Volume 48 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
KANG Guozheng, KAN Qianhua, YU Chao, SONG Di. Study on cyclic deformation and fatigue of thermal and magnetic shape memory alloys[J]. Advances in Mechanics, 2018, 48(1): 1802. doi: 10.6052/1000-0992-17-008
Citation: KANG Guozheng, KAN Qianhua, YU Chao, SONG Di. Study on cyclic deformation and fatigue of thermal and magnetic shape memory alloys[J]. Advances in Mechanics, 2018, 48(1): 1802. doi: 10.6052/1000-0992-17-008

Study on cyclic deformation and fatigue of thermal and magnetic shape memory alloys

doi: 10.6052/1000-0992-17-008
More Information
  • Author Bio:

    ɛ E-mail:guozhengkang@swjtu.edu.cn

  • Corresponding author: KANG Guozheng
  • Received Date: 2017-04-07
  • Publish Date: 2018-02-08
  • Shape memory alloys (SMAs), including the thermal and magnetic ones, have attracted wide attention from scholars and engineers, and have been successfully employed in many engineering applications due to their unique super-elasticity and shape memory effects. To further prompt the application fields of SMAs, the progresses in the microscopic and macroscopic experimental observations and theoretical studies on their thermo-mechanical and magneto-mechanical coupled cyclic deformation and fatigue failure are reviewed herein. The latest achievements on the thermo-mechanical coupled cyclic deformation and fatigue failure of the thermal (i.e., temperature-induced) SMAs including NiTi and high-temperature NiTiX ones are summarized. In addition, the research status on the magneto-mechanical coupled cyclic deformation and fatigue failure of the magnetic SMAs including NiMnGa ones are reviewed. Last, a brief summary and a prospect of future topics are provided.

     

  • loading
  • [1]
    康国政, 于超, 阚前华. 2015. NiTi 形状记忆合金热--力耦合循环变形行为宏微观实验和理论研究进展. 固体力学学报, 36: 461-480

    (Kang G Z, Yu C, Kan Q H.2015. Progress in thermo-mechanical cyclic deformation of NiTi shape memory alloy: Macroscopic/Microscopic experiments and theory. Chinese Jounral of Solid Mechanics,36: 461-480).
    [2]
    康国政. 2011. 超弹性镍钛形状记忆合金循环变形行为的研究进展. 西南交通大学学报, 46: 355-364

    (Kang G Z.2011. Research progress in cyclic deformation of super-elastic NiTi shape memory alloy. Journal of Southwest Jiaotong University,46: 355-364).
    [3]
    宋迪. 2015. 超弹性 NiTi 形状记忆合金微管的疲劳行为及损伤演化模型研究. [博士论文]. 成都: 西南交通大学

    (Song D.2015. Study on the fatigue behavior and damage evolution model of super-elastic NiTi shape memory alloy microtubes. [PhD Thesis]. Chengdu: Southwest Jiaotong University).
    [4]
    王习术. 2010. 材料力学行为试验与分析 (第2版). 北京: 清华大学出版社, 77-91

    (Wang X S.2010. Test and Analysis on Mechanical Behavior of Materials (Second Edition). Beijing: Tsinghua University Press, 77-91).
    [5]
    赵连城, 蔡伟, 郑玉峰. 2002.合金的形状记忆合金效应与超弹性.第一版. 北京:国防工业出版社

    (Zhao L C, Cai W, Zheng Y F.2002. Shape Memory Effect and Superelasticity of Alloys. (First Edition). Beijing: National Defence Industry Press) .
    [6]
    左舜贵, 金学军, 金明江. 2014. 高温形状记忆合金的研究进展. 机械工程材料, 38: 1-5

    (Zuo S G, Jin X J, Jin M J.2014. Research progress in high temperature shape memory alloys. Materials for Mechanical Engineering,38: 1-5).
    [7]
    周廷, 阚前华, 康国政, 邱博. 2017. 超弹性镍钛形状记忆合金单轴相变棘轮行为的宏观唯象本构模型. 力学学报, 49: 588-596

    (Zhou T, Kan Q H, Kang G Z, Qiu B.2017. A macroscopic phenomenological constitutive model for the uniaxial transformation ratcheting of super-elastic NiTi shape memory alloy. Chinese Journal of Theoretical and Applied Mechanics,49: 588-596).
    [8]
    Aaltio I, Soroka A, Ge Y, Söderberg O, Hannula S P.2010. High-cycle fatigue of 10M Ni-Mn-Ga magnetic shape memory alloy in reversed mechanical loading. Smart Mater. Struct., 19: 075014.
    [9]
    Ahadi A, Sun Q.2013. Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi---Effects of grain size. Appl. Phys. Lett., 103: 021902.
    [10]
    Ahadi A, Sun Q.2014. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater., 76: 186-197.
    [11]
    Allen S M, Cahn J W.1979. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall., 27: 1085-1095.
    [12]
    Auricchio F, Bessoud A-L, Reali A, Stefanelli U.2015. A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys. Eur. J. Mech. A-Solid, 52: 1-11.
    [13]
    Auricchio F, Fugazza D, Desroches R.2008. Rate-dependent thermomechanical modelling of superelastic shape-memory alloys for seismic applications. J. Intell. Mater. Syst. Struct., 19: 47-61.
    [14]
    Benafan O, Noebe R D, Ii S A P, Brown D W, Vogel S, Vaidyanathan R.2014. Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. Int. J. Plast., 56: 99-118.
    [15]
    Bigelow G S, Padula Ii S A, Garg A, Noebe R D.2007. Correlation between mechanical behavior and actuator-type performance of Ni-Ti-Pd high-temperature shape memory alloys. International Symposium on: Smart Structures & Materials & Nondestructure Evaluation & Health Monitorying, 6526: 6526B-6526B-12.
    [16]
    Bigelow G S, Padula S A, Garg A, Gaydosh D, Noebe R D.2010. Characterization of ternary nitipd high-temperature shape-memory alloys under load-biased thermal cycling. Metall. Mater. Trans. A, 41: 3065-3079.
    [17]
    Bo Z, Lagoudas D C.1999. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: Evolution of plastic strains and two-way shape memory effect. Int. J. Eng. Sci., 37: 1175-1203.
    [18]
    Cahn J W, Allen S M.1977. Microscopic theory for domain wall motion and its experimental verification in fe-al alloy domain growth kinetics. J. Phy. Colloques, 38: C7-51-C7-54.
    [19]
    Cahn J W, Hilliard J E.1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys., 28: 258-267.
    [20]
    Cahn J W, Hilliard J E.1959. Free energy of a nonuniform system. iii. nucleation in a two---component incompressible fluid. J. Chem. Phys., 31: 688-699.
    [21]
    Charkaluk E, Bignonnet A, Constantinescu A, Dang Van K.2002. Fatigue design of structures under thermomechanical loadings. Fatigue Fract. Eng. Mater. Struct., 25: 1199-1206.
    [22]
    Charkaluk E, Constantinescu A.2000. An energetic approach in thermomechanical fatigue for silicon molybdenum cast iron. Mater. High Temp., 17: 373-380.
    [23]
    Chemisky Y, Chatzigeorgiou G, Kumar P, Lagoudas D C.2014. A constitutive model for cyclic actuation of high-temperature shape memory alloys. Mech. Mater., 68: 120-136.
    [24]
    Chen X, Moumni Z, He Y, Zhang W.2014. A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J. Mech. Phys. Solids, 64: 249-286.
    [25]
    Chernenko V A, Pons J, Cesari E, Ishikawa K.2005. Stress-temperature phase diagram of a ferromagnetic Ni-Mn-Ga shape memory alloy. Acta Mater., 53: 5071-5077.
    [26]
    Chmielus M, Chernenko V A, Knowlton W B, Kostorz G, Müllner P.2008. Training, constraints, and high-cycle magneto-mechanical properties of Ni-Mn-Ga magnetic shape-memory alloys. Eur. Phys. J. Spec. Top., 158: 79-85.
    [27]
    Christ D, Reese S.2009. A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int. J. Solids. Struct., 46: 3694-3709.
    [28]
    Chulist R, Skrotzki W, Oertel C G, Böhm A, Pötschke M.2010. Change in microstructure during training of a Ni50Mn29Ga21 bicrystal. Scripta Mater., 63: 548-551.
    [29]
    Cisse C, Zaki W, Ben Zineb T.2016. A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast., 76: 244-284.
    [30]
    Creton N, Hirsinger L.2005. Rearrangement surfaces under magnetic field and/or stress in Ni-Mn-Ga. J. Magn. Magn. Mater., 290-291: 832-835.
    [31]
    Delville R, Malard B, Pilch J, Sittner P, Schryvers D.2010. Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy. Acta Mater., 58: 4503-4515.
    [32]
    Delville R, Malard B, Pilch J, Sittner P, Schryvers D.2011. Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires. Int. J. Plast., 27: 282-297.
    [33]
    DeSimone A, James R D.2002. A constrained theory of magnetoelasticity. J. Mech. Phys. Solids, 50: 283-320.
    [34]
    Dhote R P, Gomez H, Melnik R N V, Zu J.2015. 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis. Comput. Struct., 154: 48-58.
    [35]
    Di Cocco V, Iacoviello F, Maletta C, Natali S.2014. Cyclic microstructural transitions and fracture micromechanisms in a near equiatomic NiTi alloy. Int. J. Fatigue, 58: 136-143.
    [36]
    Duerig T, Pelton A, Stöckel D.1999. An overview of nitinol medical applications. Mater. Sci. Eng. A, 273-275: 149-160.
    [37]
    Dunand-Ch^{a}tellet C, Moumni Z.2012. Experimental analysis of the fatigue of shape memory alloys through power-law statistics. Int. J. Fatigue, 36: 163-170.
    [38]
    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M.2004. Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A, 378: 24-33.
    [39]
    Falk F.1983a. Ginzburg-Landau theory of static domain walls in shape-memory alloys. Z. Phys. B, 51: 177-185.
    [40]
    Falk F.1983b. One-dimensional model of shape memory alloys. Arch. Mech, 35: 63-84.
    [41]
    Fan D, Chen L Q.1997. Computer simulation of grain growth using a continuum field model. Acta Mater., 45: 611-622.
    [42]
    Feng P, Sun Q P.2006. Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force. J. Mech. Phys. Solids, 54: 1568-1603.
    [43]
    Franciosi P.1985. The concepts of latent hardening and strain hardening in metallic single crystals. Acta Metall., 33: 1601-1612.
    [44]
    Frotscher M, Neuking K, Böckmann R, Wolff KD, Eggeler G.2008. In situ scanning electron microscopic study of structural fatigue of struts, the characteristic elementary building units of medical stents. Mater. Sci. Eng. A, 481-482: 160-165.
    [45]
    Gauthier J Y, Lexcellent C, Hubert A, Abadie J, Chaillet N.2006. Modeling rearrangement process of martensite platelets in a magnetic shape memory alloy Ni2MnGa single crystal under magnetic field and (or) stress action. J. Intell. Mater. Syst. Struct., 18: 289-299.
    [46]
    Grabe C, Bruhns O T.2008. On the viscous and strain rate dependent behavior of polycrystalline NiTi. Int. J. Solids. Struct., 45: 1876-1895.
    [47]
    Grandi D, Maraldi M, Molari L.2012. A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response. Acta Mater., 60: 179-191.
    [48]
    Guldbakke J M, Chmielus M, Rolfs K, Schneider R, Müllner P, Raatz A.2010. Magnetic, mechanical and fatigue properties of a Ni45.4Mn29.1Ga21.6Fe3.9 single crystal. Scripta Mater., 62: 875-878.
    [49]
    Guo X H, Shi S-Q, Ma X Q.2005. Elastoplastic phase field model for microstructure evolution. Appl. Phys. Lett., 87: 221910.
    [50]
    Haldar K, Lagoudas D C, Karaman I.2014. Magnetic field-induced martensitic phase transformation in magnetic shape memory alloys: Modeling and experiments. J. Mech. Phys. Solids, 69: 33-66.
    [51]
    Hamilton R F, Sehitoglu H, Chumlyakov Y, Maier H J.2004. Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater., 52: 3383-3402.
    [52]
    Hartl D J, Chatzigeorgiou G, Lagoudas D C.2010. Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int. J. Plast., 26: 1485-1507.
    [53]
    He Y J, Chen X, Moumni Z.2011. Two-dimensional analysis to improve the output stress in ferromagnetic shape memory alloys. J. Appl. Phys., 110: 063905.
    [54]
    He Y J, Sun Q P.2010a. Rate-dependent domain spacing in a stretched NiTi strip. Int. J. Solids. Struct., 47: 2775-2783.
    [55]
    He Y J, Sun Q P.2010b. Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading. Smart Mater. Struct., 19: 115014.
    [56]
    Hebda D A, White S R.1998. Effect of training conditions and extended thermal cycling on nitinol two-way shape memory behavior. Smart Mater. Struct., 4: 298.
    [57]
    Heczko O.2005. Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater., 290-291: 787-794.
    [58]
    Heidi P F, Constantin C, Eberle J L, Jason L D.2016. Experimental characterization and modeling of a three-variant magnetic shape memory alloy. Smart Mater. Struct., 25: 104004.
    [59]
    Hirsinger L, Lexcellent C.2003. Modelling detwinning of martensite platelets under magnetic and (or) stress actions on Ni-Mn-Ga alloys. J. Magn. Magn. Mater., 254-255: 275-277.
    [60]
    James R D, Wuttig M.1998. Magnetostriction of martensite. Philos. Mag. A, 77: 1273-1299.
    [61]
    Javanbakht M, Levitas V I.2015. Interaction between phase transformations and dislocations at the nanoscale. Part 2: Phase field simulation examples. J. Mech. Phys. Solids, 82: 164-185.
    [62]
    Jeong S, Inoue K, Inoue S, Koterazawa K, Taya M, Inoue K.2003. Effect of magnetic field on martensite transformation in a polycrystalline Ni2MnGa. Mater. Sci. Eng. A, 359: 253-260.
    [63]
    Kakeshita T, Takeuchi T, Fukuda T, Tsujiguchi M, Saburi T, Oshima R, Muto S.2000. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett., 77: 1502-1504.
    [64]
    Kan Q H, Kang G Z, Yan W Y, Dong Y W, Yu C.2011. An energy-based fatigue failure model for super-elastic NiTi alloys under pure mechanical cyclic loading. SPIE Conference Series, 8409.
    [65]
    Kan Q H, Yu C, Kang G Z, Li J, Yan W Y.2016. Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mech. Mater., 97: 48-58.
    [66]
    Kang G Z, Song D.2015. Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones. Theor. Appl. Mech. Lett., 5: 245-254.
    [67]
    Kang G Z.2013. Advances in transformation ratcheting and ratcheting-fatigue interaction of NiTi shape memory alloy. Acta. Mech. Solida Sin, 26: 221-236.
    [68]
    Kang G Z, Kan Q H, Qian L, Liu Y.2009. Ratchetting deformation of super-elastic and shape-memory NiTi alloys. Mech. Mater., 41: 139-153.
    [69]
    Karaca H E, Acar E, Ded G S, Basaran B, Tobe H, Noebe R D, Bigelow G, Chumlyakov Y I.2013. Shape memory behavior of high strength NiTiHfPd polycrystalline alloys. Acta Mater., 61: 5036-5049.
    [70]
    Karaca H E, Karaman I, Basaran B, Chumlyakov Y I, Maier H J.2006. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater., 54: 233-245.
    [71]
    Karaca H E, Karaman I, Basaran B, Lagoudas D C, Chumlyakov Y I, Maier H J.2007. On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater., 55: 4253-4269.
    [72]
    Karaman I, Karaca H E, Basaran B, Lagoudas D C, Chumlyakov Y I, Maier H J.2006. Stress-assisted reversible magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys. Scripta Mater., 55: 403-406.
    [73]
    Kastner O.2012. First Principles Modelling of Shape Memory Alloys. Berlin Heidelberg: Springer.
    [74]
    Ke C B, Cao S, Zhang X P.2015. Phase field modeling of Ni-concentration distribution behavior around Ni4Ti3 precipitates in NiTi alloys. Comp. Mater. Sci., 105: 55-65.
    [75]
    Kiefer B, Lagoudas D C.2005. Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag., 85: 4289-4329.
    [76]
    Kim J H, Inaba F, Fukuda T, Kakeshita T.2006. Effect of magnetic field on martensitic transformation temperature in Ni-Mn-Ga ferromagnetic shape memory alloys. Acta Mater., 54: 493-499.
    [77]
    Ko W S, Maisel S B, Grabowski B, Jeon J B, Neugebauer J.2017. Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. Acta Mater., 123: 90-101.
    [78]
    Kockar B, Atli K C, Ma J, Haouaoui M, Karaman I, Nagasako M, Kainuma R.2010. Role of severe plastic deformation on the cyclic reversibility of a Ti50.3Ni33.7Pd16 high temperature shape memory alloy. Acta Mater., 58: 6411-6420.
    [79]
    Kockar B, Karaman I, Kim J I, Chumlyakov Y.2006. A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scripta Mater., 54: 2203-2208.
    [80]
    König D, Zarnetta R, Savan A, Brunken H, Ludwig A.2011. Phase transformation, structural and functional fatigue properties of Ti-Ni-Hf shape memory thin films. Acta Mater., 59: 3267-3275.
    [81]
    Kumar P K, Lagoudas D C.2010. Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in high-temperature shape memory alloy. Acta Mater., 58: 1618-1628.
    [82]
    Kundin J, Pogorelov E, Emmerich H.2015. Numerical investigation of the interaction between the martensitic transformation front and the plastic strain in austenite. J. Mech. Phys. Solids, 76: 65-83.
    [83]
    Kundin J, Raabe D, Emmerich H.2011. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. J. Mech. Phys. Solids, 59: 2082-2102.
    [84]
    Lagoudas D C.2008. Shape Memory Alloys: Modeling and Engineering Applications. Springer.
    [85]
    Lagoudas D C, Chatzigeorgiou G, Kumar P K.2009a. Modeling and experimental study of simultaneous creep and transformation in polycrystalline high-temperature shape memory Alloys. J. Intell. Mater. Syst. Struct., 20: 2257-2267.
    [86]
    Lagoudas D C, Entchev P B.2004. Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech. Mater., 36: 865-892.
    [87]
    Lagoudas D C, Miller D A, Rong L, Kumar P K.2009b. Thermomechanical fatigue of shape memory alloys. Smart Mater. Struct., 18: 085021.
    [88]
    LaMaster D H, Feigenbaum H P, Ciocanel C, Nelson I D.2014. A full 3D thermodynamic-based model for magnetic shape memory alloys. J. Intell. Mater. Syst. Struct., 26: 663-679.
    [89]
    Lawrence T, Lindquist P, Ullakko K, Müllner P.2016. Fatigue life and fracture mechanics of unconstrained Ni-Mn-Ga single crystals in a rotating magnetic field. Mater. Sci. Eng. A, 654: 221-227.
    [90]
    Lemaitre J, Chaboche J L.1994. Mechanics of solid materials. Cambridge University Press..
    [91]
    Levitas V I, Javanbakht M.2012. Advanced phase-field approach to dislocation evolution. Phys. Rev. B, 86: 140101(R).
    [92]
    Levitas V I, Javanbakht M.2013. Phase field approach to interaction of phase transformation and dislocation evolution. Appl. Phys. Lett., 102: 251904.
    [93]
    Levitas V I, Javanbakht M.2015. Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach. J. Mech. Phys. Solids, 82: 287-319.
    [94]
    Levitas V I, Preston D L, Lee D W.2003. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys. Rev. B, 68.
    [95]
    Lim T J, Mcdowell D L.1999. Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading. J. Eng. Mater. Technol., 121: 9-18.
    [96]
    Liu Y, McCormick P G.1990. Factors influencing the development of two-way shape memory in NiTi. Acta Mater., 38: 1321-1326.
    [97]
    Liu Y, Xie Z, Van Humbeeck J, Delaey L.1998. Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys. Acta Mater., 46: 4325-4338.
    [98]
    Ma J, Karaman I, Noebe R D.2010. High temperature shape memory alloys. Int. Mater. Rev., 55: 257-315.
    [99]
    Mahtabi M J, Shamsaei N, Mitchell M R.2015. Fatigue of nitinol: The state-of-the-art and ongoing challenges. J. Mech. Behav. Biomed., 50: 228-254.
    [100]
    Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A.2012. Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: A modified Coffin-Manson approach. Smart Mater. Struct., 21: 112001.
    [101]
    Maletta C, Sgambitterra E, Furgiuele F, Casati R, Tuissi A.2014. Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading. Int. J. Fatigue, 66: 78-85.
    [102]
    Malik A, Amberg G, Borgenstam A, {AA}gren J.2013. Phase-field modelling of martensitic transformation: the effects of grain and twin boundaries. Modell. Simul. Mater. Sci. Eng., 21: 085003.
    [103]
    Malik A, Yeddu H K, Amberg G, Borgenstam A, {AA}gren J.2012. Three dimensional elasto-plastic phase field simulation of martensitic transformation in polycrystal. Mater. Sci. Eng. A, 556: 221-232.
    [104]
    Marioni M A, O'Handley R C, Allen S M.2002. Analytical model for field-induced strain in ferromagnetic shape-memory alloy polycrystals. J. Appl. Phys., 91: 7807-7809.
    [105]
    Mccluskey P J, Zhao C, Kfir O, Vlassak J J.2011. Precipitation and thermal fatigue in Ni-Ti-Zr shape memory alloy thin films by combinatorial nanocalorimetry. Acta Mater., 59: 5116-5124.
    [106]
    Mecking H, Kocks U F.1981. Kinetics of flow and strain-hardening. Acta Metall., 29: 1865-1875.
    [107]
    Meng X L, Cai W, Zheng Y F, Tong Y X, Zhao L C, Zhou L M.2002. Stress-induced martensitic transformation behavior of a Ti-Ni-Hf high temperature shape memory alloy. Mater. Lett., 55: 111-115.
    [108]
    Meng X L, Zheng Y F, Wang Z, Zhao L C.2000. Shape memory properties of the Ti36Ni49Hf15 high temperature shape memory alloy. Mater. Lett., 45: 128-132.
    [109]
    Miller D A, Lagoudas D C.2000. Thermomechanical characterization of NiTiCu and NiTi SMA actuators: Influence of plastic strains. Smart Mater. Struct., 9: 640.
    [110]
    Mirzaeifar R, Desroches R, Yavari A.2011. Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension. Continuum Mech. Thermodyn., 23: 363-385.
    [111]
    Mirzaeifar R, Gall K, Zhu T, Yavari A, DesRoches R.2014. Structural transformations in NiTi shape memory alloy nanowires. J. Appl. Phys., 115: 194307.
    [112]
    Miyazaki S, Imai T, Igo Y, Otsuka K.1986. Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall. Mater. Trans. A, 17: 115-120.
    [113]
    Miyazaki S, Oshiba M, Nadai T.1981. Precaution on use of hydrochloride salts in pharmaceutical formulation. J. Pharm. Sci., 70: 594.
    [114]
    Mohd Jani J, Leary M, Subic A, Gibson M A.2014. A review of shape memory alloy research, applications and opportunities. Materials & Design( 1980-2015), 56: 1078-1113.
    [115]
    Morgan N B.2004. Medical shape memory alloy applications---the market and its products. Mater. Sci. Eng. A, 378: 16-23.
    [116]
    Morin C, Moumni Z, Zaki W.2011. Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. Int. J. Plast., 27: 1959-1980.
    [117]
    Moumni Z, Herpen A V, Riberty P.2005. Fatigue analysis of shape memory alloys: Energy approach. Smart Mater. Struct., 14: S287.
    [118]
    Mousavi M R, Arghavani J.2017. A three-dimensional constitutive model for magnetic shape memory alloys under magneto-mechanical loadings. Smart Mater. Struct., 26: 015014.
    [119]
    Müller C, Bruhns O T.2006. A thermodynamic finite-strain model for pseudoelastic shape memory alloys. Int. J. Plast., 22: 1658-1682.
    [120]
    Müllner P, Chernenko V, Wollgarten M, Kostorz G.2002. Large cyclic deformation of a Ni-Mn-Ga shape memory alloy induced by magnetic fields. J. Appl. Phys., 92: 6708-6713.
    [121]
    Murray S, Farinelli M, Kantner C, Huang J, Allen S, O'Handley R.1998. Field-induced strain under load in Ni-Mn-Ga magnetic shape memory materials. J. Appl. Phys., 83: 7297-7299.
    [122]
    Murray S, O'Handley R, Allen S.2001. Model for discontinuous actuation of ferromagnetic shape memory alloy under stress. J. Appl. Phys., 89: 1295-1301.
    [123]
    Mutter D, Nielaba P.2013. Simulation of the shape memory effect in a NiTi nano model system. J. Alloys Compd., 577: S83-S87.
    [124]
    Niendorf T, Lackmann J, Gorny B, Maier HJ.2011. In situ characterization of martensite variant formation in nickel-titanium shape memory alloy under biaxial loading. Scripta Mater., 65, 915-918.
    [125]
    Norfleet D M, Sarosi P M, Manchiraju S, Wagner M F X, Uchic M D, Anderson P M, Mills M J.2009. Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater., 57: 3549-3561.
    [126]
    Paranjape H M, Manchiraju S, Anderson P M.2016. A phase field - Finite element approach to model the interaction between phase transformations and plasticity in shape memory alloys. Int. J. Plast., 80: 1-18.
    [127]
    Pelton A R, Huang G H, Moine P, Sinclair R.2012. Effects of thermal cycling on microstructure and properties in Nitinol. Mater. Sci. Eng. A, 532: 130-138.
    [128]
    Pelton A R.2011. Nitinol Fatigue: A Review of Microstructures and Mechanisms. J. Mater. Eng. Perform., 20: 613-617.
    [129]
    Popov P, Lagoudas D C.2007. A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int. J. Plast., 23: 1679-1720.
    [130]
    Pötschke M, Weiss S, Gaitzsch U, Cong D, Hürrich C, Roth S, Schultz L.2010. Magnetically resettable 0.16% free strain in polycrystalline Ni-Mn-Ga plates. Scripta Mater., 63: 383-386.
    [131]
    Predki W, Klönne M, Knopik A.2006. Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure. Mater. Sci. Eng. A, 417: 182-189.
    [132]
    Rao A, Srinivasa A R, Reddy J N.2015. Design of Shape Memory Alloy (SMA) Actuators. Springer, 3.
    [133]
    Robertson S, Pelton A, Ritchie R.2012. Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev., 57: 1-37.
    [134]
    Runciman A, Xu D, Pelton A R, Ritchie R O.2011. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices. Biomaterials, 32: 4987-4993.
    [135]
    Saghaian S M, Karaca H E, Tobe H, Pons J, Santamarta R, Chumlyakov Y I, Noebe R D.2016. Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys. Smart Mater. Struct., 25: 095029.
    [136]
    Saleeb A F, Kumar A, Ii S A P, Dhakal B.2013. The cyclic and evolutionary response to approach the attraction loops under stress controlled isothermal conditions for a multi-mechanism based multi-axial SMA model. Mech. Mater., 63: 21-47.
    [137]
    Santamarta R, Arr'{o}yave R, Pons J, Evirgen A, Karaman I, Karaca H E, Noebe R D.2013. TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys. Acta Mater., 61: 6191-6206.
    [138]
    Sasaki T T, Hornbuckle B C, Noebe R D, Bigelow G S, Weaver M L, Thompson G B.2013. Effect of aging on microstructure and shape memory properties of a Ni-48Ti-25Pd (At. Pct) alloy. Metall. Mater. Trans. A, 44: 1388-1400.
    [139]
    Saxena A, Wu Y, Lookman T, Shenoy S, Bishop A.1997. Hierarchical pattern formation in elastic materials. Phy. A, 239: 18-34.
    [140]
    Segu'{i} C, Chernenko V A, Pons J, Cesari E, Khovailo V, Takagi T.2005. Low temperature-induced intermartensitic phase transformations in Ni-Mn-Ga single crystal. Acta Mater., 53: 111-120.
    [141]
    Shaw J A, Kyriakides S.1995. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids, 43: 1243-1281.
    [142]
    Shaw J A, Kyriakides S.1997. Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. Int. J. Plast., 13: 837-871.
    [143]
    Shchyglo O, Salman U, Finel A.2012. Martensitic phase transformations in Ni-Ti-based shape memory alloys: The Landau theory. Acta Mater., 60: 6784-6792.
    [144]
    v{S}ittner P, Nov'{a}k V, Landa M, Luk'{a}v{s} P.2007. Deformation processes in functional materials studied by in situ neutron diffraction and ultrasonic techniques. Mater. Sci. Eng. A, 462, 12-22.
    [145]
    Skelton R P, Vilhelmsen T, Webster G A.1998. Energy criteria and cumulative damage during fatigue crack growth. Int. J. Fatigue, 20: 641-649.
    [146]
    Skelton R.1991. Energy criterion for high temperature low cycle fatigue failure. Mater. Sci. Technol., 7: 427-440.
    [147]
    Song D, Kang G Z, Kan Q H, Yu C, Zhang C.2015. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes. Smart Mater. Struct., 24: 085007.
    [148]
    Song D, Kang G Z, Kan Q H, Yu C, Zhang C.2016. Multiaxial low-cycle fatigue failure mechanism of super-elastic NiTi shape memory alloy micro-tubes. Mater. Sci. Eng. A, 665: 17-25.
    [149]
    Song D, Kang G Z, Kan Q H, Yu C, Zhang C.2017. Effects of peak stress and stress amplitude on multiaxial transformation ratchetting and fatigue life of superelastic NiTi SMA micro-tubes: Experiments and life-prediction model. Int. J. Fatigue, 96: 252-260.
    [150]
    Song G, Ma N, Li H N.2006. Applications of shape memory alloys in civil structures. Eng. Struct., 28: 1266-1274.
    [151]
    Straka L, Heczko O.2003. Superelastic response of Ni-Mn-Ga martensite in magnetic fields and a simple model. IEEE Trans. Magn., 39: 3402-3404.
    [152]
    Sun L, Huang W M, Ding Z, Zhao Y, Wang C C, Purnawali H, Tang C.2012a. Stimulus-responsive shape memory materials: A review. Mater. Des., 33: 577-640.
    [153]
    Sun Q P, Li Z Q.2002. Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion--from localization to homogeneous deformation. Int. J. Solids. Struct., 39: 3797-3809.
    [154]
    Sun Q P, Zhao H, Zhou R, Saletti D, Yin H.2012b. Recent advances in spatiotemporal evolution of thermomechanical fields during the solid-solid phase transition. C. R. Mecanique, 340: 349-358.
    [155]
    Tadayyon G, Guo Y, Mazinani M, Zebarjad S M, Tiernan P, Tofail S A M, Biggs M J P.2017. Effect of different stages of deformation on the microstructure evolution of Ti-rich NiTi shape memory alloy. Mater. Charact., 125: 51-66.
    [156]
    Tian Q, Wu J.2002. Tensile behavior of Ti50.6Pd30Ni19.4 alloy under different tensile conditions. Mater. Sci. Eng. A, 325: 249-254.
    [157]
    Tickle R, James R D, Shield T, Wuttig M, Kokorin V V.1999. Ferromagnetic shape memory in the NiMnGa system. IEEE Trans. Magn., 35: 4301-4310.
    [158]
    Tickle R, James R D.1999. Magnetic and magnetomechanical properties of Ni2MnGa. J. Magn. Magn. Mater., 195: 627-638.
    [159]
    Tobushi H, Nakahara T, Shimeno Y, Hashimoto T.2000. Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life. T. Asme, 122: 186-191.
    [160]
    Ullakko K, Huang J K, Kantner C, Ohandley R C, Kokorin V V.1996. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett., 69: 1966-1968.
    [161]
    Van Humbeeck J.1999. Non-medical applications of shape memory alloys. Mater. Sci. Eng. A, 273-275: 134-148.
    [162]
    Wagner M, Sawaguchi T, Kausträter G, Höffken D, Eggeler G.2004. Structural fatigue of pseudoelastic NiTi shape memory wires. Mater. Sci. Eng. A, 378: 105-109.
    [163]
    Wang B, Kang G Z, Kan Q H, Zhou K, Yu C.2017. Molecular dynamics simulations to the pseudo-elasticity of NiTi shape memory alloy nano-pillar subjected to cyclic compression. Comp. Mater. Sci., 131: 132-138.
    [164]
    Wang X, Li F.2010. A kinetics model for martensite variants rearrangement in ferromagnetic shape memory alloys. J. Appl. Phys., 108: 113921.
    [165]
    Wang Y, Khachaturyan A.1997. Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater., 45: 759-773.
    [166]
    Wu J, Tian Q.2003. The superelasticity of TiPdNi high temperature shape memory alloy. Intermetallics, 11: 773-778.
    [167]
    Xie X, Kan Q H, Kang G Z, Li J, Qiu B, Yu C.2016a. Observation on the transformation domains of super-elastic NiTi shape memory alloy and their evolutions during cyclic loading. Smart Mater. Struct., 25: 045003.
    [168]
    Xie X, Kan Q H, Kang G Z, Lu F C, Chen K J.2016b. Observation on rate-dependent cyclic transformation domain of super-elastic NiTi shape memory alloy. Mater. Sci. Eng. A, 671: 32-47.
    [169]
    Xie Z, Liu Y, Van Humbeeck J.1998. Microstructure of NiTi shape memory alloy due to tension-compression cyclic deformation. Acta Mater., 46: 1989-2000.
    [170]
    Yang F, Coughlin D R, Phillips P J, Yang L, Devaraj A, Kovarik L, Noebe R D, Mills M J.2013. Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy. Acta Mater., 61: 3335-3346.
    [171]
    Yin H, He Y, Sun Q.2014. Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J. Mech. Phys. Solids, 67: 100-128.
    [172]
    Yin H, Yan Y, Huo Y, Sun Q.2013. Rate dependent damping of single crystal CuAlNi shape memory alloy. Mater. Lett., 109: 287-290.
    [173]
    Yu C, Kang G Z, Kan Q H.2014a. A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy: One-dimensional model. Mech. Mater., 78: 1-10.
    [174]
    Yu C, Kang G Z, Kan Q H.2016. A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy. Acta Mech. Sinica, 1-16.
    [175]
    Yu S Y, Wei J J, Kang S S, Chen J L, Wu G H.2014b. Large temperature and magnetic field induced strain in polycrystalline Ni50Mn36In14-xSbx alloys. J. Alloys Compd., 586: 328-332.
    [176]
    Zaki W, Moumni Z.2007. A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids, 55: 2455-2490.
    [177]
    Zhang X, Feng P, He Y, Yu T, Sun Q.2010. Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips. Int. J. Mech. Sci., 52: 1660-1670.
    [178]
    Zhang Y, You Y, Moumni Z, Anlas G, Zhu J, Zhang W.2017. Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys. Int. J. Plast., 90: 1-30. Zhang Y, Zhu J, Moumni Z, Herpen A V, Zhang W. 2016. Energy-based fatigue model for shape memory alloys including thermomechanical coupling. Smart Mater. Struct., 25: 035042.
    [179]
    Zhong Y, Gall K, Zhu T.2012. Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars. Acta Mater., 60: 6301-6311.
    [180]
    Zhong Y, Zhu T.2014. Phase-field modeling of martensitic microstructure in NiTi shape memory alloys. Acta Mater., 75: 337-347.
    [181]
    Zhu Y, Chen T, Teng Y, Liu B, Xue L.2016. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling. J. Magn. Magn. Mater., 417: 249-257.
    [182]
    Zhu Y, Dui G.2007. Micromechanical modeling of the stress-induced superelastic strain in magnetic shape memory alloy. Mech. Mater., 39: 1025-1034.
    [183]
    Zhu Y, Dui G.2008. Model for field-induced reorientation strain in magnetic shape memory alloy with tensile and compressive loads. J. Alloys Compd., 459: 55-60.
    [184]
    Zhu Y, Dui G.2010. Influence of magnetization rotation on martensite reorientation in magnetic shape memory alloy. Acta Mech. Solida Sin., 23: 13-19.
    [185]
    Zotov N, Pfund M, Polatidis E, Mark A F, Mittemeijer E J.2017. Change of transformation mechanism during pseudoelastic cycling of NiTi shape memory alloys. Mater. Sci. Eng. A, 682: 178-191.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2529) PDF downloads(1599) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return