 马清源, 吴云, 宋慧敏, 武卫 . 2008. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验. 航空学报, 29:1429-1435

    (Li Y H, Liang H, Ma Q Y, Wu Y, Song H M, Wu W . 2008. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation. Acta Aeronautica et Astronautica Sinica, 29: 1429-1435).
    [10]
    李应红, 吴云, 张朴, 苏长兵, 宋慧敏 . 2008. 等离子体激励抑制翼型失速分离的实验研究. 空气动力学学报, 26:372-377

    (Li Y H, Wu Y, Zhang P, Su C B, Song H M . 2008. Experimental investigation on airfoil stall separation suppression by plasma actuation. Acta Aerodynamica Sinica, 26: 372-377).
    [11]
    李玉杰, 罗振兵, 邓雄, 孙健, 沈铮 . 2016. 合成双射流控制NACA0015翼型大攻角流动分离试验研究. 航空学报, 37:817-825

    (Li Y J, Luo Z B, Deng X, Sun J, Shen Z . 2016. Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator. Acta Aeronautica et Astronautica Sinica, 37: 817-825).
    [12]
    刘志勇, 张长丰, 代成果 . 2015. 表面摩擦应力油膜干涉测量技术在$Ma=8$的应用. 实验流体力学, 29:74-78

    (Liu Z Y, Zhang C F, Dai C G . 2015. Application of oil film interferometry technique at $Ma=8$. Journal of Experiments in Fluid Mechanics, 29: 74-78).
    [13]
    罗振兵, 夏智勋 . 2005. 合成射流技术及其在流动控制中应用的进展. 力学进展, 35:221-234

    (Luo Z B, Xia Z X . 2005. Advances in synthetic jet technology and applications in flow control. Advances in Mechanics, 35: 221-234).
    [14]
    史云龙 . 2015. 高超声速风洞模型表面摩阻测量技术研究. [博士论文]. 绵阳: 中国空气动力研究与发展中心

    (Shi Y L . 2015. The research of model skin friction measurement technology in hypersonic wind tunnel. [Master Thesis]. Mianyang: China Aerodynamics Research and Development Center).
    [15]
    王林, 罗振兵, 夏智勋, 刘冰, 邓雄 . 2012. 高速流场主动流动控制激励器研究进展. 中国科学: 技术科学, 42:1103-1119

    (Wang L, Luo Z B, Xia Z X, Liu B, Deng X . 2012. Review of actuators for high speed active flow control. Sci. China Tech. Sci., 42: 1103-1119).
    [16]
    王伟, 王克, 袁明磊 . 2013. 油膜干涉摩阻测量技术研究. 中国空气动力学会测控技术专委会第六届四次学术交流会论文集, 1549

    (Wang W, Wang K, Yuan M L . 2013. Research of skin friction measurement based on oil film interferometry technique. Proceedings of CARS 2013, 1549).
    [17]
    王勋年, 王万波, 黄勇, 张鑫, 黄宗波 . 2011. 介质阻挡放电等离子体对翼型流动分离控制的实验研究. 实验流体力学, 25:9-14

    (Wang X N, Wang W B, Huang Y, Zhang X, Huang Z B . 2011. Investigation of flow separation control on an airfoil using DBD plasma actuators. Journal of Experiments in Fluid Mechanics, 25: 9-14).
    [18]
    谢永慧, 屈焕成, Mohammad Moshfeghi, 高骥 . 2013. 合成射流对S809翼型不同攻角下流动分离控制的数值研究. 高等学校工程热物理第十九届全国学术会议,中国郑州

    (Xie Y H, Qu H C, Mohammad M, Gao J . 2013. Numerical investigation of S809 airfoil with synthetic jet actuator at different angles of attack// 19th National Academic Conference of Engineering Thermophysics in Colleges and Universities, Zhengzhou, China).
    [19]
    张攀峰, 王晋军 . 2008. 合成射流控制NACA0015翼型大攻角流动分离. 北京航空航天大学学报, 34:443-446

    (Zhang P F, Wang J J . 2008. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in recirculation region. Journal of Beijing University of Aeronautics and Astronautics, 34: 443-446).
    [20]
    张攀峰, 王晋军 . 2009. 孔口倾斜角对合成射流控制翼型流动分离的影响. 兵工学报, 30:1658-1662

    (Zhang P F, Wang J J . 2009. Effect of orifice inclined angle on flow control of the stalled airfoil with synthetic jet actuator. Acta Armamentarii, 30: 1658-1662).
    [21]
    Allan B G, Juang J, Raney D L, Seifert A, Pack L G, Brown D E. 2000. Closed-loop separation control using oscillatory flow excitation. ICASE report No. 2000-32.
    [22]
    Amitay M, Glezer A. 2002. Controlled transients of flow reattachment over stalled airfoils. Int. J. Heat Fluid Flow, 23:690-699.
    [23]
    Amitay M, Smith B L, Glezer A. 1998. Aerodynamic flow control using synthetic jet technology. AIAA Paper 98-0208.
    [24]
    Becker R, King R, Petz R, Nitsche W. 2007. Adaptive closed-loop separation control on a high-lift configuration using extremum seeking. AIAA J, 45:1382-1392.
    [25]
    Brown G L, Roshko A. 1974. On density effects and large structure in turbulent mixing layers. J. Fluid Mech. , 64:775-816.
    [26]
    Buren T V, Whalen E, Amitay M. 2016. Achieving a high-speed and Momentum synthetic jet actuator. J. Aerosp. Eng., 29:04015040.
    [27]
    Cao S L, Li Y, Zhang J Z, Yoshihiro D. 2019. Lagrangian analysis of mass transport and its influence on the lift enhancement in a flow over the airfoil with a synthetic jet. Aerosp. Sci. Tech., 86:11-20.
    [28]
    Choi B, Hong Y, Lee B, Kim M, Kim H J, Kim C. 2018. Adaptive flow separation control over an asymmetric airfoil. Int. J. Aeron. Space Sci., 19:305-315.
    [29]
    Collis S S, Joslin R D, Seifert A, Theofilis V. 2004. Issues in active flow control: Theory, control, simulation, and experiment. Prog. Aerosp. Sci., 40:237-289.
    [30]
    Dandois J, Garnier E, Sagaut P. 2007. Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech., 574:25-58.
    [31]
    Darabi A. 1995. The effect of oscillatory blowing on a stalling airfoil. [Master Thesis]. Tel Aviv University.
    [32]
    Darabi A. 2000. On the mechanism of forced flow reattachment. [PhD Thesis]. Tel Aviv University.
    [33]
    Deb D, Tao G. 2007. Adaptive compensation control of synthetic jet actuator arrays for airfoil virtual shaping. Journal of Aircraft, 44:616-626.
    [34]
    Evans S, Coull J, Hodson H, Haneef I. 2010. Minimizing the loss produced by a turbulent separation using vortex generator jets// 5th Flow Control Conference, Chicago, Illinois.
    [35]
    Gad-el-Hak M. 2001. Flow control: The future. Journal of Aircraft, 38:402-418.
    [36]
    Gilarranz J L, Traub L W, Rediniotis O K. 2005. A new class of synthetic jet actuators—Part II: Application to flow separation control. J. Fluids Eng., 127:377-387.
    [37]
    Glezer A, Amitay M. 2002. Synthetic jets. Ann. Rev. Fluid Mech., 34:503-529.
    [38]
    Goldstein M E, Hultgren L S. 1989. Boundary-layer receptivity to long-wave free-stream disturbances. Ann. Rev. Fluid Mech., 27:137-166.
    [39]
    Greenblatt D, Nishri B, Darabi A, Wygnanski I. 1999. Some factors affecting stall control with particular emphasis on dynamic stall. AIAA Paper 99-3504.
    [40]
    Greenblatt D, Wygnanski I. 2000. The control of flow separation by periodic excitation. Progress in Aerospace Science, 36:487-545.
    [41]
    Greenblatt D. 1999. Dynamic stall control by oscillatory excitation. [PhD Thesis]. Tel Aviv University.
    [42]
    Greenblatt D. 2005. Management of vortices trailing flapped wings via separation control. AIAA Paper 2005-0061.
    [43]
    Hasdai G. 1999. Delay of airfoil stall by periodic oscillatory excitation: NACA 0012. Final Year Research Report, Tel Aviv University.
    [44]
    Ho C M, Huang L S. 1982. Subharmonics and vortex merging in mixing layers. J. Fluid Mech., 119:119-142.
    [45]
    Ho C M, Huerre P. 1984. Perturbed free shear layers. Ann. Rev. Fluid Mech., 16:365-424.
    [46]
    Hong G. 2006. Effectiveness of micro synthetic jet actuator enhanced by flow instability on controlling laminar separation caused by adverse pressure gradient. Sensors and Actuators A, 132:607-615.
    [47]
    Hong G. 2012. Numerical investigation to forcing frequency and amplitude of synthetic jet actuators. AIAA J., 50:788-796.
    [48]
    Hsiao F B, Liu C F, Shyu J Y. 1990. Control of wall-separated flow by internal acoustic excitation. AIAA J., 28:1440-1446.
    [49]
    Kerstens W, Pfeiffer J, Williams D, King R, Colonius T. 2011. Closed-loop control of lift for longitudinal gust suppression at low Reynolds numbers. AIAA J., 49:1721-1728.
    [50]
    Kim S H, Hong W, Kim C. 2007. Separation control mechanism of airfoil using synthetic jet. J. Mech. Sci. Tech., 21:1367-1375.
    [51]
    Kim S H, Kim C. 2009. Separation control on NACA23012 using synthetic jet. Aerosp. Sci. Tech., 13:172-182.
    [52]
    Kim W, Kim C, Jin Jung K J. 2012. Separation control characteristics of synthetic jets depending on exit configuration. AIAA J., 50:559-570.
    [53]
    King R, Heinz N, Bauer M, Grund T, Nitsche W. 2013. Flight and wind-tunnel tests of closed-loop active flow control. Journal of Aircraft, 50:1605-1614.
    [54]
    LaTunia P M, Judith H, Chung-Sheng Y, Jerome H. 2008. Active flow control at low Reynolds numbers on a NACA0015 airfoil. AIAA Paper 2008-6407.
    [55]
    Lee C, Hong G, Ha Q P, Mallinson S G. 2003. A piezoelectrically actuated micro synthetic jet for active flow control. Sensors and Actuators A, 108:168-174.
    [56]
    Lee C, Kim J, Babcock D, Goodman R. 1997. Application of Neural Networks to turbulence control for drag reduction. Phys. Fluids, 9:1740-1747.
    [57]
    Luo Z B, Xia Z X, Liu B. 2006. New generation of synthetic jet actuators. AIAA J., 44:2418-2419.
    [58]
    Ma Y Y, Zhao Q J, Zhao G Q. 2019. New combinational active control strategy for improving aerodynamic characteristics of airfoil and rotor. Proc IMechE Part G: J Aerospace Engineering, 0:1-20.
    [59]
    Moshfeghi M, Hur N. 2017. Numerical study on the effects of a synthetic jet actuator on S809 airfoil aerodynamics at different flow regimes and jet flow angles. J. Mech. Sci. Tech., 31:1233-1240.
    [60]
    Nishri B. 1995. On the dominant mechanisms governing active control of separation. [PhD Thesis]. Tel Aviv: Tel Aviv University.
    [61]
    Oster D, Wygnanski I, Fiedler H. 1980. The forced mixing layer between parallel streams. J. Fluid Mech., 123:91-131.
    [62]
    Poisson-Quinton Ph. 1948. Theoretical and experimental research of boundary layer control// 7th Congress of Applied Mechanics, London.
    [63]
    Pooya Kabiri. 2012. Active flow control over a NACA0015 airfoil by synthetic jet actuators. [PhD Thesis]. Department of Mechanical and Aeronautical Engineering, Clarkson University.
    [64]
    Régis Duvigneau, Michel Visonneau. 2006. Simulation and optimization of stall control for an airfoil with a synthetic jet. Aerosp. Sci. Tech., 10:279-287.
    [65]
    Schubauer G B, Skramstad H K. 1948. Laminar boundary layer oscillations and transition on a flat plate. NACA Rep. 909.
    [66]
    Seifert A, Bachar T, Koss D, Shepshelovich M, Wygnanski I. 1993. Oscillatory blowing, a tool to delay boundary-layer separation. AIAA J., 31:2052-2060.
    [67]
    Seifert A, Darabi A, Nishri B, Wygnanski I. 1993. The effects of forced oscillations on the performance of airfoils. AIAA Paper 93-3264.
    [68]
    Seifert A, Darabi A, Wygnanski I. 1996. On the delay of airfoil stall by periodic excitation. Journal of Aircraft, 33:691-699.
    [69]
    Seifert A, Eliahu S, Greenblatt D, Wygnanski I. 1998. Use of piezoelectric actuators for airfoil separation control. AIAA J., 36:1535-1537.
    [70]
    Seifert A, Greenblatt D, Wygnanski I. 2004. Active separation control: An overview of Reynolds and Mach numbers effects. Aerosp. Sci. Tech., 8:569-582.
    [71]
    Seifert A, Pack L G. 1999 a. Oscillatory control of separation at high Reynolds numbers. AIAA J., 37:1062-1071.
    [72]
    Seifert A, Pack L G. 1999b. Oscillatory excitation of unsteady compressible flows over airfoils at flight Reynolds numbers. AIAA Paper 99-0925.
    [73]
    Shahrabi A F. 2019. The control of flow separation: Study of optimal open loop parameters. Phys. Fluids, 31:035104.
    [74]
    Smith J H B. 1986. Vortex flows in aerodynamics. Ann. Rev. Fluid Mech., 18:211-242.
    [75]
    Staats M, Nitsche W, Steinberg S J, King R. 2017. Closed-loop active flow control of a non-steady flow field in a highly-loaded compressor cascade. CEAS Aeronaut J, 8:197-208.
    [76]
    Taylor K, Amitay M. 2015. Dynamic stall process on a finite span model and its control via synthetic jet actuators. Phys. Fluids, 27:077104.
    [77]
    Tuck A, Soria J. 2004. Active flow control over a NACA0015 airfoil using a ZNMF jet// 15th Australasian Fluid Mechanics Conference, Sydney, Australia.
    [78]
    Winant C D, Browand F K. 1974. Vortex pairing: The mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech., 63:237-256
    [79]
    Wu X H, Wu J Z, Wu M. 1991. Guiding principles for vortex flow controls. AIAA Paper 91-0617.
    [80]
    Wygnanski I, Petersen R A. 1987. Coherent motion in excited free shear flows. AIAA J., 25:201-213.
    [81]
    Yen J, Ahmed N A. 2013. Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. J. Wind Eng. Ind. Aerodyn., 114:12-17.
    [82]
    You D, Moin P. 2008. Active control of flow separation over an airfoil using synthetic jets. J. Fluids Struc., 24:1349-1357.
    [83]
    Zhang P F, Yan B, Dai C F. 2012. Lift enhancement method by synthetic jet circulation control. Sci. China Tech. Sci., 55:2585-2592.
    [84]
    Zhao G Q, Zhao Q J. 2014. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil. Chin. J. Aeron., 27:1051-1061.
    [85]
    Zhao G Q, Zhao Q J, Gu Y S, Chen X. 2016. Experimental investigations for parametric effects of dual synthetic jets on delaying stall of a thick airfoil. Chin. J. Aeron., 29:346-357.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1807) PDF downloads(242) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return