Citation: | LIU Yaolu, HU Ning, DENG Mingxi, ZHAO Youxuan, LI Weibin. Nonlinear Lamb waves in plate/shell structures[J]. Advances in Mechanics, 2017, 47(1): 503-533. doi: 10.6052/1000-0992-16-032 |
[1] |
邓明晰, Price D C, Scott D A. 2005. 兰姆波非线性效应的实验观察. 声学学报, 30: 37-46 http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200501007.htm
Deng M X, Price D C, Scott D A. 2005. Experimental observations of nonlinear effects of Lamb waves. Acta Acustica, 30: 37-46. http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200501007.htm
|
[2] |
邓明晰, 裴俊峰. 2008. 无损评价固体板材疲劳损伤的非线性超声兰姆波方法. 声学学报, 33: 360-369 (Deng M X, Pei J F. 2008. Nondestructive evaluation of fatigue damage in solid plates using nonlinear ultrasonic Lamb wave method. Acta Acustica, 33: 360-369). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200804013.htm
|
[3] |
邓明晰, 项延训, 裴俊峰, 刘良兵. 2012. 基于群速度失配的超声兰姆波二次谐波的时域测量方法. 声学学报, 37: 621-628 (Deng M X, Xiang Y X, Pei J F, Liu L B. 2012. Time-domain measurement technique of second harmonic of ultrasonic Lamb waves using mismatch of group velocities. Acta Acustica, 37: 621-628). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201206010.htm
|
[4] |
邓明晰. 1996. 兰姆波的非线性研究. 声学学报, 21: 429-436 (Deng M X. 1996. Research on nonlinearity of Lamb waves. Acta Acustica, 21: 429-436). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA6S1.006.htm
|
[5] |
邓明晰. 1997. 兰姆波的非线性研究(II). 声学学报, 22: 182-187 (Deng M X. 1997. Research on nonlinearity of Lamb waves (II). Acta Acustica, 22: 182-187).
|
[6] |
邓明晰. 2005. 分层结构中兰姆波二次谐波发生的模式展开分析. 声学学报, 30: 132-142 (Deng M X. 2005. Modal expansion analyses of second-harmonic generation of the Lamb waves in layered structures. Acta Acustica, 30: 132-142). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200502007.htm
|
[7] |
邓明晰. 2005. 一种定征复合板材粘接层性质的非线性超声兰姆波方法. 声学学报, 30: 542-551 (Deng M X. 2005. Characterization of adhesive joints of composite solid layers using a nonlinear Lamb wave approach. Acta Acustica, 30: 542-551). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200506010.htm
|
[8] |
邓明晰. 2006. 兰姆波非线性效应的实验观察(II). 声学学报, 31: 1-7 (Deng M X. 2006. Experimental observations of nonlinear effects of Lamb waves (II). Acta Acustica, 31: 1-7). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200601001.htm
|
[9] |
税国双, 汪越胜, 曲建民. 2005. 材料力学性能退化的超声无损检测与评价. 力学进展, 35: 52-65. (Shui G S, Wang Y S, Qu J M. 2005. Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound. Advances in Mechanics, 35: 52-65). http://lxjz.cstam.org.cn/CN/abstract/abstract132738.shtml
|
[10] |
Aleshin V, Van Den Abeele KEA. 2007. Micro contact-based theory for acoustics in micro damage materials. J. Mech. Phys. Solids, 55: 366-390. doi: 10.1016/j.jmps.2006.07.002
|
[11] |
Auld B A. 1973. Acoustic Fields and Waves in Solids. New York: John Wiley.
|
[12] |
Baltazar A, Rokhlin S I, Pecorari C. 2002. On the relationship between ultrasonic and micromechanical properties of contacting rough surfaces. J. Mech. Phys. Solids, 50: 1397-1416. doi: 10.1016/S0022-5096(01)00119-3
|
[13] |
Belyaeva I Y, Zaitsev V Y, Ostrovsky L A. 1993. Nonlinear acousto-elastic properties of granular media. Acoust. Phys., 39: 11-15.
|
[14] |
Bermes C, Kim J Y, Qu J M, Jacobs L J. 2008. Nonlinear Lamb waves for the detection of material nonlinearity. Mech. Syst. Signal PR., 22: 638-646. doi: 10.1016/j.ymssp.2007.09.006
|
[15] |
Cantrell J H, Yost W T. 2001. Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue, 23: 487-490. doi: 10.1016/S0142-1123(01)00162-1
|
[16] |
Cantrell J H. 2003. Fundamentals and Application of Nonlinear Ultrasonic Nondestructive Evaluation. Florida: CRC Press LLC.
|
[17] |
Chillara V K, Lissenden C J. 2014. Nonlinear guided waves in plates: a numerical perspective. Ultrasonics, 54: 1553-1558. doi: 10.1016/j.ultras.2014.04.009
|
[18] |
Chillara V K, Lissenden C J. 2016. Review of nonlinear ultrasonic guided wave nondestructive evaluaton: theory, numerics, and experiments. Opt. Eng., 55: 011002.
|
[19] |
Demer L J, Fentnor L H. 1969. Lamb wave techniques in nondestructive testing. International Journal of Nondestructive Testing, 1: 251-283.
|
[20] |
Deng M X, Pei J F. 2007. Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett., 90: Art. No. 121902.
|
[21] |
Deng M X, Xiang Y X, Liu L B. 2011. Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys., 109: 113525. doi: 10.1063/1.3592672
|
[22] |
Deng M X, Xiang Y X. 2015. Analysis of second-harmonic generation by primary ultrasonic guided wave propagation in a piezoelectric plate. Ultrasonics, 61: 121-125. doi: 10.1016/j.ultras.2015.04.005
|
[23] |
Deng M X,Wng P, Lv X F. 2005. Experimental observation of cumulative secondharmonic generation of Lamb-wave propagation in an elastic plate. J. Phys. D -Appl. Phys., 38: 344-353 doi: 10.1088/0022-3727/38/2/020
|
[24] |
Deng M X. 1999. Cumulative second-harmonic generation of Lamb mode propagation in a solid plate. J. Appl. Phys., 85: 3051-3058. doi: 10.1063/1.369642
|
[25] |
Deng M X. 2003. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys., 94: 4153-4159.
|
[26] |
Deng M X, Yang J. 2007. Characterization of elastic anisotropy of a solid plate using nonlinear Lamb wave approach. J. Sound Vib., 308: 201-211. doi: 10.1016/j.jsv.2007.07.029
|
[27] |
Diamanti K, Soutis C, Hodgkinson J M. 2007. Piezoelectric transducer arrangement for the inspection of large composite structures. Composites Part A, 38: 1121-1130. doi: 10.1016/j.compositesa.2006.06.011
|
[28] |
Donskoy D. 2006. Assessment of initial material damage and remaining life prediction with nonlinear acoustics. J. Acoust. Soc. Am., 119: 3293.
|
[29] |
Friswell M I, Penny J E T. 2002. Crack modeling for structural health monitoring. Struct. Health. Monit., 1: 139-148. doi: 10.1177/1475921702001002002
|
[30] |
Giurgiutiu V. 2003. Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring// Smart Structures and Materials 2003: Smart structures and Integrated systems, 111-122.
|
[31] |
Giurgiutiu V. 2005. Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Intell. Mater. Syst. Struct.,16: 291-305. doi: 10.1177/1045389X05050106
|
[32] |
Gusev V E, Lauriks W, Thoen J. 1998. New evolution equations for the nonlinear surface acoustic waves on an elastic solid of general anisotropy. J. Acoust. Soc. Am., 103: 3203-3215. doi: 10.1121/1.423036
|
[33] |
Guyer R A, Johnson P A. 1999. Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today, 52: 30-36.
|
[34] |
Hong M, Su Z, Lu Ye, Cheng L. 2014. Temporal information of linear and nonlinear Lamb waves for fatigue damage localization: analysis and synthesis//7th European workshop on Structural Health Monitoring, July 8-11, 2014, La Cite, Nantes, France.
|
[35] |
Hong M, Su Z, Wang Q, Cheng L, Qing X. 2014. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation. Ultrasonics, 54: 770-778. doi: 10.1016/j.ultras.2013.09.023
|
[36] |
Kumon R E, Hamilton M F. 2002. Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals. J. Acoust. Soc. Am., 115: 2060-2069.
|
[37] |
Lamb H. 1917. On the waves in an elastic plate. Proceedings of the Royal Society A, 293-312.
|
[38] |
Li W, Cho Y, Achenbach J D. 2012. Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater. Struct., 21: 085019. doi: 10.1088/0964-1726/21/8/085019
|
[39] |
Lima W J de, Hamilton M F. 2003. Finite-amplitude waves in isotropic elastic plates. J. Sound Vib., 265: 819-839. doi: 10.1016/S0022-460X(02)01260-9
|
[40] |
Liu Y L, Hu N, Xu H, Yuan W F, Yan C, Li Y, Goda R, Alamusi, Qiu J H, Ning H M, Wu L K. 2014. Damage evaluation based on a wave energy flow map using multiple PZT sensors. Sensors, 14: 1902-1917. doi: 10.3390/s140201902
|
[41] |
Liu Y, Kim J Y, Jacobs L J, Qu J M, Li Z. 2012. Experimental investigation of symmetry properties of second harmonic Lamb waves. J. Appl. Phys., 111: 053511. doi: 10.1063/1.3691225
|
[42] |
Lu X, Lu M, Zhou L M, Su Z, Cheng L, Ye L, Meng G. 2011. Evaluation of welding damage in welded tubular steel structures using guided waves and a probability-based imaging approach. Smart Mater. Struct., 20: 015018. doi: 10.1088/0964-1726/20/1/015018
|
[43] |
Luo W, Rose J L. 2007. Phased array focusing with guided waves in a viscoelastic coated hollow cylinder. J. Acoust. Soc. Am., 121: 1945-1955. doi: 10.1121/1.2711145
|
[44] |
Matlack K H, Kim J Y, Jacobs L J, Qu J M. 2011. Experimental characterization of efficient second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys., 109: 014905. doi: 10.1063/1.3527959
|
[45] |
Miao H, Huan Q, Li F. 2016. Excitation and reception of pure shear horizontal waves by using face-shear d24 mode piezoelectric wafers. Smart Mater. Struct., 25: 11LT01. doi: 10.1088/0964-1726/25/11/11LT01
|
[46] |
Muller M F, Kim J Y, Qu J, Jacobs L J. 2010. Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am., 174: 2141-2152.
|
[47] |
Ostrocsky L A, Johnson P A. 2001. Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cimento, 24: 1-46.
|
[48] |
Ostrocsky L A, Johnson P A. 2001. Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cimento, 24: 1-46.
|
[49] |
Pau A, Scalea F L di. 2015. Nonlinear guided wave propagation in prestressed plates. J. Acoust. Soc. Am., 137: 1529-1540. doi: 10.1121/1.4908237
|
[50] |
Pecorari C. 2003. Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. J. Acoust. Soc. Am., 113: 3065-3072. doi: 10.1121/1.1570437
|
[51] |
Pruell C, Kim J-Y, Qu J, Jacobs L J. 2007. Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett., 91: 231911. doi: 10.1063/1.2811954
|
[52] |
Purekar A S, Pines D J. 2010. Damage detection in thin composite laminates using piezoelectric phased sensor arrays and guided Lamb wave interrogation. J. Intel. Mat. Syst. Str., 21: 955-1010. doi: 10.1177/1045389X10374163
|
[53] |
Qian Z W. 1995. Second order harmonics of surface-waves in isotropic solids. J. Sound Vib., 187: 369-379. doi: 10.1006/jsvi.1995.0530
|
[54] |
Qiu L, Yuan S F, Zhang X Y, Wang Y. 2011. A time reversal focusing based impact imaging method and its evaluation on complex composite structures. Smart Mater. Struct., 20: 105014. doi: 10.1088/0964-1726/20/10/105014
|
[55] |
Qiu, L., Liu, M.L., Qing, X.L., Yuan, S.F. 2013. A quantitative multidamage monitoring method for large-scale complex composite. Struct. Health. Monit., 12: 183-196. doi: 10.1177/1475921713479643
|
[56] |
Rauter N, Lammering R. 2015. Impact damage detection in composite structures considering Nonlinear Lamb wave propagation. Mech. Adv. Mater. Struc., 22: 44-51. doi: 10.1080/15376494.2014.907950
|
[57] |
Shen Y, Giurgiutiu V. 2012. Simulation of interaction between Lamb waves and cracks for structural health monitoring with piezoelectric wafer active sensors//ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Stone Moutain, Georgia, USA.
|
[58] |
Shui G S, Kim J Y, Qu J M, Jacobs L J. 2008. Nonlinear Lamb waves for the detection of material nonlinearity. Mech. Syst Signal Pr., 22: 638-646. doi: 10.1016/j.ymssp.2007.09.006
|
[59] |
Sicard R, Goyette J, Zellouf D E. 2002. A SAFT algorithm for lamb wave imaging of isotropic plate-like structures. Ultrasonics, 39: 487-494. doi: 10.1016/S0041-624X(01)00087-7
|
[60] |
Solodov I Y, Krohn N, Busse G. 2002. CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics, 40: 621-625. doi: 10.1016/S0041-624X(02)00186-5
|
[61] |
Solodov I Y. 1998. Ultrasonic of nonlinear contacts: propagation, reflection and NDE application. Ultrasonics, 36: 383-390. doi: 10.1016/S0041-624X(97)00041-3
|
[62] |
Sonti V R, Kim S J, Jones J D. 1995. Equivalent forces and wavenumber spectra of shaped piezoelectric actuators. J. Sound Vib., 187: 111-131. doi: 10.1006/jsvi.1995.0505
|
[63] |
Srivastava A, Scalea F L di. 2009. On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib., 323: 932-943. doi: 10.1016/j.jsv.2009.01.027
|
[64] |
Su Z, Ye L. 2005. Lamb wave propagation-based damage identification for quasi-isotropic cf/ep composite laminates using aritificial neural algorithm: part i-methodology and database development. J. Intel. Mat. Syst. Str., 16: 97-111. doi: 10.1177/1045389X05047599
|
[65] |
Su Z, Ye L. 2009. Identification of damage using Lamb waves: from fundamentals to applications. Springer, 2009.
|
[66] |
Van Den Abeele K, De Visscher J. 2000. Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cement Concrete Res., 30: 1453-1464. doi: 10.1016/S0008-8846(00)00329-X
|
[67] |
Van Den Abeele KEA., Sutin A, Carmeliet J, Johnson P A. 2001. Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT & E Int., 34: 239-248.
|
[68] |
Viktorov I A. 1965. Ultrasonic Lamb wave (Review). Ultrasonics, 11: 1.
|
[69] |
Vishnuvardhan J, Krishnamurthy C V, Balasubramaniam K, 2007. Genetic algorithm based reconstruction of the elastic moduli of orthotropic plates using an ultrasonic guided wave single-transmitter-multiple-receiver SHM array. Smart Mater. Struct., 16: 1639-1650.
|
[70] |
Wan X, Zhang Q, Xu G, Tse P W. 2014. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks. Sensors, 14: 8528-8546. doi: 10.3390/s140508528
|
[71] |
Wang D, Ye L, Su Z, Lu Y, Li F, Meng G. 2010. Probabilistic damage identification based on correlation analysis using guided wave signals in aluminum plates. Struct. Health. Monit., 9: 133-144. doi: 10.1177/1475921709352145
|
[72] |
Worden K, Tomlinson G R. 2001. Nonlinearity in structural dynamics: Detection, Identification and Modelling. Bristol: IOP Publishing Ltd.
|
[73] |
Worlton D C. 1961. Experimental confirmation of Lamb waves at Megacycle Frequencies. J. Appl. Phys., 32: 967-971. doi: 10.1063/1.1736196
|
[74] |
Wright W, Hutchins D, Jansen D, Schindel D. 1997. Air-coupled lamb wave tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44: 53-59. doi: 10.1109/58.585190
|
[75] |
Xiang Y, Deng M, Xuan F-Z, Liu C-J. 2011. Experimental study of thermal degradation in ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves. NDT & E Int., 44: 768-774.
|
[76] |
Zabolotskaya E A. 1992. Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids. J. Acoust. Soc. Am., 91: 2569-2575. doi: 10.1121/1.402993
|
[77] |
Zhu W J, Deng M X, Xiang Y X, Xuan F Z, Liu C J. 2016. Second harmonic generation of Lamb wave in numerical perspective. Chin. Phys. Lett., 33: 104301. doi: 10.1088/0256-307X/33/10/104301
|