Volume 48 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
ZHOU Lixin, CAO Guoxin. Indentation tests investigation of mechanical behavior of two-dimensional materials[J]. Advances in Mechanics, 2018, 48(1): 1804. doi: 10.6052/1000-0992-16-043
Citation: ZHOU Lixin, CAO Guoxin. Indentation tests investigation of mechanical behavior of two-dimensional materials[J]. Advances in Mechanics, 2018, 48(1): 1804. doi: 10.6052/1000-0992-16-043

Indentation tests investigation of mechanical behavior of two-dimensional materials

doi: 10.6052/1000-0992-16-043
More Information
  • Author Bio:

    ɛ E-mail:Caogx@pku.edu.cn

  • Corresponding author: CAO Guoxin
  • Received Date: 2016-11-24
  • Publish Date: 2018-02-08
  • Fully understanding the mechanical properties of two-dimensional (2D) materials is highly important for developing applications based on 2D-materials. Free-standing indentation (FSI) is currently the most common method to measure the mechanical properties of 2D-materials. The present work reviewed the state-of-the-art FSI investigations of 2D-mateirals, the issues to be considered, and some future works in this area. In FSI tests, 2D-materials are firstly transferred on the top of the substrate with cylindrical holes to create beam/drum-type samples, and atomic force microscopy (AFM) is then used to measure the indentation load-displacement relationship of these samples. Finally, the mechanical properties, including the elastic modulus and intrinsic strength, can be determined by fitting the experimental results as the indentation analysis model is developed on the basis of the continuum thin film. However, since the thickness of 2D-materials is far less than that of the continuum thin film, the van der Waals (vdW) adhesion interactions from the AFM-tip and the side-wall of substrate hole have a strong influence on the indentation response, which leads to measurement inaccuracy of the elastic modulus of 2D-materials from FSI tests. In addition, the nonlinear response of 2D-materials under large deformation as well as the stress concentration created by defects cannot be effectively described by the conventional indentation analysis model, and thus, the intrinsic stress of 2D-materials cannot be accurately determined, especially for the poly-crystalline 2D-materials. Therefore, we should correctly understand the present experimental results from FSI tests, and in the meantime, it is very necessary to further improve the FSI technique for measuring the mechanical properties of 2D-materials.

     

  • loading
  • [1]
    韩同伟, 贺鹏飞, 骆英, 张晓燕. 2011. 石墨烯力学性能研究进展. 力学进展, 41: 279-293

    (Han T W, He P F, Luo Y, Zhang X Y.2011. Research progress in the mechanical properties of graphene. Advances in Mechanics, 41: 279-293).
    [2]
    杨晓东, 贺鹏飞, 吴艾辉, 郑百林. 2010. 石墨烯纳米压痕实验的分子动力学模拟. 中国科学: 物理学力学天文学, 40: 353-361

    (Yang X D, He P F, Wu A H, Zheng B L.2010. Molecular dynamics simulation of nanoindentation for graphene. Scientia Sinica,40: 353-360).
    [3]
    Annamalai M, Mathew S, Jamali M, Zhan D, Palaniapan M.2012. Elastic and nonlinear response of nanomechanical graphene devices. Journal of Micromechanics and Microengineering, 22: 105024.
    [4]
    Arroyo M, Belytschko T.2004. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Physical Review B, 69: 115415.
    [5]
    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N.2008. Superior thermal conductivity of single-layer graphene. Nano Letters, 8: 902-907.
    [6]
    Bao W X, Zhu C C, Cui W Z.2004. Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics. Physica B-Condensed Matter, 352: 156-163.
    [7]
    Bertolazzi S, Brivio J, Kis A.2011. Stretching and breaking of ultrathin MoS2. ACS Nano, 5: 9703-9709.
    [8]
    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L.2008. Impermeable atomic membranes from graphene sheets. Nano Letters, 8: 2458-2462.
    [9]
    Cadelano E, Palla P L, Giordano S, Colombo L.2009. Nonlinear elasticity of monolayer graphene. Physical Review Letters, 102: 235502.
    [10]
    Cao G.2014. Atomistic studies of mechanical properties of graphene. Polymers, 6: 2404-2432.
    [11]
    Cao G X, Chen X.2006. Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method. Physical Review B, 73: 155435.
    [12]
    Capella B, Baschieri P, Frediani C, Miccoli P, Ascoli C.1997. Force-distance curves by AFM---A powerful technique for studying surface interactions. IEEE Engineering in Medicine and Biology Magazine, 16: 58-65.
    [13]
    Castellanos-Gomez A, Poot M, Amor-Amoros A, Steele G A, van der Zant H S J, Agrait N, Rubio-Bollinger G.2012a. Mechanical properties of freely suspended atomically thin dielectric layers of mica. Nano Research, 5: 550-557.
    [14]
    Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agrait N, Rubio-Bollinger G.2012b. Elastic properties of freely suspended MoS2 nanosheets. Advanced Materials, 24: 772-775.
    [15]
    Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agrait N, Rubio-Bollinger G.2012c. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Research Letters, 7: 1-4.
    [16]
    Castellanos-Gomez A, van Leeuwen R, Buscema M, van der Zant H S J, Steele G A, Venstra W J.2013. Single-layer MoS2 mechanical resonators. Advanced Materials, 25: 6719-6723.
    [17]
    Chang T C, Gao H J.2003. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. Journal of the Mechanics and Physics of Solids, 51: 1059-1074.
    [18]
    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S.2008. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 3: 206-209.
    [19]
    Cooper R C, Lee C, Marianetti C A, Wei X D, Hone J, Kysar J W.2013. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Physical Review B, 87: 035423.
    [20]
    Eda G, Fanchini G, Chhowalla M.2008. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3: 270-274.
    [21]
    Elahi M, Khaliji K, Tabatabaei S M, Pourfath M, Asgari R.2015. Modulation of electronic and mechanical properties of phosphorene through strain. Physical Review B, 91: 115412.
    [22]
    Frank I W, Tanenbaum D M, van der Zande A M, McEuen P L.2007. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 25: 2558-2561.
    [23]
    Gao E L, Xu Z P.2015. Thin-shell thickness of two-dimensional materials. Journal of Applied Mechanics-Transactions of the Asme, 82: 121012.
    [24]
    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A.2013. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnology, 8: 100-103.
    [25]
    Gomez-Navarro C, Burghard M, Kern K.2008. Elastic properties of chemically derived single graphene sheets. Nano Letters, 8: 2045-2049.
    [26]
    Grantab R, Shenoy V B, Ruoff R S.2010. Anomalous strength characteristics of tilt grain boundaries in graphene. Science, 330: 946-948.
    [27]
    Gupta S, Dharamvir K, Jindal V K.2005. Elastic moduli of single-walled carbon nanotubes and their ropes. Physical Review B, 72: 165428.
    [28]
    Hajgato B, Guryel S, Dauphin Y, Blairon J M, Miltner H E, Van Lier G, De Proft F, Geerlings P.2012. Theoretical investigation of the intrinsic mechanical properties of single- and double-layer graphene. Journal of Physical Chemistry C, 116: 22608-22618.
    [29]
    Han J, Pugno N M, Ryu S.2015. Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials. Nanoscale, 7: 15672-15679.
    [30]
    Han J, Ryu S, Sohn D.2016. A feasibility study on the fracture strength measurement of polycrystalline graphene using nanoindentation with a cylindrical indenter. Carbon, 107: 310-318.
    [31]
    He L C, Guo S S, Lei J C, Sha Z D, Liu Z S.2014. The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets---A molecular dynamics study. Carbon, 75: 124-132.
    [32]
    Hemmasizadeh A, Mahzoon M, Hadi E, Khandan R.2008. A method for developing the equivalent continuum model of a single layer graphene sheet. Thin Solid Films, 516: 7636-7640.
    [33]
    Hernandez E, Goze C, Bernier P, Rubio A.1998. Elastic properties of C and BxCyNz composite nanotubes. Physical Review Letters, 80: 4502-4505.
    [34]
    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A.2011. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 469: 389.
    [35]
    Huang Y, Wu J, Hwang K C.2006. Thickness of graphene and single-wall carbon nanotubes. Physical Review B, 74: 245413.
    [36]
    Jiang J-W, Rabczuk T, Park H S.2015. A Stillinger-Weber potential for single-layered black phosphorus, and the importance of cross-pucker interactions for a negative Poisson's ratio and edge stress-induced bending. Nanoscale, 7: 6059-6068.
    [37]
    Jiang J W.2014. Phonon bandgap engineering of strained monolayer MoS2. Nanoscale, 6: 8326-8333.
    [38]
    Jiang J W.2015. Parametrization of Stillinger-Weber potential based on valence force field model: Application to single-layer MoS2 and black phosphorus. Nanotechnology, 26: 315706.
    [39]
    Jing N N, Xue Q Z, Ling C C, Shan M X, Zhang T, Zhou X Y, Jiao Z Y.2012. Effect of defects on Young's modulus of graphene sheets: A molecular dynamics simulation. RSC Advances, 2: 9124-9129.
    [40]
    Kitt A L, Qi Z N, Remi S, Park H S, Swan A K, Goldberg B B.2013. How graphene slides: Measurement and theory of strain-dependent frictional forces between graphene and SiO2. Nano Letters, 13: 2605-2610.
    [41]
    Koenig S P, Boddeti N G, Dunn M L, Bunch J S.2011. Ultrastrong adhesion of graphene membranes. Nature Nanotechnology, 6: 543-546.
    [42]
    Konakov Y V, Ovid'ko I A, Sheinerman A G.2014. Equilibrium dislocation structures at grain boundaries in subsurface areas of polycrystalline graphene and ultrafine-grained metals. Reviews on Advanced Materials Science, 37: 83-89.
    [43]
    Koskinen P, Kit O O.2010. Approximate modeling of spherical membranes. Physical Review B, 82: 235420.
    [44]
    Kudin K N, Scuseria G E, Yakobson B I.2001. C2F, BN, and C nanoshell elasticity from ab initio computations. Physical Review B, 64: 235406.
    [45]
    Kunz D A, Max E, Weinkamer R, Lunkenbein T, Breu J, Fery A.2009. Deformation measurements on thin clay tactoids. Small, 5: 1816-1820.
    [46]
    Lee C, Wei X D, Kysar J W, Hone J.2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321: 385-388.
    [47]
    Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerherg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J.2013. High-strength chemical-vapor deposited graphene and grain boundaries. Science, 340: 1073-1076.
    [48]
    Lee J U, Yoon D, Cheong H.2012. Estimation of Young's modulus of graphene by Raman Spectroscopy. Nano Letters, 12: 4444-4448.
    [49]
    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B.2014. Black phosphorus field-effect transistors. Nature Nanotechnology, 9: 372-377.
    [50]
    Li P, You Z, Haugstad G, Cui T H.2011. Graphene fixed-end beam arrays based on mechanical exfoliation. Applied Physics Letters, 98: 253105.
    [51]
    Lin Q Y, Jing G, Zhou Y B, Wang Y F, Meng J, Bie Y Q, Yu D P, Liao Z M.2013. Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition. ACS Nano, 7: 1171-1177.
    [52]
    Liu F, Ming P M, Li J.2007. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 76: 064120.
    [53]
    Liu K, Yan Q M, Chen M, Fan W, Sun Y H, Suh J, Fu D Y, Lee S, Zhou J, Tongay S, Ji J, Neaton J B, Wu J Q.2014. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Letters, 14: 5097-5103.
    [54]
    Lu Q, Arroyo M, Huang R.2009. Elastic bending modulus of monolayer graphene. Journal of Physics D-Applied Physics, 42: 102002.
    [55]
    Lu Q, Gao W, Huang R.2011. Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modelling and Simulation in Materials Science and Engineering, 19: 054006.
    [56]
    Lu Q, Huang R.2009. Nonlinear mechanics of single-atomic-layer graphene sheets. International Journal of Applied Mechanics, 1: 443-467.
    [57]
    Lu Z X, Dunn M L.2010. Van der Waals adhesion of graphene membranes. Journal of Applied Physics, 107: 044301.
    [58]
    Mak K F, Lee C, Hone J, Shan J, Heinz T F.2010. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 105: 136805.
    [59]
    Meo M, Rossi M.2006. Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Composites Science and Technology, 66: 1597-1605.
    [60]
    Munoz E, Singh A K, Ribas M A, Penev E S, Yakobson B I.2010. The ultimate diamond slab: Graphane versus graphene. Diamond and Related Materials, 19: 368-373.
    [61]
    Neek-Amal M, Peeters F M.2010. Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene. Physical Review B, 81: 235437.
    [62]
    Neek-Amal M, Peeters F M.2010. Nanoindentation of a circular sheet of bilayer graphene. Physical Review B, 81: 235421.
    [63]
    Ni G X, Yang H Z, Ji W, Baeck S J, Toh C T, Ahn J H, Pereira V M, Ozyilmaz B.2014. Tuning optical conductivity of large-scale CVD graphene by strain engineering. Advanced Materials, 26: 1081-1086.
    [64]
    Niu T X, Cao G X, Xiong C Y.2016. Fracture behavior of graphene mounted on stretchable substrate. Carbon, 109: 852-859.
    [65]
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A.2004. Electric field effect in atomically thin carbon films. Science, 306: 666-669.
    [66]
    Pan D X.2015. Anisotropic bending behaviors and bending induced buckling in singlelayered black phosphorus. Chinese Science Bulletin, 8: 764-770.
    [67]
    Pei Q X, Zhang Y W, Shenoy V B.2010. Mechanical properties of methyl functionalized graphene: A molecular dynamics study. Nanotechnology, 21: 115709.
    [68]
    Peng Q, De S.2013. Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Physical Chemistry Chemical Physics, 15: 19427-19437.
    [69]
    Pereira V M, Castro Neto A H.2009. Strain engineering of graphene's electronic structure. Physical Review Letters, 103: 046801.
    [70]
    Poot M, van der Zant H S J.2008. Nanomechanical properties of few-layer graphene membranes. Applied Physics Letters, 92: 063111.
    [71]
    Pruessner M W, King T T, Kelly D P, Grover R, Calhoun L C, Ghodssi R.2003. Mechanical property measurement of InP-based MEMS for optical communications. Sensors and Actuators A-Physical, 105: 190-200.
    [72]
    Pu J, Li L J, Takenobu T.2014. Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemistry Chemical Physics, 16: 14996-15006.
    [73]
    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W.2014. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 5: 4475.
    [74]
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A.2011. Single-layer MoS2 transistors. Nature Nanotechnology, 6: 147-150.
    [75]
    Rasool H I, Ophus C, Klug W S, Zettl A, Gimzewski J K.2013. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nature Communications, 4: 2811.
    [76]
    Reddy C D, Rajendran S, Liew K M.2006. Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology, 17: 864-870.
    [77]
    Ren Y, Cao G.2016. Effect of geometrical defects on the tensile properties of graphene. Carbon, 103: 125-133.
    [78]
    Ruiz-Vargas C S, Zhuang H L L, Huang P Y, van der Zande A M, Garg S, McEuen P L, Muller D A, Hennig R G, Park J.2011. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Letters, 11: 2259-2263.
    [79]
    Sanchez-Portal D, Artacho E, Soler J M, Rubio A, Ordejon P.1999. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 59: 12678-12688.
    [80]
    Schwierz F.2010. Graphene transistors. Nature Nanotechnology, 5: 487-496.
    [81]
    Sha Z D, Quek S S, Pei Q X, Liu Z S, Wang T J, Shenoy V B, Zhang Y W.2014. Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene. Scientific Reports, 4: 5991.
    [82]
    Sha Z D, Wan Q, Pei Q X, Quek S S, Liu Z S, Zhang Y W, Shenoy V B.2014. On the failure load and mechanism of polycrystalline graphene by nanoindentation. Scientific Reports, 4: 7437.
    [83]
    Shen Y K, Wu H A.2012. Interlayer shear effect on multilayer graphene subjected to bending. Applied Physics Letters, 100: 101909.
    [84]
    Song Z G, Artyukhov V I, Wu J, Yakobson B I, Xu Z P.2015. Defect-detriment to graphene strength is concealed by local probe: The topological and geometrical effects. ACS Nano, 9: 401-408.
    [85]
    Song Z G, Artyukhov V I, Yakobson B I, Xu Z P.2013. Pseudo hall-petch strength reduction in polycrystalline graphene. Nano Letters, 13: 1829-1833.
    [86]
    Sorkin V, Zhang Y W.2016. Mechanical properties of phosphorene nanotubes: A density functional tight-binding study. Nanotechnology, 27: 395701.
    [87]
    Suk J W, Piner R D, An J, Ruoff R S.2010. Mechanical properties of mono layer graphene oxide. ACS Nano, 4: 6557-6564.
    [88]
    Sun H Y, Liu G, Li Q F, Wan X G.2016. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus. Physics Letters A, 380: 2098-2104.
    [89]
    Tan X J, Wu J, Zhang K W, Peng X Y, Sun L Z, Zhong J X.2013. Nanoindentation models and Young's modulus of monolayer graphene: A molecular dynamics study. Applied Physics Letters, 102: 071908.
    [90]
    Tao J, Shen W F, Wu S, Liu L, Feng Z H, Wang C, Hu C G, Yao P, Zhang H, Pang W, Duan X X, Liu J, Zhou C W, Zhang D H.2015. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano, 9: 11362-11370.
    [91]
    Terdalkar S S, Huang S, Yuan H Y, Rencis J J, Zhu T, Zhang S L.2010. Nanoscale fracture in graphene. Chemical Physics Letters, 494: 218-222.
    [92]
    Tersoff J.1992. Energies of fullerenes. Physical Review B, 46: 15546-15549.
    [93]
    Timoshenko S, Woinowsky-Krieger S.1959. Theory of Plates and Shells. New York, McGraw-Hill.
    [94]
    Traversi F, Guzman-Vazquez F J, Rizzi L G, Russo V, Casari C S, Gomez-Navarro C, Sordan R.2010. Elastic properties of graphene suspended on a polymer substrate by E-beam exposure. New Journal of Physics, 12: 023034.
    [95]
    Tu Z C, Ou-Yang Z.2002. Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number. Physical Review B, 65: 233407.
    [96]
    Wang J Y, Li Y, Zhan Z Y, Li T, Zhen L, Xu C Y.2016. Elastic properties of suspended black phosphorus nanosheets. Applied Physics Letters, 108: 013104.
    [97]
    Wang L Q, Kutana A, Zou X L, Yakobson B I.2015. Electro-mechanical anisotropy of phosphorene. Nanoscale, 7: 9746-9751.
    [98]
    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S.2012. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7: 699-712.
    [99]
    Wei Q, Peng X H.2014. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 104: 251915.
    [100]
    Wei X D, Fragneaud B, Marianetti C A, Kysar J W.2009. Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Physical Review B, 80: 205407.
    [101]
    Wei X D, Kysar J W.2012. Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. International Journal of Solids and Structures, 49: 3201-3209.
    [102]
    Wei Y J, Wang B L, Wu J T, Yang R G, Dunn M L.2013. Bending rigidity and gaussian bending stiffness of single-layered graphene. Nano Letters, 13: 26-30.
    [103]
    Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M.2012. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nature Materials, 11: 759-763.
    [104]
    Wong C L, Annamalai M, Wang Z Q, Palaniapan M.2010. Characterization of nanomechanical graphene drum structures. Journal of Micromechanics and Microengineering, 20: 115029.
    [105]
    Xiao J, Long M Q, Li X M, Xu H, Huang H, Gao Y L.2014. Theoretical prediction of electronic structure and carrier mobility in single-walled MoS2 nanotubes. Scientific Reports, 4: 04327.
    [106]
    Xiong S, Cao G.2015. Molecular dynamics simulations of mechanical properties of monolayer MoS2. Nanotechnology, 26: 185705.
    [107]
    Xiong S, Cao G.2016. Bending response of single layer MoS2. Nanotechnology, 27: 105701.
    [108]
    Yazyev O V, Louie S G.2010. Electronic transport in polycrystalline graphene. Nature Materials, 9: 806-809.
    [109]
    Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q, Li J B.2012. Mechanical and electronic properties of monolayer MoS2 under elastic strain. Physics Letters A, 376: 1166-1170.
    [110]
    Zhang H Y, Jiang J W.2015. Elastic bending modulus for single-layer black phosphorus. Journal of Physics D-Applied Physics, 48: 455305.
    [111]
    Zhang R, Koutsos V, Cheung R.2016. Elastic properties of suspended multilayer WSe2. Applied Physics Letters, 108: 042104.
    [112]
    Zhang Y P, Pan C X.2012. Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diamond and Related Materials, 24: 1-5.
    [113]
    Zhang Y Y, Pei Q X, Wang C M.2012. Mechanical properties of graphynes under tension: A molecular dynamics study. Applied Physics Letters, 101: 4747719.
    [114]
    Zhao H, Min K, Aluru N R.2009. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Letters, 9: 3012-3015.
    [115]
    Zhao J H, Jiang J W, Rabczuk T.2013. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations. Applied Physics Letters, 103: 231913.
    [116]
    Zheng Y P, Wei N, Fan Z Y, Xu L Q, Huang Z G.2011. Mechanical properties of grafold: A demonstration of strengthened graphene. Nanotechnology, 22: 405701.
    [117]
    Zhou L, Cao G.2016. Nonlinear anisotropic deformation behavior of a graphene monolayer under uniaxial tension. Physical Chemistry Chemical Physics, 18: 1657-1664.
    [118]
    Zhou L, Wang Y, Cao G.2013a. Elastic properties of monolayer graphene with different chiralities. Journal of Physics-Condensed Matter, 25: 125302.
    [119]
    Zhou L, Wang Y, Cao G.2013b. Estimating the elastic properties of few-layer graphene from the free-standing indentation response. Journal of Physics-Condensed Matter, 25: 475301.
    [120]
    Zhou L, Wang Y, Cao G.2013c. van der Waals effect on the nanoindentation response of free standing monolayer graphene. Carbon, 57: 357-362.
    [121]
    Zhou L X, Wang Y G, Cao G X.2013d. Boundary condition and pre-strain effects on the free standing indentation response of graphene monolayer. Journal of Physics-Condensed Matter, 25: 475303.
    [122]
    Zhou L X, Xue J M, Wang Y G, Cao G X.2013e. Molecular mechanics simulations of the deformation mechanism of graphene monolayer under free standing indentation. Carbon, 63: 117-124.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2561) PDF downloads(1596) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return