Citation: | LIANG Lifu, GUO Qingyong, SONG Haiyan. Analytical dynamics of continuous medium and its application[J]. Advances in Mechanics, 2019, 49(1): 201908. doi: 10.6052/1000-0992-17-019 |
[1] |
爱林根. 朱照宣 译. 1985. 连续统物理的基本原理. 南京: 江苏科学技术出版社
(Eringen A C.1975. Basic~Principles~of~Continuum Physics. Academic Press).
|
[2] |
爱林根. 程昌钧, 俞焕然译. 1991. 连续统力学. 北京: 科学出版社
(Eringen~A~C. 1967. Mechanics~of~Continua. New York: John Wiley and Sons, Inc).
|
[3] |
陈滨. 2010. 分析动力学 (第二版). 北京: 北京大学出版社
(Chen ~B. 2010. Analytical~Dynamics (2nd edn). Beijing: Peking~University Press).
|
[4] |
陈滨, 梅凤翔. 1994. 中国非完整力学三十年. 开封: 河南大学出版社
(Chen B, Mei F X.1994. Thirty Years for~Nonholonomic~Mechanics~in~China. Kaifeng: Henan~University~Press).
|
[5] |
程昌钧, 朱正佑. 2003. 关于粘弹性力学的一些进展. 自然杂志, 25: 1-11
(Cheng C J, Zhu Z Y.2003. Advance on theory of viscoelasticity. Nature Magazine, 25 : 1-11).
|
[6] |
蔡建乐, 梅凤翔. 2008. Lagrange系统lie点变换下的共形不变性与守恒量. 物理学报, 57: 5369-5373
(Cai J L, Mei F X.2008. Conformal invariance and conserved quantity of Lagrange systems under lie point transformation. Acta Physica Sinica, 57: 5369-5373).
|
[7] |
董平, J N 罗赛托斯. 1979. 有限单元法---基本方法与实践. 北京: 国防工业出版社
(Tong P, Rossettos J N.1979. Finite Element Method---Basic Technique and Implementation. Boston: MIT Press).
|
[8] |
戴世强, 邓学蓥, 段祝平, 黄永念, 黄筑平, 李家春, 连淇祥, 陆启韶, 沈青, 谈庆明, 陶祖莱, 王克仁, 王文标, 王自强, 解伯民, 姚振汉, 殷有泉, 余寿文, 张兆顺, 周显初, 朱如曾, 朱照宣. 2001. 20世纪理论和应用力学十大进展. 力学进展, 31: 322-326
(Dai S Q, Deng X Y, Duan Z P, Huang Y N, Huang Z P, Li J C, Lian Q X, Lu Q S, Shen Q, Tan Q M, Tao Z L, Wang K R, Wang W B, Wang Z Q, Xie B M, Yao Z H, Yin Y Q, Yu S W, Zhang Z S, Zhou X C, Zhu R Z, Zhu Z X.2001. Top ten progresses of theoretical and applied mechanics in twenty century. Advances in Mechanics, 31: 322-326).
|
[9] |
范绪箕. 2009. 高速飞行器热结构分析与应用. 北京: 国防工业出版社
(Fan X Q~. 2009. Thermal~Structures~Analysis~and~Applications~of High Speed~Vehicles. Beijing: National Defense Industry Press).
|
[10] |
冯晓九, 梁立孚. 2016. Lagrange方程应用于连续介质力学. 北京大学学报, 52: 597-607
(Feng X J, Liang L F.2016. Lagrange equation applied to continuum mechanics. Acta Scientiarum Naturalium Universitatis Pekinensis, 52: 597-607).
|
[11] |
冯晓九, 梁立孚, 郭庆勇. 2016. 结构的刚--热弹耦合稳定性问题研究. 中国科学: 技术科学, 46: 1039-1047
(Feng X J, Liang L F, Guo Q Y.2016. Investigation of structural stability of rigid-thermo-elastic coupling. Sci Sin Tech, 46: 1039-1047).
|
[12] |
冯晓九, 梁立孚, 宋海燕. 2016. 刚--弹--液耦合动力学的功能型拟变分原理. 中国科学: 技术科学, 46: 195-203
(Feng X J, Liang L F, Song H Y.2016. Quasi variational principle of the rigid-elastic-liquid coupling dynamics. Sci Sin Tech, 46: 195-203).
|
[13] |
郭永新, 罗绍凯, 梅凤翔. 2004. 非完整约束系统几何动力学研究进展: Lagrange理论及其他. 力学进展, 34: 477-492
(Guo Y X, Luo S K, Mei F X.2004. Progress of geometric dynamics of nonholonomic constrained mechanical systems: Lagrange theory and others. Advances in Mechanics, 34: 477-492).
|
[14] |
黄彬彬, 石志飞, 章梓茂. 2000. 压电材料变分原理逆问题的研究------动力学中的逆问题. 复合材料学报, 17: 103-106
(Hang B B, Shi Z F, Zhang Z M.2000. On the inverse problem in calculus of variations for piezoelectric media---The inverse problem in dynamics. Acta Metallurgica Sinica (English letters), 17: 103-106).
|
[15] |
罗恩. 1990. 关于线粘弹性动力学中各种变分原理. 力学学报, 22: 484-489
(Luo E.1990. On the variational principles for linear theory of dynamic viscoelasticity. Acta Mechanica Sinica, 22: 484-489).
|
[16] |
刘高联. 1989. 流体力学变分原理及其有限元法研究的进展. 上海力学, 10: 73-80
(Liu G L.1989. Research development of variation principles finite element method in fluid mechanics. Chinese Quarterly Mechanics, 10: 73-80).
|
[17] |
刘锦阳, 洪嘉振. 2006. 温度场中的柔性梁系统动力学建模. 振动工程学报, 19: 469-474
(Liu J Y, Hong J Z.2006. Geometric nonlinear formulation of flexible beam systems in temperature field. Journal of Vibration Engineering, 19: 469-474).
|
[18] |
梁立孚. 2011a. 论航天器动力学中的一个理论问题. 中国科学G, 41: 94-101
(Liang L F.2011a. Investigation of a theoretical problem in spacecraft dynamics. Science in China (G), 41: 94-101).
|
[19] |
梁立孚. 2011b. 力学和电磁学中的变分原理及其应用. 哈尔滨: 哈尔滨工程大学出版社
(Liang L F.2011b. Variational principles in mechanics and electromagnetics and their applications. Harbin: Harbin Engineering University Press).
|
[20] |
梁立孚, 刘宗民, 郭庆勇. 2013. 充液系统刚--液耦合动力学功能型拟变分原理. 哈尔滨工程大学学报, 34: 1514-1519
(Liang L F, Liu Z M, Guo Q Y.2013. Quasi-variational principle of rigid-liquid coupling dynamics in liquid-filled system. Journal of Harbin Engineering University, 34: 1514-1519).
|
[21] |
梁立孚, 宋海燕, 樊涛, 刘宗民. 2015. 非保守系统的拟变分原理及其应用. 北京: 科学出版社
(Liang L F, Song H Y, Fan T, Liu Z M.2015. Quasi-variational Principles of Non-conservative System and Their Applications. Beijing: Science~Press).
|
[22] |
梁立孚, 宋海燕, 郭庆勇. 2015. 应用 Lagrange方程研究刚弹耦合动力学. 哈尔滨工程大学学报, 36: 456-460
(Liang L F, Song H Y, Guo Q Y.2015. Research on rigid-elastic coupling dynamics using Lagrange equation. Journal of Harbin Engineering University, 36: 456-460).
|
[23] |
梁立孚, 宋海燕, 李海波. 2016. 航天分析动力学. 北京: 科学出版社
(Liang L F, Song H Y, Li H B.2016. Analytical~Dynamics~of Aerospace Systems. Beijing: Science~Press).
|
[24] |
梁立孚, 石志飞. 1993. 黏性流体力学的变分原理及其广义变分原理. 应用力学学报, 10: 119-123
(Liang L F, Shi Z F.1993. Variational principles and generalized variational principles in hydrodynamics of viscous fluids. Chinese Journal of Applied~Mechanics, 10: 119-123).
|
[25] |
梁立孚, 周平. 2018. Lagrange方程应用于流体动力学. 哈尔滨工程大学学报, 39: 1-7
(Liang L F, Zhou P.2018. Application of Lagrange equation in fluid mechanics. Journal of Harbin Engineering University, 39: 1-7).
|
[26] |
李青, 王天舒, 马兴瑞. 2012. 充液航天器液体晃动和液固耦合动力学的研究与应用. 力学进展, 42: 109-118
(Li Q, Wang T S, Ma X R.Reviews on liquid sloshing dynamics and liquid-structure coupling dynamics in liquid-filled spacecrafts. Advances in Mechanics, 42: 109-118).
|
[27] |
梅凤翔. 2004. 约束力学系统的对称性与守恒量. 北京: 北京理工大学出版社
(Mei~F X. 2004. Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing: Beijing Institute of Technology Press).
|
[28] |
梅凤翔. 2013a. 分析力学 (上、下卷). 北京: 北京理工大学出版社
(Mei F X.2013a. Analytical Mechanics (Volume 1, Volume 2). Beijing: Beijing Institute of Technology Press).
|
[29] |
梅凤翔. 2013b. 广义Birkhoff系统动力学. 北京: 科学出版社
(Mei~F X. 2013b. Dynamics of Generalized Birkhoffan~System. Beijing: Science Press).
|
[30] |
梅凤翔, 罗绍凯, 赵跃宇. 1996. 中国分析力学40年. 北京理工大学学报, 16: 1-7
(Mei F X, Luo S K, Zhao Y Y.1996. Forty years for analytical mechanics in China. Journal of Beijing Institute of Technology, 16: 1-7).
|
[31] |
梅凤翔, 尚玫. 2000. 一阶lagrange系统的lie对称性与守恒量. 物理学报, 49: 1901-1903
(Mei F X, Shang M.2000. Lie symmetries and conserved quantities of first order lagrange systems. Acta Phys Sin, 49: 1901-1903).
|
[32] |
闵桂荣, 郭舜. 1998. 航天器热控制. 北京: 科学出版社
(Min~G R, Guo S. 1998. Spacecraft~Thermal~Control. Beijing: Science Press).
|
[33] |
马兴瑞, 王本利, 苟兴宇. 2001. 航天器动力学------若干问题进展及应用. 北京: 科学出版社
(Ma~X R, Wang~B L, Gou~X Y. 2001. Spacecraft~Dynamics: The~Advances~of~Several~Problems and Its Application. Beijing: Science Press).
|
[34] |
沈惠川. 1998. 弹性力学的Lagrange形式: 用Routh方法建立弹性有限变形问题的基本方程. 数学物理学报, 18: 78-88
(Shen H C.1998. Lagrange formalism of elasticity: Building the basic equations on finite-deformation problems by Routh's method. Acta Mathematieaentia, 18: 78-88).
|
[35] |
汪家訸. 1958. 分析动力学. 北京: 高等教育出版社
(Wang J H.1958. Analytical Dynamics. Beijing: Higher Education Press).
|
[36] |
王琪, 陆启韶. 2001. 多体系统Lagrange方程数值算法的研究进展. 力学进展, 31: 9-17
(Wang Q, Lu Q S. 2001. Advances in the numerical methods for Lagrange's equations of multibody systems. Advances in Mechanics, 31: 9-17).
|
[37] |
王作君, 郑德忠, 郑成博, 郑世科. 2011. 电磁弹性动力学初边值问题12类变量广义变分原理. 计算力学学报, 28: 63-65
(Wang Z J, Zheng D Z, Zheng C B, Zheng S K.2011. Twelve-field generalized variational principles for initial-boundary-value problem of magneto-electroelasto dynamics. Chinese Journal of Computational Mechanics, 28: 63-65).
|
[38] |
王照林, 刘延柱. 2002. 充液系统动力学. 北京: 科学出版社
(Wang~Z L, Liu Y Z. 2002. Dynamics of Liquid-filled~System. Beijing: Science Press).
|
[39] |
杨炳渊, 史晓鸣, 梁强. 2008. 高超声速有翼导弹多场耦合动力学的研究和进展 (下). 强度与环境, 35: 55-62
(Yang B Y, Shi X M, Liang Q.2008. Investigation and development of the multi-physics coupling dynamics on the hypersonic winged missiles. Structure & Environment Engineering, 35: 55-62).
|
[40] |
杨挺青. 1990. 粘弹性力学. 武汉: 华中科技大学出版社
(Yang~T Q. 1990. Viscoelasticity. Wuhan: Huazhong University of Technology Press).
|
[41] |
周平, 梁立孚. 2017. 非保守系统的Lagrange方程. 哈尔滨工程大学学报, 38: 452-459
(Zhou P, Liang L F.2017. Lagrange equation of non-conservative systems. Journal of Harbin Engineering University, 38: 452-459).
|
[42] |
周平, 赵淑红, 梁立孚. 2009. 含阻尼非保守分析力学的拟变分原理. 北京理工大学学报, 29: 565-569
(Zhou P, Zhao S H, Liang L F.2009. Quasi-variational principles on non-conservative analytical mechanics with damping. Journal of Beijing Institute of Technology (Natural Science Edition), 29: 565-569).
|
[43] |
钟万勰. 2002. 应用力学对偶体系. 北京: 科学出版社
(Zhong W X.2002. Duality Method in Applied Mechanics. Beijing: Science Press).
|
[44] |
张毅, 范存新, 梅凤翔. 2006. Lagrange系统对称性的摄动与hojman型绝热不变量. 物理学报, 55: 3237-3240
(Zhang Y, Fan C X, Feng X M.2006. Perturbation of symmetries and hojman adiabatic invariants for Lagrangian systems. Acta Physica Sinica, 55: 3237-3240).
|
[45] |
张毅, 梅凤翔. 2004. 非保守力与非完整约束对lagrange系统noether对称性的影响. 物理学报, 53: 661-665
(Zhang Y, Mei F X.2004. Effects of non-conservative forces and nonholonomic constraints on noether symmetries of a Lagrange system. Acta Physica Sinica, 53: 661-665).
|
[46] |
Altay G, Dokmeci M C.2005. Variational principles for the equations of porous piezoelectric ceramics. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 52: 2112-2119.
|
[47] |
Auffray N, Dell'Isola F, Eremeyev V, Madeo A, Rosi G.2015. Analytical continuum mechanics la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Mathematics & Mechanics of Solids, 20: 375-417.
|
[48] |
Chien W Z.1984. Variational principles and generalized variational principles in hydrodynamics of viscous fluids. Applied Mathematics and Mechanics (English Edition), 5: 305-322.
|
[49] |
Chen X W, Liu C, Mei F X.2008. Conformal invariance and Hojman conserved quantities of first order Lagrange systems. Chinese Physics B, 17: 3180-3184.
|
[50] |
Eringen A C.1962. Nonlinear theory of continuous media. Journal of Applied Mechanics, 31: 368-377.
|
[51] |
Fahrenthold E P, Koo J C.1999. Discrete hamilton's equations for viscous compressible fluid dynamics. Computer Methods in Applied Mechanics & Engineering, ~178: 1-22.
|
[52] |
Granados A L M.1998. Variational principles in~continuum~mechanics. Boletin Tecnico/Technical Bulletin, 36: 19-42.
|
[53] |
Gouin H.2008. Variational theory of mixtures in continuum mechanics. European Journal of Mechanics-B/Fluids, ~9: 469-491.
|
[54] |
Hanyga A, Seredynska M.2008. Hamiltonian and Lagrangian theory of viscoelasticity. Continuum Mechanics & Thermodynamics, 19: 475-492.
|
[55] |
Hean C R, Fahrenthold E P.2017. Discrete Lagrange equations for reacting thermofluid dynamics in arbitrary Lagrangian-Eulerian frames. Computer Methods in Applied Mechanics & Engineering, 313: 303-320.
|
[56] |
Goldstein H, Poole C P, Safko J L.2001. Classical Mechanics (3rd Edition). Addison-Wesley.
|
[57] |
Hamilton WR. Part I 1834, Part II 1835. On a general method in dynamics. Philosophical Transaction of the Royal Society, Part I 1834: 247-308, Part II 1835: 95-144.
|
[58] |
Irschik H, Holl H J.2002. The equations of Lagrange written for a non-material volume. Acta Mechanica, 153: 231-248.
|
[59] |
Irschik H, Holl H J.2015. Lagrange's equations for open systems, derived via the method of fictitious particles, and written in the Lagrange description of continuum mechanics. Acta Mechanica, 226: 63-79.
|
[60] |
Kim G, Senda Y.2007. A methodology for coupling an atomic model with a continuum model using an extended Lagrange function. Journal of Physics Condensed Matter An Institute of Physics Journal, 19: 246203.
|
[61] |
Kim Jinkyu, Dargush G F, Ju Y K.2013. Extended framework of Hamilton's principle for continuum dynamics. International Journal of Solids and Structures, 50: 3418-3429.
|
[62] |
Kuang Z B.2014. Theory of Electroelasticity. Springer.
|
[63] |
Lyakhov A. F.1992. Variational formulation of the problem of mooring (anchor) line dynamics. International Journal of Fluid Mechanics Research, 21: 116-120.
|
[64] |
Longatte E, Bendjeddou Z, Souli M.2003. Application of arbitrary Lagrange Euler formulations to flow-induced vibration problems. Journal of Pressure Vessel Technology, 125: 225-233.
|
[65] |
Luo E, Kuang J S.1999. Some basic principles for linear coupled dynamic thermopiezoelectricity. Sci. China Ser. A-Math, 42: 1292-1300.
|
[66] |
Luo E, Zhu H J, Yuan L.2006. Unconventional Hamilton-type variational principles for electromagnetic elastodynamics. Sci. China Ser. G-Phys. Mech. Astron, 49: 119-128.
|
[67] |
Lagrange J L. (Joseph Louis). 1811 (Originally published in l788). Méanique analytique, Paris: Ve Courcier.
|
[68] |
Liang L F, Liu D K, Song H Y.2005. The generalized quasi-variational principles of non-conservative systems with two kinds of variables. Science in China (Series G), 48: 600-613.
|
[69] |
Liang L F, Liu S Q, Zhou J S.2009. Quasi-variational principles of single flexible body dynamics and their applications. Science in China (G), 52: 775-78.
|
[70] |
Liang L F, Song H Y.2013. Non-linear and non-conservative quasi-variational principle of flexible body dynamics and application in spacecraft dynamics. Science China Physics, Mechanics & Astronomy, 56: 2192-2199.
|
[71] |
Liu Y H, Zhang H M.2007. Variation principle of piezothermoelastic bodies, canonical equation and homogeneous equation. Appl Math Mech (English Edition), 28: 193-200.
|
[72] |
Mei F X.2000. Form invariance of Lagrange system. Journal of Beijing Institute of Technology (English Edition), 87:175-182.
|
[73] |
Mei F X, Xu X J.2005. Form invariances and lutzky conserved quantities for Lagrange systems. Chinese Physics B, 14: 449-451.
|
[74] |
Maximov G A.2010. A generalized variational principle for dissipative hydrodynamics and its application to Biot's theory for the description of a fluid shear relaxation. Acta Acustica United with Acustica, 96: 199-207.
|
[75] |
Mahmoudkhani S.2017. Dynamics of a mass-spring-beam with 0: 1: 1 internal resonance using the analytical and continuation method. International Journal of Non-Linear Mechanics, 97: 48-67.
|
[76] |
Orlov D, Apker T, He C, Othman H, Corke T.2006. Modeling and experiment of leading edge separation control using SDBD plasma actuators. Wildlife Research, 37: 447-455.
|
[77] |
Pian H H, Tong P.1972. Finite Element Method in Contimuum Mechanics. New York: Academic Press.
|
[78] |
Patel M P, Ng T T, Vasudevan S, Corke T C, He C.2007. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. Journal of Aircraft, 44: 1264-1274.
|
[79] |
Seiranyan A P.1984. On a problem of Lagrange. Mechanics of Solids, 19: 100-111.
|
[80] |
Song H Y, Hou G L, Sun H, Liang L F.2015. Rigid--elastic-thermal coupling dynamics and its application. Advances in Mechanical Engineering, 7: 1-8.
|
[81] |
Song H Y, Liu Z M, Huang Y H.2013. Dual form of generalized variational principles for piezoelectricity. International Journal of Nonlinear Sciences and Numerical Simulation, 14: 205-209.
|
[82] |
Song H Y, Zhou Z G, Liang L F, Liu Z M.2009. Generalized variational principles of electro-magneto-thermo-elasto-dynamics. Proceedings of ASME International Mechanical Engineering Congress and Exposition, 11: 243-248.
|
[83] |
Souchet R.2014. Continuum mechanics and Lagrange equations with generalised coordinates. International Journal of Engineering Science, 76: 27-33.
|
[84] |
Tran-Cong T.1996. A variational principle for fluid mechanics. Archive of Applied Mechanics, 67: 96-104.
|
[85] |
Yang Q, Lv Q C, Liu Y R.2017. Hamilton's principle as inequality for inelastic bodies. Continuum Mechanics & Thermodynamics, 29: 747-756.
|
[86] |
Zenkour A.1989. Hamilton's mixed variational formula for dynamical problems of anisotropic elastic bodies. Sm Archives, 14: 103-114.
|
[87] |
Zheng C B, Liu B, Wang Z J, Zheng S K.2010. Generalized variational principles for boundary value problem of electromagnetic field in electrodynamics. Appl. Math. Mech, 31: 471-480.
|
[88] |
Zhavoronok S I.2015. On the variational formulation of the extended thick anisotropic shells theory of I. N. vekua type. Procedia Engineering, 111: 888-895.
|