Citation: | CHEN Honglei, LIU Zenghua, LI Ziming, WU Bin, HE Cunfu. Application of finite element method in ultrasonic guided waves testing technique[J]. Advances in Mechanics, 2020, 50(1): 202009. doi: 10.6052/1000-0992-18-019 |
[1] |
何存富, 吴斌, 范晋伟 . 2001. 超声柱面导波技术及其应用研究进展. 力学进展, 31:203-214
(He C F, Wu B, Fan J W . 2001. Advances in ultrasonic cylindrical guided waves techniques and their applications. Adv. Mech., 31: 203-214).
|
[2] |
何存富, 郑明方, 吕炎, 邓鹏 . 2016. 超声导波检测技术的发展、应用与挑战. 仪器仪表学报, 37:1713-1735
(He C F, Zheng M F, Lu Y, Deng P . 2016. Development, application and challenges in ultrasonic guided waves testing technology. Chin. J. Sci. Instru, 37: 1713-1735).
|
[3] |
刘瑶璐, 胡宁, 邓明晰, 赵友选 . 2017. 板壳结构中的非线性兰姆波. 力学进展, 47:507-537
(Liu Y L, Hu N, Deng M X, Zhao Y X . 2017. Nonlinear Lamb waves in plate/shell structures. Adv. Mech., 47: 507-537).
|
[4] |
刘增华, 谢穆文, 钟栩文, 龚裕 . 2017. 超声导波电磁声换能器的研究进展. 北京工业大学学报, 43:192-202
(Liu Z H, Xie M W, Zhong X W, Gong Y . 2017. Research progress of electromagnetic acoustic transducers for ultrasonic guided waves inspection. J. Beijing Univ. Technol., 43: 192-202).
|
[5] |
许伯强, 刘洪凯, 徐桂东, 徐晨光 . 2014. 基于应力-位移混合有限元法的激光超声数值模拟. 激光技术, 38:230-235
(Xu B Q, Liu H K, Xu G F, Xu C G , 2014. Mixed stress-displacement finite element method for laser-generated ultrasound. Laser Technol., 38: 230-235).
|
[6] |
Abedian A, Parvizian J, Duster A, Rank E. 2014. Finite cell method compared to h-version finite element method for elasto-plastic problems. Appl. Math. Mech. -Engl. Ed., 35:1239-1248.
|
[7] |
Agrahari J, Kapuria S. 2016. Effects of adhesive, host plate, transducer and excitation parameters on time reversibility of ultrasonic Lamb waves. Ultrasonics, 70:147-157.
|
[8] |
Ainsworth M. 2004. Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. , 42:553-575.
|
[9] |
Ainsworth M, Wajid A H. 2010. Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM J. Numer. Anal., 48:346-371.
|
[10] |
Allaire G, Jouve F, Toader A. 2003. Structural optimization using sensitivity analysis and a level-set method. J. Comp. Phys., 194:363-393.
|
[11] |
Alleyne D, Cawley P. 1991. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am., 89:1159-1168.
|
[12] |
Ashigwuike E C, Ushie O J, Mackay R, Balachandran W. 2015. A study of the transduction mechanisms of electromagnetic acoustic transducers (EMATs) on pipe steel materials. Sens. Actuator A-Phys., A229:154-165.
|
[13] |
Augustyniak M, Usarek Z. 2016. Finite element method applied in electromagnetic NDTE: A review. J. Nondestruct. Eval., 35:1-15.
|
[14] |
Avdiaj S, Setina J, Syla N. 2009. Modeling of the piezoelectric effect using the finite-element method. Mater. Tehnol., 43:283-291.
|
[15] |
Babu?ka I, Ihlenburg F, Strouboulis T, Gangaraj S K. 1997 a. A posteriori error estimation for finite element solutions of Helmholtz equation: Part I The quality of local indicators and estimators. Int. J. Numer. Methods Eng., 40:3443-3462.
|
[16] |
Babu?ka I, Ihlenburg F, Strouboulis T, Gangaraj S K. 1997 b. A posteriori error estimation for finite element solutions of Helmholtz equation: part II estimation of the pollution error. Int. J. Numer. Methods Eng., 40:3883-3900.
|
[17] |
Babu?ka I, Osborn J E. 1983. Generalized finite element methods their performance and their relation to mixed methods. SIAM J. Numer. Anal., 20:510-536.
|
[18] |
Babu?ka I M, Sauter S A. 1997. Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal., 34:2392-2423.
|
[19] |
Basri R, Chiu W. 2004. Numerical analysis on the interaction of guided Lamb waves with a local elastic stiffness reduction in quasi-isotropic composite plate structures. Compos. Struct., 66:87-99.
|
[20] |
Bathe K J, Wilson E L. 1973. Stability and accuracy analysis of direct integration methods. Earthq. Eng. Struct. D., 1:283-291.
|
[21] |
Bayliss A, Goldstein C, Turkel E. 1985. On accuracy conditions for the numerical computations of waves. J. Comput. Phys., 59:396-404.
|
[22] |
Bartoli I, Marzani A, di Scalea F L, Viola E. 2006. Modeling wave propagation in damped waveguides of arbitrary cross-section. J. Sound Vibr., 295:685-707.
|
[23] |
Belytschko T, Ong J S, Liu W K, Kennedy J M. 1984. Hourglass control in linear and nonlinear problems. Comput. Meth. Appl. Mech. Eng., 43:251-276.
|
[24] |
Benjeddou A. 2000. Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct., 76:347-363.
|
[25] |
Benmeddour F, Treyssede F, Laguerre L. 2011. Numerical modeling of guided wave interaction with non-axisymmetric cracks in elastic cylinders. Int. J. Solids Struct., 48:764-774.
|
[26] |
Bhuiyan M Y, Shen Y F, Giurgiutiu V. 2017. Interaction of Lamb waves with rivet hole cracks from multiple directions. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., 231:2974-2987.
|
[27] |
Bhuiyan Y, Shen Y F, Giurgiutiu V. 2016. Ultrasonic inspection of multiple-rivet-hole lap joint cracks using global analysis with local finite element approach// SPIE Conference on Health Monitoring of Structural and Biological Systems, March 21-24, 2016, Las Vegas, Clark, USA.
|
[28] |
Blanloeuil P, Meziane A, Bacon C. 2014. Numerical study of the nonlinear interaction between a crack and elastic waves under an oblique incidence. Wave Motion, 51:425-437.
|
[29] |
Broda D, Staszewski W, Martowicz A, Uhl T. 2014. Modelling of nonlinear crack-wave interactions for damage detection based on ultrasound—A review. J. Sound Vibr., 333:1097-1118.
|
[30] |
Cantwell C, Moxey D, Comerford A, Bolis A. 2015. Nektar++: An open-source spectral hp element framework. Comput. Phys. Commun., 192:205-219.
|
[31] |
Capuano G, Ruzzene M, Rimoli J J. 2018. Modal-based finite elements for efficient wave propagation analysis. Finite Elem. Anal. Des., 145:10-19.
|
[32] |
Casadei F, Rimoli J, Ruzzene M. 2014. Multiscale finite element analysis of elastic wave scattering from localized defects. Finite Elem. Anal. Des., 88:1-15.
|
[33] |
Casadei F, Rimoli J, Ruzzene M. 2016. Multiscale finite element analysis of wave propagation in periodic solids. Finite Elem. Anal. Des., 108:81-95.
|
[34] |
Casadei F, Rimoli J J, Ruzzene M. 2013. A geometric multiscale finite element method for the dynamic analysis of heterogeneous solids. Comput. Meth. Appl. Mech. Eng., 263:56-70.
|
[35] |
Casadei F, Ruzzene M. 2012. Frequency domain bridging method for wave propagation simulations in damaged structures. Wave Motion, 49:605-616.
|
[36] |
Cawley P, Ada R D. 1979. The location of defects in structures from measurements of natural frequencies. J. Strain Anal., 14:49-57.
|
[37] |
Cawley P. 2018. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit., 17:1225-1244.
|
[38] |
Chakraborty A, Gopalakrishnan S. 2003. A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids Struct., 40:2421-2448.
|
[39] |
Chaudhry Z, Rogers C. 1994. The pin-force model revisited. J. Intell. Mater. Syst. Struct., 5:347-354.
|
[40] |
Chen J, Rostami J, Tse P W, Wan X. 2017. The design of a novel mother wavelet that is Tailor-made for continuous wavelet transform in extracting defect-related features from reflected guided wave signals. Measurement, 110:176-191.
|
[41] |
Chen Y Y, Wu R X, Wang L H, Jing H M, Du J K, Hu Y T, Li G Q, Wang J. An analysis of nonlinear thickness-shear vibrations of quartz crystal plates using the two-dimensional finite element method. Mech. Adv. Mater. Struct., 25:395-406.
|
[42] |
Chillara V K, Lissenden C J. 2014. Nonlinear guided waves in plates A numerical perspective. Ultrasonics, 54:1553-1558.
|
[43] |
Chleboun J, Solin P. 2013. On optimal node and polynomial degree distribution in one-dimensional hp-FEM. Computing, 95:75-88.
|
[44] |
Christides S, Barr A. 1984. One-dimensional theory of cracked Bernoulli-Euler beams. Int. J. Mech. Sci., 26:639-648.
|
[45] |
Chronopoulos D. 2018. Calculation of guided wave interaction with nonlinearities and generation of harmonics in composite structures through a wave finite element method. Compos. Struct., 186:375-384.
|
[46] |
Cottrell J A, Hughes T J R, Reali A. 2007. Studies of refinement and continuity in isogeometric structural analysis. Comput. Methods Appl. Mech. Engrg., 196:4160-4183.
|
[47] |
Dauksher W, Emery A F. 1999. An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation. Int. J. Numer. Methods Eng., 45:1099-1113.
|
[48] |
Demma A, Cawley P, Lowe M, Pavlakovic B. 2005. The effect of bends on the propagation of guided waves in pipes. J. Press. Vessel Technol. -Trans. ASME, 127:328-335.
|
[49] |
Devonshire A F. 1954. Theory of ferroelectrics. Adv. Phys., 3:85-130.
|
[50] |
Dhayalan R, Balasubramaniam K. 2010. A hybrid finite element model for simulation of electromagnetic acoustic transducer (EMAT) based plate waves. NDT E Int., 43:519-526.
|
[51] |
Dhayalan R, Kumar A, Rao B P. 2018. Numerical analysis of frequency optimization and effect of liquid sodium for ultrasonic high frequency guided wave inspection of core supportstructure of fast breeder reactor. Ann. Nucl. Energy, 115:233-242.
|
[52] |
Doyle J. 1988. A spectrally formulated finite element for longitudinal wave propagation. Int. J. of Anal. and Exp. Mod. Anal., 3:1-5.
|
[53] |
Droz C, Lainé J, Ichchou M, Inquiété G. 2014. A reduced formulation for the free-wave propagation analysis in composite structures. Compos. Struct., 113:134-144.
|
[54] |
Duan W, Kirby R. 2015. A numerical model for the scattering of elastic waves from a non-axisymmetric defect in a pipe. Finite Elem. Anal. Des., 100: 28-40.
|
[55] |
Duczek S, Joulaian M, Düster A, Gabbert U. 2014. Numerical analysis of Lamb waves using the finite and spectral cell methods. Int. J. Numer. Methods Eng., 99: 26-53.
|
[56] |
Duczek S, Gabbert U. 2013. Anisotropic hierarchic finite elements for the simulation of piezoelectric smart structures. Eng. Comput., 30:682-706.
|
[57] |
Duhamel D, Mace B R, Brennan M J. 2006. Finite element analysis of the vibrations of waveguides and periodic structures. J. Sound Vibr., 294:205-220.
|
[58] |
Düster A, Broker H, Rank E. 2001. The p-version of the finite element method for three-dimensional curved thin walled structures. Int. J. Numer. Methods Eng., 52: 673-703.
|
[59] |
Evans J A, Bazilevs Y, Babu?ka I, Hughes T J. 2009. n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric. Comput. Methods Appl. Mech. Engrg., 198: 1726-1741.
|
[60] |
Fan Y, Collet M, Ichchou M, Li L. 2016. Energy flow prediction in built-up structures through a hybrid finite element/wave and finite element approach. Mech. Syst. Signal Proc., 66-67:137-158.
|
[61] |
Flanagan D P, Belytschko T. 1981. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng., 17:679-706.
|
[62] |
Friswell M I, Penny J E T. 2002. Crack modeling for structural health monitoring. Struct. Health Monit., 1:139-148.
|
[63] |
Furukawa T, Komura I, Language O. 2011. Simulation and visualization of guided wave propagation by large-scale 3D FEM. E-J. Adv. Maint., 3:92-101.
|
[64] |
Galán J M, Abascal R. 2002. Numerical simulation of Lamb wave scattering in semi-infinite plates. Int. J. Numer. Meth. Engng., 53:1145-1173.
|
[65] |
Gaudenzi P, Bathe K. 1995. An iterative finite element procedure for the analysis of piezoelectric continua. J. Intell. Mater. Syst. Struct., 6:266-273.
|
[66] |
Ghandi K, Hagood N W. 1997. A hybrid finite element model for phase transitions in nonlinear electro-mechanically coupled material// Conference on Mathematics and Control in Smart Structures - Smart Structures and Materials. Mar 03-06, 1997, San Diego, California, USA.
|
[67] |
Gravenkamp H, Natarajan S, Dornisch W. 2017. On the use of NURBS-based discretizations in the scaled boundary finite element method for wave propagation problems. Comput. Meth. Appl. Mech. Eng., 315:867-880.
|
[68] |
Gresil M, Giurgiutiu V. 2013. Time-domain hybrid global-local concept for guided-wave propagation with piezoelectric wafer active sensor. J. Intell. Mater. Syst. Struct., 24:1897-1911.
|
[69] |
Gresil M, Poohsai A, Chandarana N. 2016. Guided wave propagation and damage detection in composite pipes using piezoelectric sensors// 6th Asia-Pacific Workshop on Structural Health Monitoring. Dec 07-09, 2016, Hobart, Australia.
|
[70] |
Guan R, Lu Y, Duan W, Wang X. 2017. Guided waves for damage identification in pipeline structures: A review. Struct. Control. Health Monit., 24:1-17.
|
[71] |
Guddati M N, Yue B. 2004. Modified integration rules for reducing dispersion error in finite element methods. Comput. Methods Appl. Mech. Engrg., 193:275-287.
|
[72] |
Guo H, Zheng B, Liu H. 2017. Numerical simulation and experimental research on interaction of micro-defects and laser ultrasonic signal. Opt. Laser Technol., 96:58-64.
|
[73] |
Ha S, Chang F. 2010. Adhesive interface layer effects in PZT-induced Lamb wave propagation. Smart Mater. Struct., 19:25006.
|
[74] |
Ha S, Chang F. 2010. Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates. Smart Mater. Struct., 19:15015.
|
[75] |
Ham S, Bathe K. 2012. A finite element method enriched for wave propagation problems. Comput. Struct., 94-95:1-12.
|
[76] |
Han X, Liu G, Xi Z, Lam K. 2001. Transient waves in a functionally graded cylinder. Int. J. Solids Struct., 38:3021-3037.
|
[77] |
Harding C, Hugo G, Bowles S. 2006. Model-assisted POD for ultrasonic detection of cracks at fastener holes// 32nd Annual Review of Process in Quantitative Nondestructive Evaluation, July 31-August 03, 2005, Brunswick, Cumberland, USA.
|
[78] |
Hayashi T, Endoh S. 2000. Calculation and visualization of Lamb wave motion. Ultrasonics, 38:770-773.
|
[79] |
He S, Ng C. 2015. Analysis of mode conversion and scattering of guided waves at cracks in isotropic beams using a time-domain spectral finite element method. Electron. J. Struct. Eng., 14:20-32.
|
[80] |
Hedayatrasa S, Bui T Q, Zhang C, Lim C W. 2014. Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements. J. Comput. Phys., 258:381-404.
|
[81] |
Heinlein S, Cawley P, Vogt T. 2018. Reflection of torsional T(0, 1) guided waves from defects in pipe bends. NDT E Int., 93:57-63.
|
[82] |
Hong T K, Kennett B L N. 2002. On a wavelet-based method for the numerical simulation of wave propagation. J. Comput. Phys., 183:577-622.
|
[83] |
Hosseini S M H, Kharaghani A, Kirsch C, Gabbert U. 2013. Numerical simulation of Lamb wave propagation in metallic foam sandwich structures: a parametric study. Compos. Struct., 97:387-400.
|
[84] |
Hosseini S M H, Gabbert U. 2013. Numerical simulation of the Lamb wave propagation in honeycomb sandwich panels: A parametric study. Compos. Struct., 97:189-201.
|
[85] |
Hosten B, Castaings M. 2006. FE modeling of Lamb mode diffraction by defects in anisotropic viscoelastic plates. NDT E Int., 39:195-204.
|
[86] |
Hosten B, Moreau L, Castaings M. 2007. Signal processing to quantify the reflection/refraction of guided waves by a defect in viscoelastic plates. J. Acoust. Soc. Am., 894:587-594.
|
[87] |
Ichchou M, Akrout S, Mencik J. 2007. Guided waves group and energy velocities via finite elements. J. Sound Vibr., 305:931-944.
|
[88] |
Idesman A V, Schmidt M, Foley J R. 2011. Accurate finite element modeling of linear elastodynamics problems with the reduced dispersion error. Comput. Mech., 47:555-572.
|
[89] |
Ihlenburg F, Babuska I. 1995. Finite element solution of the Helmholtz equation with high wave number Part I: The $h$-version of the FEM. Comput. Math. Appl., 30:9-37.
|
[90] |
Ihlenburg F, Babuska I. 1997. Finite element solution of the Helmholtz equation with high wave number Part II: The $h$-$p$ version of the FEM. SIAM J. Numer. Anal., 34:315-358.
|
[91] |
Jang I, Park I, Lee U. 2014. Guided waves in a Timoshenko beam with a bonded composite patch frequency domain spectral element modeling and analysis. Compos. Pt. B-Eng., 60:248-260.
|
[92] |
Jensen S M. 1996. High convergence order finite elements with with lumped mass matrix. Int. J. Numer. Methods Eng., 39:1879-1888.
|
[93] |
Jia X, Ouyang Q, Zhang X, Jiang X. 2017. An improved design of the spiral-coil EMAT for enhancing the signal amplitude. Sensors, 17: 1106(12pp).
|
[94] |
Joglekar D, Mitra M. 2016. Analysis of flexural wave propagation through beams with a breathing crack using wavelet spectral finite element method. Mech. Syst. Signal Proc., 76:576-591.
|
[95] |
Joulaian M, Duczek S, Gabbert U, Düster A. 2014. Finite and spectral cell method for wave propagation in heterogeneous materials. Comput. Mech., 54:661-675.
|
[96] |
Kalkowski M K, Rustighi E, Waters T P. 2016. Modelling piezoelectric excitation in waveguides using the semi-analytical finite element method. Comput. Struct., 173:174-186.
|
[97] |
Kawashima K. 1976. Theory and numerical calculation of the acoustic field produced in metal by an electromagnetic ultrasonic transducer. J. Acoust. Soc. Am., 60:1089-1099.
|
[98] |
Kessentini A, Taktak M, Souf M B, Bareille O. 2016. Computation of the scattering matrix of guided acoustical propagation by the wave finite Element approach. Appl. Acoust., 108:92-100.
|
[99] |
Khalili P, Cawley P. 2015. Excitation of single mode Lamb waves at high frequency thickness products. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63:303-312.
|
[100] |
Kim Y, Ha S, Chang F K. 2008. Time-domain spectral element method for built-in piezoelectric-actuator-induced Lamb wave propagation analysis. AIAA J. , 46:591-600.
|
[101] |
Komatitsch D, Michéa D, Erlebacher G. 2009. Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA. J. Parallel Distrib. Comput., 69:451-460.
|
[102] |
Komatitsch D, Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int., 139:806-822.
|
[103] |
Komatitsch D, Vilot J. 1998. The spectral element methodan efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Amer., 88:368-392.
|
[104] |
Koshiba M, Karakida S, Suzuki M. 1984. Finite-Element analysis of Lamb wave scattering in an elastic plate waveguide. IEEE T. Son. and Ultrason., 3:18-24.
|
[105] |
Koshiba M, Morita H, Suzuki M. 1981. Finite element analysis of discontinuity problem of SH modes in an elastic plate waveguide. Electron. Lett., 17:480-482.
|
[106] |
Kudela P, Ostachowicz W. 2009. 3D time-domain spectral elements for stress waves modelling// 7th International Conference on Modern Practice in Stress and Vibration Analysis, Sep 08-10, 2009, Murray Edwards Coll, Cambridge, England.
|
[107] |
Kumar M, Pandit S. 2012. Wavelet transform and wavelet based numerical methods: An introduction. Int. J. nonlinear Sci., 13:325-345.
|
[108] |
Lanzara G, Yoon Y, Kim Y, Chang F. 2009. Influence of interface degradation on the performance of piezoelectric actuators. J. Intell. Mater. Syst. Struct., 20:1699-1710.
|
[109] |
Larcher N, Takarli M, Angellier N, Petit C. 2015. Towards a viscoelastic mechanical characterization of asphalt materials by ultrasonic measurements. Mater. Struct., 48:1377-1388.
|
[110] |
Lee J H, Burger C P. 1995. Finite element modeling of laser-generated Lamb waves. Comput. Struct., 54:499-514.
|
[111] |
Lee R, Andreas C C. 1992. A study of discretization error in the finite-element approximation of wave solutions. IEEE Trans. Antennas Propag., 40:542-549.
|
[112] |
Lee U, Kim D, Park I. 2013. Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: Spectral element method. J. Sound Vibr., 332:1585-1609.
|
[113] |
Lee Y, Chung M. 2000. A study on crack detection using eigenfrequency test data. Comput. Struct., 77:327-342.
|
[114] |
Li B, Chen X. 2014. Wavelet-based numerical analysis: A review and classification. Finite Elem. Anal. Des., 81:14-31.
|
[115] |
Liu G R. 2002. A combined finite elementstrip element method for analyzing elastic wave scattering by cracks and inclusions in laminates. Comput. Mech., 28:76-82.
|
[116] |
Liu G R, Tani J, Ohyoshi T, Watanabe K. 1991 a. Transient waves in anisotropic laminated plates. Part 1: Theory. J. Vib. Acoust. -Trans. ASME, 113:230-234.
|
[117] |
Liu G R, Tani J, Ohyoshi T, Watanabe K. 1991 b. Transient waves in anisotropic laminated plates. Part 2: Application. J. Vib. Acoust. -Trans. ASME, 113:235-239.
|
[118] |
Liu P, Nazirah A W, Sohn H. 2016. Numerical simulation of damage detection using laser-generated ultrasound. Ultrasonics, 69:248-258.
|
[119] |
Liu W P, Giurgiutiu V. 2007. Finite element simulation of piezoelectric wafer active sensors for structural health monitoring with coupled-filed elements// Conference on Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems, March 19-22, 2007, San Diego, California, USA.
|
[120] |
Liu W, Hong J. 2015. Modeling of three-dimensional Lamb wave propagation excited by laser pulses. Ultrasonics, 55:113-122.
|
[121] |
Liu Z H, Zhao J C, Wu B. 2010. Configuration optimization of magnetostrictive transducers for longitudinal guided wave inspection in seven-wire steel strands. NDT E Int., 43:484-492.
|
[122] |
Liu Z H, Fan J W. 2015. Torsional mode magnetostrictive patch transducer array employing a modified planar solenoid array coil for pipe inspection. NDT E Int., 69:9-15.
|
[123] |
Liu Z H, Hu Y N, Fan J W. 2016. Longitudinal mode magnetostrictive patch transducer array employing a multi-splitting meander coil for pipe inspection. NDT E Int., 79:30-37.
|
[124] |
Liu Z H, Hu Y N, Xie M W. 2018 a. Development of omnidirectional $A_{0}$ mode EMAT employing a concentric permanent magnet pairs with opposite polarity for plate inspection. NDT E Int., 94:13-21.
|
[125] |
Liu Z H, Zhang Y C. 2018 b. A direction-tunable shear horizontal mode array magnetostrictive patch transducer. NDT E Int., 97:20-31.
|
[126] |
Loveday P W. 2007. Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54:2045-2051.
|
[127] |
Loveday P W. 2008. Simulation of piezoelectric excitation of guided waves using waveguide finite elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55:2038-2045.
|
[128] |
Lucena R L, D Santos. 2016. Structural health monitoring using time reversal and cracked rod spectral element. Mech. Syst. Signal Proc., 79:86-98.
|
[129] |
Mace B R, Manconi E. 2008. Modelling wave propagation in two-dimensional structures using finite element analysis. J. Sound Vib., 318:884-902.
|
[130] |
Marzani A. 2008. Time-transient response for ultrasonic guided waves propagating in damped cylinders. Int. J. Solids Struct., 45:6347-6368.
|
[131] |
Gresil M, Giurgiutiu V. 2015. Prediction of attenuated guided waves propagation in carbon fiber composites using Rayleigh damping model. J. Intell. Mater. Syst. Struct., 26:2151-2169.
|
[132] |
Mead D J. 1996. Wave propagation in continuous periodic structures research contributions from Southampton. J. Sound Vibr., 190:495-524.
|
[133] |
Mead D J. 1975 a. Wave-propagation and natural modes in periodic systems. 1. Mono-coupled systems. J. Sound Vibr., 40:1-18.
|
[134] |
Mead D J. 1975 b. Wave-propagation and natural modes in periodic systems. 2. Multi-coupled systems, with and without damping. J. Sound Vibr., 40:19-39.
|
[135] |
Mitra M, Gopalakrishnan S. 2016. Guided wave based structural health monitoring: A review. Smart Mater. Struct., 25:53001.
|
[136] |
Mitra M, Gopalakrishnan S. 2005. Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides. Int. J. Solids Struct., 42:4695-4721.
|
[137] |
Moll J, Schulte R T, Hartmann B, Fritzen C. 2010. Multi-site damage localization in anisotropic plate-like structures using an active guidedwave structural health monitoring system. Smart Mater. Struct., 19:45022.
|
[138] |
Moll J, Golub M V, Glushkov E, Glushkova N. 2012. Non-axisymmetric Lamb wave excitation by piezoelectric wafer active sensors. Sensors Actuat. A-Phys., 174:173-180.
|
[139] |
Moreau L, Caleap M, Velichko A, Wilcox P D. 2011. Scattering of guided waves by through-thickness cavities with irregular shapes. Wave Motion, 48:586-602.
|
[140] |
Mulder W. 1996. A comparison between higher-order finite elements and finite differences for solving the wave equation// 2nd ECCOMAS Conference on Numerical Methods in Engineering, Sep 09-13, 1996, Paris, France.
|
[141] |
Narayanan D B, Beskos D E. 1978. Use of dynamic influence coefficients in forced vibration problems with the aid of fast Fourier transform. Comput. Struct., 9:145-150.
|
[142] |
Ng C, Veidt M, Rose L, Wang C. 2012. Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates. J. Sound Vibr., 331:4870-4883.
|
[143] |
Nieuwenhuis H, Neumann J, Greve W, Oppenheim J. 2005. Generation and detection of guided waves using PZT wafer transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52:2103-2111.
|
[144] |
Ogi H. 1997. Field dependence of coupling efficiency between electromagnetic field and ultrasonic bulk waves. J. Appl. Phys., 82:3940-3949.
|
[145] |
Oh O H, Sun K H, Kim Y Y. 2013. Time-harmonic finite element analysis of guided waves generated by magnetostrictive patch transducers. Smart Mater. Struct., 22:85007.
|
[146] |
Ohara Y, Yamamoto S, Mihara T, Yamanaka K. 2008. Ultrasonic evaluation of closed cracks using subharmonic phased array. Jpn. J. Appl. Phys., 47:3908-3915.
|
[147] |
Ong W H, Rajic N, Chiu W K, Rosalie C. 2018. Lamb wave-based detection of a controlled disbond in a lap joint. Struct. Health Monit., 17:668-683.
|
[148] |
Ostachowicz W M. 2008. Damage detection of structures using spectral finite element method. Comput. Struct., 86:454-462.
|
[149] |
Ostachowicz W, Kudela P, Krawczuk M. Guided waves in structures for SHM: The time-domain spectral element method. Hoboken: John Wiley & Sons, 2012: 47-92.
|
[150] |
Pahlavan L, Mota M M, Blacquière G. 2016. Influence of asphalt on fatigue crack monitoring in steel bridge decks using guided waves. Constr. Build. Mater., 120:593-604.
|
[151] |
Parvizian J, Düster A, Rank E. 2007. Finite cell method: $h$- and $p$-extension for embedded domain problems in solid mechanics. Comput. Mech., 41:121-133.
|
[152] |
Patera A T. 1984. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys., 54:468-488.
|
[153] |
Pei C, Demachi K, Zhu H, Fukuchi T. 2012. Inspection of cracks using laser-induced ultrasound with shadow method: Modeling and validation. Opt. Laser Technol., 44:860-865.
|
[154] |
Peng H, Meng G, Li F. 2009. Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection. J. Sound Vibr., 320:942-954.
|
[155] |
Radecki R, Su Z, Cheng L, Packo P. 2018. Modelling nonlinearity of guided ultrasonic waves in fatigued materials using a nonlinear local interaction simulation approach and a spring model. Ultrasonics, 84:272-289.
|
[156] |
Ranjbar M, Mashayekhi M, Parvizian J, Düster A. 2014. Using the finite cell method to predict crack initiation in ductile materials. Comput. Mater. Sci., 82:427-434.
|
[157] |
Rauter N, Lammering R. 2018. A constitutive model for the analysis of second harmonic Lamb waves in unidirectional composites. Int. J. Solids Struct., 135:184-196.
|
[158] |
Rekatsinas C S, Saravanos D A. 2017. A cubic spline layerwise time domain spectral FE for guided wave simulation in laminated composite plate structures with physically modeled active piezoelectric sensors. Int. J. Solids Struct., 124:176-191.
|
[159] |
Remo R, Frederic C, Peter N B, Peter C. 2010. Quantitative modeling of the transduction of electromagnetic acoustic transducers operating on ferromagnetic media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57:2808-2817.
|
[160] |
Ren B, Lissenden C J. 2018. Modeling guided wave excitation in plates with surface mounted piezoelectric elements coupled physics and normal mode expansion. Smart Mater. Struct., 27:45014.
|
[161] |
Renno J M, Mace B R. 2013. Calculation of reflection and transmission coefficients of joints using a hybrid finite element/wave and finite element approach. J. Sound Vib., 332:2149-2164.
|
[162] |
Ribichini R, Cegla F, Nagy P, Cawley P. 2011. Experimental and numerical evaluation of electromagnetic acoustic transducer performance on steel materials. NDT E Int., 45:32-38.
|
[163] |
Ribichini R, Nagy P, Ogi H. 2012. The impact of magnetostriction on the transduction of normal bias field EMATs. NDT E Int., 51:8-15.
|
[164] |
Rong X Y, Lin P Y, Liu J Y, Yang T H. 2017. A new approach of waveform interpretation applied in nondestructive testing of defects in rock bolts based on mode identification. Math. Probl. Eng., 2017: 1-13.
|
[165] |
Rose J L. 2018. Aspects of a hybrid analytical finite element method approach for ultrasonic guided wave inspection design. ASME J. Nondestr. Eval., Diagn. Prognostics Eng. Syst., 1:11001.
|
[166] |
Rose J L. 2011. The upcoming revolution in ultrasonic guided waves// Conference on Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, March 07-10, 2011, San Diego, California, USA.
|
[167] |
Rouge C, Lhémery A, Aristégui C. 2014. Frequency spectra of magnetostrictive and Lorentz forces generated in ferromagnetic materials by a CW excited EMAT// 12th Annual Meeting on Anglo-French Physical Acoustics, January 16-18, 2013, Frejus, France.
|
[168] |
Rucka M. 2010. Experimental and numerical study on damage detection in an L-joint using guided wave propagation. J. Sound Vibr., 329:1760-1779.
|
[169] |
Ruess M, Tal D, Trabelsi N, Yosibash Z. 2012. The finite cell method for bone simulations: Verification and validation. Biomech. Model. Mechanobiol., 11:425-437.
|
[170] |
Saravanos D, Heyliger P, Hopkins D. 1997. Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int. J. Solids Struct., 34:359-378.
|
[171] |
Satyarnarayan L, Chandrasekaran J, Maxfield B, Balasubramaniam K. 2008. Circumferential higher order guided wave modes for the detection and sizing of cracks and pinholes in pipe support regions. NDT E Int., 41:32-43.
|
[172] |
Schmicker D. Development and testing of higher order finite elements based on Lagrange polynomials for the analysis of guided ultrasonic waves in thin walled structures. Saxony-Anhalt: Otto-von-Guericke-University Magdeburg, 2011.
|
[173] |
Sébastien G, Christophe P, Christophe D, Jamal A. 2002. Design of optimal configuration for generating $A_{0}$ Lamb mode in a composite plate using piezoceramic transducers. J. Acoust. Soc. Am., 112:84-90.
|
[174] |
Seifried R, Jacobs L, Qu J. 2002. Propagation of guided waves in adhesive bonded components. NDT E Int., 35:317-328.
|
[175] |
Seung H M, Park C I, Kim Y Y. 2016. An omnidirectional shear-horizontal guided wave EMAT for a metallic plate. Ultrasonics, 69:58-66.
|
[176] |
Shen Y F, Cesnik C E S. 2016. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach// SPIE Conference on Health Monitoring of Structural and Biological Systems, March 21-24, 2016, Las Vegas, Clark, UK.
|
[177] |
Shen Y F, Cesnik C E S. 2016. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composie structures. Smart Mater. Struct., 25:1-20.
|
[178] |
Shen Y F. 2014. Structural health monitoring using linear and nonlinear ultrasonic guided waves. [PhD Thesis]. Columbia: University of South Carolina, 2014.
|
[179] |
Shen Y F, Cesnik C E. 2017. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach. Ultrasonics, 74:106-123.
|
[180] |
Shen Y F, Giurgiutiu V. 2014. Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors. J. of Int. Mater. and Syst. Struct., 25:506-520.
|
[181] |
Shen Y F, Giurgiutiu V. 2016. Combined analytical FEM approach for efficient simulation of Lamb wave damage detection. Ultrasonics, 69:116-128.
|
[182] |
Sikdar S, Banerjee S. 2016. Guided wave propagation in a honeycomb composite sandwich structure in presence of a high density core. Ultrasonics, 71:86-97.
|
[183] |
Singh D, Castaings M, Bacon C. 2011. Sizing strip-like defects in plates using guided waves. NDT E Int., 44:394-404.
|
[184] |
Solín P, Cerveny J, Dolezel I. 2008. Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM. Math. Comput. Simul., 77:117-132.
|
[185] |
Solin P, Korous L. 2012. Adaptive higher-order finite element methods for transient PDE problems based on embedded higher-order implicit Runge-Kutta methods. J. Comput. Phys., 231:1635-1649.
|
[186] |
Soltani P, Akbareian N. 2014. Finite element simulation of laser generated ultrasound waves in aluminum plates. Lat. Am. J. Solids Struct., 11:1761-1776.
|
[187] |
Song M, Jhang K, Yang Y. 2013. Crack detection in single-crystalline silicon wafer using laser generated Lamb wave. Adv. Mater. Sci. Eng., 2013: 1-6.
|
[188] |
Soorgee M H, Lissenden C J, Rose J L , et al. 2013. Planar guided waves for SHM of plate structures using piezoelectric fiber transducers//39th Annual Review of Progress in Quantitative Nondestructive Evaluation, July 15-20, 2012, Denver, Colorado, USA.
|
[189] |
Sridhar R, Chakraborty A, Gopalakrishnan S. 2006. Wave propagation analysis in anisotropic and inhomogeneous uncracked and cracked structures using pseudospectral finite element method. Int. J. Solids Struct., 43:4997-5031.
|
[190] |
Strouboulis T, Babuska I, Copps K. 2000. The design and analysis of the generalized finite element method. Comput. Meth. Appl. Mech. Eng., 181:43-69.
|
[191] |
Su R L, Wang S J, Zhai G F. 2014. Numerical simulation of magnetostrictive Lamb wave EMATs on steel plate// 11th IEEE Far East Forum on Nondestructive Evaluation/Testing - New Technology and Application, June 20-23, 2014, Chengdu, Sichuang, China.
|
[192] |
Sun H, Xu B, Qian R. 2009. Numerical simulation of laser-generated Lamb waves in viscoelastic. J. Appl. Phys., 106:73108.
|
[193] |
Sun J, Lee K, Lee H. 2000. Comparison of implicit and explicit finite element methods for dynamic problems. J. Mater. Process. Technol., 105:110-118.
|
[194] |
Surana K S. 1980. Transition finite elements for three-dimensional stress analysis. Int. J. Numer. Methods Eng., 15:991-1020.
|
[195] |
Tchalla A, Belouettar S, Makradi A, Zahrouni H. 2013. An ABAQUS toolbox for multiscale finite element computation. Compos. Pt. B-Eng., 52:323-333.
|
[196] |
Terrien N, Royer D, Lepoutre F, Déom A. 2007. Numerical predictions and experiments for optimizing hidden corrosion detection in aircraft structures using Lamb modes. Ultrasonics, 46:65-251.
|
[197] |
Thompson R B. 1973. A model for the electromagnetic generation of ultrasonic guided waves in ferromagnetic metal polycrystals. IEEE Trans. Sonics Ultrason., 20:340-346.
|
[198] |
Thompson R B, Brasche L H, Forsyth D , et al. 2009. Recent advances in model-assisted probability of detection// 4th European-American workshop on reliability of NDE, June 24-26, 2009, Berlin, Germany.
|
[199] |
Vernerey F J, Kabiri M. 2012. An adaptive concurrent multiscale method for microstructured elastic solids. Comput. Meth. Appl. Mech. Eng., 241-244:52-64.
|
[200] |
Wagner G J, Liu W K. 2003. Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys., 190:249-274.
|
[201] |
Waki Y, Mace B, Brennan M. 2009. Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J. Sound Vibr., 327:92-108.
|
[202] |
Wan X, Zhang Q, Xu G, Tse P. 2014. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks. Sensors, 14:8528-8546.
|
[203] |
Wang J, Yong Y K, Imai T. 1999. Finite element analysis of the piezoelectric vibrations of quartz plate resonators with higher-order plate theory. Int. J. Solids Struct., 36:2303-2319.
|
[204] |
Wang J, Yu J D, Yong Y K, Imai T. 2000. A new theory for electrode piezoelectric plates and its finite element application for the forced vibrations of quartz crystal resonators. Int. J. Solids Struct., 37:5653-5673.
|
[205] |
Wang J, Yu J D, Yong Y K, Imai T. 2008. A finite element analysis of frequency-temperature relations of AT-cut quartz crystal resonators with higher-order mindlin plate theory. Acta Mech. , 199:117-130.
|
[206] |
Wang S, Li Z, Li P, Liu X. 2014. Numerical and experimental evaluation of the receiving performance of meander-line coil EMATs. Nondestruct. Test. Eva., 29:269-282.
|
[207] |
Wang Y, Zhu X, Hao H, Ou J. 2011. Spectral element model updating for damage identification using clonal selection algorithm. Adv. Struct. Eng., 14:837-856.
|
[208] |
Wilcox P D, Croxford A J, Konstantinidis G , et al. 2007. Sensitivity limitations for guided wave structural health monitoring// Conference on Health Monitoring of Structural and Biological Systems, March 19-22, 2007, San Diego, California, USA.
|
[209] |
Willberg C, Duczek S, Perez J V, Schmicker D. 2012. Comparison of different higher order finite element schemes for the simulation of Lamb waves. Comput. Meth. Appl. Mech. Eng., 241:246-261.
|
[210] |
Willberg C, Gabbert U. 2012. Development of a three dimensional piezoelectric isogeometric finite element for smart structure applications. Acta Mech., 223:1837-1850.
|
[211] |
Willberg C, Duczek S, Perez J M V, Ahmad Z A B. 2015. Simulation methods for guided wave-based structural health monitoring: A review. Appl. Mech. Rev., 67:1-20.
|
[212] |
Xiao D, Han Q, Liu Y, Li C. 2016. Guided wave propagation in an infinite functionally graded magneto-electro-elastic plate by the Chebyshev spectral element method. Compos. Struct., 153:704-711.
|
[213] |
Xie Y, Yin W, Liu Z, Peytona A. 2016. Simulation of ultrasonic and EMAT arrays using FEM and FDTD. Ultrasonics, 66:154-165.
|
[214] |
Xu B, Shen Z, Ni X, Lu J. 2004. Numerical simulation of laser-generated ultrasound by the finite element method. J. Appl. Phys., 95:2116-2122.
|
[215] |
Yang J, Ume I C. 2008. Thermomechanical reliability study of flip-chip solder bumps: Using laser ultrasound technique and finite element method// 58th Electronic Components and Technology Conference, May 27-30, 2008, Orlando, Florida, USA.
|
[216] |
Yang Z, Chen X, Xie Y, Zuo H. 2016. Wave motion analysis and modeling of membrane structures using the wavelet finite element method. Appl. Math. Model., 40:2407-2420.
|
[217] |
Yu F, Collet M, Ichchou M, Lin L. 2017. Enhanced wave and finite element method for wave propagation and forced response prediction in periodic piezoelectric structures. Chin. J. Aeronaut., 30:75-87.
|
[218] |
Yu X, Fan Z, Castaings M, Biateau C. 2017. Feature guided wave inspection of bond line defects between a stiffener and a composite plate. NDT E Int., 89:44-55.
|
[219] |
Yu Y, Yan N. 2017. Numerical study on guided wave propagation in wood utility poles finite element modelling and parametric sensitivity analysis. Appl. Sci., 7:1063.
|
[220] |
Yue B, Guddati M N. 2005. Dispersion-reducing finite elementsfor transient acoustics. J. Acoust. Soc. Am., 118:2132-2141.
|
[221] |
Yuen M M F. 1985. A numerical study of the eigenparameters of a damaged cantilever. J. Sound Vib., 103:301-310.
|
[222] |
Zander N, Kollmannsberger S, Ruess M, Yosibash Z. 2012. The Finite Cell Method for linear thermoelasticity. Comput. Math. Appl., 64:3527-3541.
|
[223] |
Zhan Y, Liu C, Kong X, Lin Z. 2017. Experiment and numerical simulation for laser ultrasonic measurement of residual stress. Ultrasonics, 73:271-276.
|
[224] |
Zhan Y, Liu C, Zhang F, Qiu Z. 2016. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants. Ultrasonics, 69:243-247.
|
[225] |
Zhang X, Tang Z, Lü F, Yang K. 2017. Scattering of torsional flexural guided waves from circular holes and crack-like defects in hollow cylinders. NDT E Int., 89:56-66.
|
[226] |
Zhou C W, Lainé J P, Ichchou M N, Zine A M. 2015. Wave finite element method based on reduced model for one-dimensional periodic structures. Int. J. Appl. Mech., 7:1550018.
|
[227] |
Zhou J, Xiao L, Qu W, Lu Y. 2017. Nonlinear Lamb wave based DORT method for detection of fatigue cracks. NDT E Int., 92:22-29.
|
[228] |
Zhu W. 2002. An FEM simulation for guided elastic wave generation and reflection in hollow cylinders with corrosion defects. J. Press. Vessel Technol. -Trans. ASME, 124:108-117.
|
[229] |
Zhu W, Deng M, Xiang Y, Xuan F. 2016. Modeling of ultrasonic nonlinearities for dislocation evolution in plastically deformed materials: Simulation and experimental validation. Ultrasonics, 68:134-141.
|