Citation: | GU Xin, ZHANG Qing, MADENCI Erdogan. Review of peridynamics for multi-physics coupling modeling[J]. Advances in Mechanics, 2019, 49(1): 201910. doi: 10.6052/1000-0992-18-007 |
[1] |
白小敏, 唐建群, 巩建鸣. 2017. 不同过电位下一维点蚀的近场动力学数值模拟. 南京工业大学学报(自科版), 6: 91-98
(Bai X M, Tang J Q, Gong J M.2017. Numerical modeling of 1D corrosion pit propagation under different overpotentials using peridynamic method. Journal of Nanjing Tech University (Natural Science Edition), 6: 91-98).
|
[2] |
戴旭东, 王义亮, 谢友柏. 2001. 以润滑油膜为动力耦合件的内燃机缸套--活塞系统中动力耦合方程的建立及求解方法. 润滑与密封, 5: 5-8
(Dai X D, Wang Y L, Xie Y B.2001. Establishment and numerical solution of the dynamic-tribology coupling simultaneous equation in cylinder-piston system. Lubrication Engineering, 5: 5-8).
|
[3] |
韩非. 2017. 体会近场动力学之动.
|
[4] |
黄丹, 章青, 乔丕忠, 沈峰. 2010. 近场动力学方法及其应用. 力学进展, 40: 448-459
(Huang D, Zhang Q, Qiao P Z, Shen F.2010. A review on peridynamics (PD) method and its application. Advances in Mechanics, 40: 448-459).
|
[5] |
刘硕, 方国东, 王兵, 付茂青, 梁军. 2018. 近场动力学与有限元方法耦合求解热传导问题.力学学报, 50: 339-348
(Liu S, Fang G D, Wang B, Fu M Q, Liang J.2018. Study of thermal conduction problem using coupled peridynamics and finite element method. Chinese Journal of Theoretical and Applied Mechanics, 50: 339-348).
|
[6] |
刘英凯, 程站起. 2018. 功能梯度材料热传导问题的近场动力学模型. 力学季刊, 39: 82-89
(Liu Y K, Cheng Z Q.2018. Transient heat conduction model for functionally graded materials based on peridynamics. Chinese Quarterly of Mechanics, 39: 82-89).
|
[7] |
乔丕忠, 张勇, 张恒, 张律文. 2017. 近场动力学研究进展. 力学季刊, 38: 1-13
(Qiao P Z, Zhang Y, Zhang H, Zhang L W.2017. A review on advances in peridynamics. Chinese Quarterly of Mechanics, 38: 1-13).
|
[8] |
苏伯阳, 李书欣, 刘立胜, 赖欣, 谷卫敏. 2018. 湿热环境下复合材料冲击损伤的近场动力学模拟.科学技术与工程, 18: 201-206
(Su B Y, Li S X, Liu L S, Lai X, Gu W M.2018. Peridynamic simulation of impact damage of composite material under hygrothermal environment. Scicence Technolody and Engineering, 18: 201-206).
|
[9] |
孙培德, 杨东全, 陈奕柏. 2007. 多物理场耦合模型及数值模拟导论. 北京: 中国科学技术出版社
(Sun P D, Yang D Q, Chen Y B.2007. Introduction to Coupling Models for Multiphysics and Numerical Simulations. Beijing: Science and Technology of China Press).
|
[10] |
王超聪, 刘齐文, 刘立胜, 赖欣. 2017. 热防护材料烧蚀温度场的近场动力学模拟. 科学技术与工程, 17: 172-176
(Wang C C, Liu Q W, Liu L S, Lai X.2017. Numerical simulation of ablation temperature for thermal protective composites based on peridynamics. Scicence Technolody and Engineering, 17: 172-176).
|
[11] |
王飞, 马玉娥, 郭妍宁. 2017. 近场动力学中内核参数对非均匀材料热传导数值解的影响研究. 西北工业大学学报, 35: 203-207
(Wang F, Ma Y E, Guo Y N.2017. Effects of kernel parameters of peridynamic theory on heat conduction numerical solution for non-homogeneous material. Journal of Northwestern Polytechnical University, 35: 203-207).
|
[12] |
吴凡, 李书卉, 段庆林, 李熙夔, 张洪武. 2017. 基于近场动力学方法的水力压裂过程数值模拟. 计算机辅助工程, 26: 1-6
(Wu F, Li S H, Duan Q L, Li X K, Zhang H W.2017. Numerical simulation of hydraulic fracturing process based on peridynamics method. Computer Aided Engineering, 26: 1-6).
|
[13] |
徐涛, 宋力. 2007. 真实破裂过程分析软件与多物理场耦合软件结构力学模块对比研究. 大连大学学报, 28: 66-71
(Xu T, Song L.2007. Comparison study of realistic failure process analysis code and comsol multiphysics code. Journal of Dalian University, 28: 66-71).
|
[14] |
章青, 顾鑫, 郁杨天. 2016. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟. 力学学报, 48: 56-63
(Zhang Q, Gu X, Yu Y T.2016. Peridynamics simulation for dynamic response of granular materials under impact loading. Chinese Journal of Theoretical and Applied Mechanics, 48: 56-63).
|
[15] |
章青, 郁杨天, 顾鑫. 2016. 近场动力学与有限元的混合建模方法. 计算力学学报, 33: 441-448
(Zhang Q, Yu Y T, Gu X.2016. Hybrid modeling methods of peridynamics and finite element method. Chinese Journal of Computational Mechanics, 33: 441-448).
|
[16] |
张振宇. 2015. 基于Voronoi图方法的近场动力学键理论及热电耦合理论研究. [硕士论文]. 武汉: 武汉理工大学
(Zhang Z Y.2015. Study of the voronoi based peridynamic bond theory and thermoelectric coupling theory. [Master Thesis]. Wuhan: Wuhan University of Technology).
|
[17] |
Agwai A.2011. A peridynamic approach for coupled fields. [PhD Thesis]. Tucson: The University of Arizona.
|
[18] |
Agwai A, Guven I, Madenci E.2011. A new thermomechanical fracture analysis approach for 3D integration technology//IEEE 61st Electronic Components and Technology Conference (ECTC), 740-745.
|
[19] |
Assefa M, Lai X, Liu L S.2017. Bond based peridynamic formulation for thermoelectric materials. Materials Science Forum, 883: 51-59.
|
[20] |
Assefa M, Lai X, Liu L S, Liao Y.2017. Peridynamic formulation for coupled thermoelectric phenomena. Advances in Materials Science and Engineering, 2017: 1-10.
|
[21] |
Bobaru F, Duangpanya M.2010. The peridynamic formulation for transient heat conduction. International Journal of Heat and Mass Transfer, 53: 4047-4059.
|
[22] |
Bobaru F, Duangpanya M.2012. A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. Journal of Computational Physics, 231: 2764-2785.
|
[23] |
Bobaru F, Foster J T, Geubelle P H, Silling S A.2016. Handbook of Peridynamic Modeling. Raton: CRC press.
|
[24] |
Chen Z G, Bobaru F.2015. Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion. Computer Physics Communications, 197: 51-60.
|
[25] |
Chen Z G, Bobaru F.2015. Peridynamic modeling of pitting corrosion damage. Journal of the Mechanics and Physics of Solids, 78: 352-381.
|
[26] |
Chen Z G, Zhang G F, Bobaru F.2016. The influence of passive film damage on pitting corrosion. Journal of The Electrochemical Society, 163: 19-24.
|
[27] |
Chen H L, Hu Y L, Spencer B W.2016. A MOOSE-based implicit peridynamic thermomechanical model// ASME 2016 International Mechanical Engineering Congress and Exposition, 2016: V009T12A072.
|
[28] |
Chen H L, Hu Y L, Spencer B W.2017. Peridynamics using irregular domain discretization with moose-based implementation//ASME 2017 International Mechanical Engineering Congress and Exposition, 2017: V009T12A067-V009T12A067.
|
[29] |
De Meo D, Oterkus E.2017. Finite element implementation of a peridynamic pitting corrosion damage model. Ocean Engineering, 135: 76-83.
|
[30] |
De Meo D, Diyaroglu C, Zhu N, Oterkus E, Siddiq M A.2016. Modelling of stress-corrosion cracking by using peridynamics. International Journal of Hydrogen Energy, 41: 6593-6609.
|
[31] |
Delgoshaie A H, Meyer D W, Jenny P, Tchelepi H A.2015. Non-local formulation for multiscale flow in porous media. Journal of Hydrology, 531: 649-654.
|
[32] |
Diyaroglu C, Oterkus S, Oterkus E, Madenci E.2017. Peridynamic modeling of diffusion by using finite-element analysis. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7: 1823-1831.
|
[33] |
Diyaroglu C, Oterkus S, Oterkus E, Madenci E, Han S, Hwang Y.2017. Peridynamic wetness approach for moisture concentration analysis in electronic packages. Microelectronics Reliability, 70: 103-111.
|
[34] |
Du Q, Gunzburger M, Lehoucq R B, Zhou K.2012. Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Review, 54: 667-696.
|
[35] |
Du Q, Gunzburger M, Lehoucq R B, Zhou K.2013. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences, 23: 493-540.
|
[36] |
D'Antuono P, Morandini M.2017. Thermal shock response via weakly coupled peridynamic thermo-mechanics. International Journal of Solids and Structures, 129: 74-89.
|
[37] |
Edmiston J K.2015. Development of a geoperidynamic model for hydraulic fracture//In 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
|
[38] |
Farhat C, Park K C, Dubois-Pelerin Y.1991. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Computer Methods in Applied Mechanics and Engineering, 85: 349-365.
|
[39] |
Gerstle W H, Silling S A, Read D, Tewary V, Lehoucq R B.2008. Peridynamic simulation of electromigration. CMC-Computers Materials & Continua, 8: 75-92.
|
[40] |
Gu X, Zhang Q, Huang D, Yu Y T.2016. Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Engineering Fracture Mechanics, 160: 124-137.
|
[41] |
Gu X, Zhang Q, Xia X Z.2017. Voronoi-based peridynamics and cracking analysis with adaptive refinement. International Journal for Numerical Methods in Engineering, 112: 2087--2109.
|
[42] |
Gu X, Madenci E, Zhang Q.2018. Revisit of non-ordinary state-based peridynamics. Engineering Fracture Mechanics, 190: 31-52.
|
[43] |
Giannakeas I N, Papathanasiou T K, Bahai H.2018. Simulation of thermal shock cracking in ceramics using bond-based peridynamics and FEM. Journal of the European Ceramic Society, 38: 3037-3048.
|
[44] |
Han S W, Diyaroglu C, Oterkus S, Madenci E, Oterkus E, Hwang Y, Seol H.2016. Peridynamic direct concentration approach by using ANSYS//IEEE 66th Electronic Components and Technology Conference (ECTC), 2016: 544-549.
|
[45] |
Hu Y L, Chen H L, Spencer B W, Madenci E.2018 Thermomechanical peridynamic analysis with irregular non-uniform domain discretization. Engineering Fracture Mechanics, 197: 92-113.
|
[46] |
Ishimoto J, Sato T, Combescure A.2017. Computational approach for hydrogen leakage with crack propagation of pressure vessel wall using coupled particle and Euler method. International Journal of Hydrogen Energy, 42: 10656-10682.
|
[47] |
Jabakhanji R.2013. Peridynamic modeling of coupled mechanical deformations and transient flow in unsaturated soils. [PhD Thesis]. West Lafayette: Purdue University.
|
[48] |
Jabakhanji R, Mohtar R H.2015. A peridynamic model of flow in porous media. Advances in Water Resources, 78: 22-35.
|
[49] |
Jafarzadeh S, Chen Z G, Bobaru F.2017. Peridynamic modeling of repassivation in pitting corrosion of stainless steel. Corrosion,74:393-414.
|
[50] |
Jafari A, Bahaaddini R, Jahanbakhsh H.2018. Numerical analysis of peridynamic and classical models in transient heat transfer, employing Galerkin approach. Heat Transfer---Asian Research, 47: 531-555.
|
[51] |
Jenny P, Meyer D W.2017. Non-local generalization of Darcy's law based on empirically extracted conductivity kernels. Computational Geosciences, 21: 1281-1288.
|
[52] |
Jeon B S, Stewart R J, Ahmed I Z.2015. Peridynamic simulations of brittle structures with thermal residual deformation: Strengthening and structural reactivity of glasses under impacts//Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 471: 20150231.
|
[53] |
Katiyar A, Foster J T, Ouchi H, Sharma M M.2014. A peridynamic formulation of pressure driven convective fluid transport in porous media. Journal of Computational Physics, 261: 209-229.
|
[54] |
Kilic B, Madenci E.2009. Prediction of crack paths in a quenched glass plate by using peridynamic theory. International Journal of Fracture, 156: 165-177.
|
[55] |
Kilic B, Madenci E.2010. Peridynamic Theory for Thermomechanical Analysis. IEEE Transactions on Advanced Packaging, 33: 97-105.
|
[56] |
Le Q V, Chan W K, Schwartz J.2014. A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. International Journal for Numerical Methods in Engineering, 98: 547-561.
|
[57] |
Liao Y, Liu L S, Liu Q W, Lai X, Assefa M, Liu J G.2017. Peridynamic simulation of transient heat conduction problems in functionally gradient materials with cracks. Journal of Thermal Stresses, 40: 1484-1501.
|
[58] |
Madenci E, Oterkus E.2014. Peridynamic Theory and Its Applications. New York: Springer.
|
[59] |
Madenci E, Oterkus S.2017a. Ordinary state-based peridynamics for thermoviscoelastic deformation. Engineering Fracture Mechanics, 175: 31-45.
|
[60] |
Madenci E, Oterkus S.2017b. Peridynamic modeling of thermo-oxidative damage evolution in a composite lamina//In 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017-0197.
|
[61] |
Mella R, Wenman M R.2015. Modelling explicit fracture of nuclear fuel pellets using peridynamics. Journal of Nuclear Materials, 467: 58-67.
|
[62] |
Multiphysics CO.2012. Comsol Multiphysics User's Guide, Version 4.3a.
|
[63] |
Nadimi S, Miscovic I, McLennan J.2016. A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium. Journal of Petroleum Science and Engineering, 145: 444-452.
|
[64] |
Oterkus S.2015. Peridynamics for the solution of multiphysics problems. [PhD Thesis]. Tucson: The University of Arizona.
|
[65] |
Oterkus S, Fox J, Madenci E.2013. Simulation of electro-migration through peridynamics//IEEE 63rd Electronic Components and Technology Conference (ECTC), 2013: 1488-1493.
|
[66] |
Oterkus S, Madenci E.2013. Crack growth prediction in fully-coupled thermal and deformation fields using peridynamic theory//In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013-1477.
|
[67] |
Oterkus S, Madenci E.2014. Fully coupled thermomechanical analysis of fiber reinforced composites using peridynamics//In 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2014-0694.
|
[68] |
Oterkus S, Madenci E.2017. Peridynamic modeling of fuel pellet cracking. Engineering Fracture Mechanics, 176: 23-37.
|
[69] |
Oterkus S, Madenci E, Agwai A.2014a. Peridynamic thermal diffusion. Journal of Computational Physics, 265: 71-96.
|
[70] |
Oterkus S, Madenci E, Agwai A.2014b. Fully coupled peridynamic thermomechanics. Journal of the Mechanics and Physics of Solids, 64: 1-23.
|
[71] |
Oterkus S, Madenci E, Oterkus E, Hwang Y, Bae J, Han S.2014c. Hygro-thermo-mechanical analysis and failure prediction in electronic packages by using peridynamics//IEEE 64th Electronic Components and Technology Conference (ECTC), 2014: 973-982.
|
[72] |
Oterkus S, Madenci E, Oterkus E.2017. Fully coupled poroelastic peridynamic formulation for fluid-filled fractures. Engineering Geology, 225: 19-28.
|
[73] |
Ouchi H, Katiyar A, York J, Foster J T, Sharma M M.2015a. A fully coupled porous flow and geomechanics model for fluid driven cracks: A peridynamics approach. Computational Mechanics, 55: 561-576.
|
[74] |
Ouchi H, Katiyar A, Foster J T, Sharma M M.2015b. A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs//In SPE Hydraulic Fracturing Technology Conference 2015. Society of Petroleum Engineers.
|
[75] |
Ouchi H.2016. Development of peridynamics-based hydraulic fracturing model for fracture growth in heterogeneous reservoirs. [PhD Thesis]. Austin: University of Texas.
|
[76] |
Ouchi H, Agrawal S, Foster J T, Sharma MM.2017a. Effect of small scale heterogeneity on the growth of hydraulic fractures//In SPE Hydraulic Fracturing Technology Conference and Exhibition. Society of Petroleum Engineers.
|
[77] |
Ouchi H, Foster J T, Sharma M M.2017b. Effect of reservoir heterogeneity on the vertical migration of hydraulic fractures. Journal of Petroleum Science and Engineering, 151: 384-408.
|
[78] |
Prakash N, Seidel G D.2016. Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites. Computational Materials Science, 113: 154-170.
|
[79] |
Prakash N, Seidel G D.2017. Computational electromechanical peridynamics modeling of strain and damage sensing in nanocomposite bonded explosive materials (ncbx). Engineering Fracture Mechanics, 177: 180-202.
|
[80] |
Read D T, Tewary V K, Gerstle W H.2011. Modeling electromigration using the peridynamics approach. In Electromigration in Thin Films and Electronic Devices, 45-69.
|
[81] |
Roy P, Roy D.2016. A peridynamic approach to flexoelectricity. arXiv preprint arXiv: 1603.03894.
|
[82] |
Silling S A.2000. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48: 175-209.
|
[83] |
Silling S A, Askari E.2005. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 83: 1526-1535.
|
[84] |
Silling S A, Epton M, Weckner O, Xu J F, Askari E.2007. Peridynamic States and Constitutive Modeling. Journal of Elasticity, 88: 151-184.
|
[85] |
Silling S A, Lehoucq R B.2010. Peridynamic theory of solid mechanics. Advances in Applied Mechanics, 44: 73-168.
|
[86] |
Turner D Z.2013. A non-local model for fluid-structure interaction with applications in hydraulic fracturing. International Journal for Computational Methods in Engineering Science and Mechanics, 14: 391-400.
|
[87] |
Wang H L, Oterkus E, Oterkus S.2018. Predicting fracture evolution during lithiation process using peridynamics. Engineering Fracture Mechanics, 192: 176-191.
|
[88] |
Wang L J, Xu J F, Wang J X.2016. The Green's functions for peridynamic non-local diffusion//Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 472: 20160185.
|
[89] |
Wang L J, Xu J F, Wang J X.2018. A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction. International Journal of Heat and Mass Transfer, 118: 1284-1292.
|
[90] |
Wang Y T, Zhou X P, Kou M M.2018. A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks. International Journal of Fracture, 211: 13--42.
|
[91] |
Wildman R A, Gazonas G A.2015. A dynamic electro-thermo-mechanical model of dielectric breakdown in solids using peridynamics. Journal of Mechanics of Materials and Structures, 10: 613-630.
|
[92] |
Wildman R A, Gazonas G A.2017. A multiphysics finite element and peridynamics model of dielectric breakdown. US Army Research Laboratory Aberdeen Proving Ground United States.
|
[93] |
Xu F F, Gunzburger M, Burkardt J.2016. A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Computer Methods in Applied Mechanics and Engineering, 307: 117-143.
|
[94] |
Xu Z P, Zhang G F, Chen Z G, Bobaru F.2018. Elastic vortices and thermally-driven cracks in brittle materials with peridynamics. International Journal of Fracture, 209: 203--222.
|
[95] |
Zhang H, Qiao P Z.2018. An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading. Engineering Fracture Mechanics, 189: 81--97.
|