Volume 47 Issue 1
Feb.  2017
Turn off MathJax
Article Contents
LIU Yaolu, HU Ning, DENG Mingxi, ZHAO Youxuan, LI Weibin. Nonlinear Lamb waves in plate/shell structures[J]. Advances in Mechanics, 2017, 47(1): 503-533. doi: 10.6052/1000-0992-16-032
Citation: LIU Yaolu, HU Ning, DENG Mingxi, ZHAO Youxuan, LI Weibin. Nonlinear Lamb waves in plate/shell structures[J]. Advances in Mechanics, 2017, 47(1): 503-533. doi: 10.6052/1000-0992-16-032

Nonlinear Lamb waves in plate/shell structures

doi: 10.6052/1000-0992-16-032
  • Received Date: 2016-10-17
    Available Online: 2017-01-20
  • Publish Date: 2017-02-24
  • In view of the fact that conventional ultrasonic detection technology is not effective for the detection of distributed fne damage and contact-type structural damage in materials, nonlinear ultrasound technology has been attracting more and more attention in recent years. Ultrasonic waves propagate in the form of Lamb wave modes in the structure of plates and shells. However, due to the dispersion and multimode characteristics of Lamb waves, the progress of theoretical and experimental research on nonlinear Lamb waves is slow. Based on the classical nonlinear theory, this paper summarizes the theoretical and experimental research progress of nonlinear Lamb waves induced by the inherent nonlinear-ity of material, and summarizes the application of the second harmonics of Lamb waves in damage evaluation of material. The current status of the research on nonlinear Lamb waves induced by contact-type structural damage is discussed based on contact acoustic nonlin-earity. At the end, this paper envisions the future research topics and trends in nonlinear Lamb waves.

     

  • loading
  • [1]
    邓明晰, Price D C, Scott D A. 2005. 兰姆波非线性效应的实验观察. 声学学报, 30: 37-46 http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200501007.htm

    Deng M X, Price D C, Scott D A. 2005. Experimental observations of nonlinear effects of Lamb waves. Acta Acustica, 30: 37-46. http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200501007.htm
    [2]
    邓明晰, 裴俊峰. 2008. 无损评价固体板材疲劳损伤的非线性超声兰姆波方法. 声学学报, 33: 360-369 (Deng M X, Pei J F. 2008. Nondestructive evaluation of fatigue damage in solid plates using nonlinear ultrasonic Lamb wave method. Acta Acustica, 33: 360-369). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200804013.htm
    [3]
    邓明晰, 项延训, 裴俊峰, 刘良兵. 2012. 基于群速度失配的超声兰姆波二次谐波的时域测量方法. 声学学报, 37: 621-628 (Deng M X, Xiang Y X, Pei J F, Liu L B. 2012. Time-domain measurement technique of second harmonic of ultrasonic Lamb waves using mismatch of group velocities. Acta Acustica, 37: 621-628). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201206010.htm
    [4]
    邓明晰. 1996. 兰姆波的非线性研究. 声学学报, 21: 429-436 (Deng M X. 1996. Research on nonlinearity of Lamb waves. Acta Acustica, 21: 429-436). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA6S1.006.htm
    [5]
    邓明晰. 1997. 兰姆波的非线性研究(II). 声学学报, 22: 182-187 (Deng M X. 1997. Research on nonlinearity of Lamb waves (II). Acta Acustica, 22: 182-187).
    [6]
    邓明晰. 2005. 分层结构中兰姆波二次谐波发生的模式展开分析. 声学学报, 30: 132-142 (Deng M X. 2005. Modal expansion analyses of second-harmonic generation of the Lamb waves in layered structures. Acta Acustica, 30: 132-142). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200502007.htm
    [7]
    邓明晰. 2005. 一种定征复合板材粘接层性质的非线性超声兰姆波方法. 声学学报, 30: 542-551 (Deng M X. 2005. Characterization of adhesive joints of composite solid layers using a nonlinear Lamb wave approach. Acta Acustica, 30: 542-551). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200506010.htm
    [8]
    邓明晰. 2006. 兰姆波非线性效应的实验观察(II). 声学学报, 31: 1-7 (Deng M X. 2006. Experimental observations of nonlinear effects of Lamb waves (II). Acta Acustica, 31: 1-7). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200601001.htm
    [9]
    税国双, 汪越胜, 曲建民. 2005. 材料力学性能退化的超声无损检测与评价. 力学进展, 35: 52-65. (Shui G S, Wang Y S, Qu J M. 2005. Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound. Advances in Mechanics, 35: 52-65). http://lxjz.cstam.org.cn/CN/abstract/abstract132738.shtml
    [10]
    Aleshin V, Van Den Abeele KEA. 2007. Micro contact-based theory for acoustics in micro damage materials. J. Mech. Phys. Solids, 55: 366-390. doi: 10.1016/j.jmps.2006.07.002
    [11]
    Auld B A. 1973. Acoustic Fields and Waves in Solids. New York: John Wiley.
    [12]
    Baltazar A, Rokhlin S I, Pecorari C. 2002. On the relationship between ultrasonic and micromechanical properties of contacting rough surfaces. J. Mech. Phys. Solids, 50: 1397-1416. doi: 10.1016/S0022-5096(01)00119-3
    [13]
    Belyaeva I Y, Zaitsev V Y, Ostrovsky L A. 1993. Nonlinear acousto-elastic properties of granular media. Acoust. Phys., 39: 11-15.
    [14]
    Bermes C, Kim J Y, Qu J M, Jacobs L J. 2008. Nonlinear Lamb waves for the detection of material nonlinearity. Mech. Syst. Signal PR., 22: 638-646. doi: 10.1016/j.ymssp.2007.09.006
    [15]
    Cantrell J H, Yost W T. 2001. Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue, 23: 487-490. doi: 10.1016/S0142-1123(01)00162-1
    [16]
    Cantrell J H. 2003. Fundamentals and Application of Nonlinear Ultrasonic Nondestructive Evaluation. Florida: CRC Press LLC.
    [17]
    Chillara V K, Lissenden C J. 2014. Nonlinear guided waves in plates: a numerical perspective. Ultrasonics, 54: 1553-1558. doi: 10.1016/j.ultras.2014.04.009
    [18]
    Chillara V K, Lissenden C J. 2016. Review of nonlinear ultrasonic guided wave nondestructive evaluaton: theory, numerics, and experiments. Opt. Eng., 55: 011002.
    [19]
    Demer L J, Fentnor L H. 1969. Lamb wave techniques in nondestructive testing. International Journal of Nondestructive Testing, 1: 251-283.
    [20]
    Deng M X, Pei J F. 2007. Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett., 90: Art. No. 121902.
    [21]
    Deng M X, Xiang Y X, Liu L B. 2011. Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys., 109: 113525. doi: 10.1063/1.3592672
    [22]
    Deng M X, Xiang Y X. 2015. Analysis of second-harmonic generation by primary ultrasonic guided wave propagation in a piezoelectric plate. Ultrasonics, 61: 121-125. doi: 10.1016/j.ultras.2015.04.005
    [23]
    Deng M X,Wng P, Lv X F. 2005. Experimental observation of cumulative secondharmonic generation of Lamb-wave propagation in an elastic plate. J. Phys. D -Appl. Phys., 38: 344-353 doi: 10.1088/0022-3727/38/2/020
    [24]
    Deng M X. 1999. Cumulative second-harmonic generation of Lamb mode propagation in a solid plate. J. Appl. Phys., 85: 3051-3058. doi: 10.1063/1.369642
    [25]
    Deng M X. 2003. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys., 94: 4153-4159.
    [26]
    Deng M X, Yang J. 2007. Characterization of elastic anisotropy of a solid plate using nonlinear Lamb wave approach. J. Sound Vib., 308: 201-211. doi: 10.1016/j.jsv.2007.07.029
    [27]
    Diamanti K, Soutis C, Hodgkinson J M. 2007. Piezoelectric transducer arrangement for the inspection of large composite structures. Composites Part A, 38: 1121-1130. doi: 10.1016/j.compositesa.2006.06.011
    [28]
    Donskoy D. 2006. Assessment of initial material damage and remaining life prediction with nonlinear acoustics. J. Acoust. Soc. Am., 119: 3293.
    [29]
    Friswell M I, Penny J E T. 2002. Crack modeling for structural health monitoring. Struct. Health. Monit., 1: 139-148. doi: 10.1177/1475921702001002002
    [30]
    Giurgiutiu V. 2003. Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring// Smart Structures and Materials 2003: Smart structures and Integrated systems, 111-122.
    [31]
    Giurgiutiu V. 2005. Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Intell. Mater. Syst. Struct.,16: 291-305. doi: 10.1177/1045389X05050106
    [32]
    Gusev V E, Lauriks W, Thoen J. 1998. New evolution equations for the nonlinear surface acoustic waves on an elastic solid of general anisotropy. J. Acoust. Soc. Am., 103: 3203-3215. doi: 10.1121/1.423036
    [33]
    Guyer R A, Johnson P A. 1999. Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today, 52: 30-36.
    [34]
    Hong M, Su Z, Lu Ye, Cheng L. 2014. Temporal information of linear and nonlinear Lamb waves for fatigue damage localization: analysis and synthesis//7th European workshop on Structural Health Monitoring, July 8-11, 2014, La Cite, Nantes, France.
    [35]
    Hong M, Su Z, Wang Q, Cheng L, Qing X. 2014. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation. Ultrasonics, 54: 770-778. doi: 10.1016/j.ultras.2013.09.023
    [36]
    Kumon R E, Hamilton M F. 2002. Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals. J. Acoust. Soc. Am., 115: 2060-2069.
    [37]
    Lamb H. 1917. On the waves in an elastic plate. Proceedings of the Royal Society A, 293-312.
    [38]
    Li W, Cho Y, Achenbach J D. 2012. Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater. Struct., 21: 085019. doi: 10.1088/0964-1726/21/8/085019
    [39]
    Lima W J de, Hamilton M F. 2003. Finite-amplitude waves in isotropic elastic plates. J. Sound Vib., 265: 819-839. doi: 10.1016/S0022-460X(02)01260-9
    [40]
    Liu Y L, Hu N, Xu H, Yuan W F, Yan C, Li Y, Goda R, Alamusi, Qiu J H, Ning H M, Wu L K. 2014. Damage evaluation based on a wave energy flow map using multiple PZT sensors. Sensors, 14: 1902-1917. doi: 10.3390/s140201902
    [41]
    Liu Y, Kim J Y, Jacobs L J, Qu J M, Li Z. 2012. Experimental investigation of symmetry properties of second harmonic Lamb waves. J. Appl. Phys., 111: 053511. doi: 10.1063/1.3691225
    [42]
    Lu X, Lu M, Zhou L M, Su Z, Cheng L, Ye L, Meng G. 2011. Evaluation of welding damage in welded tubular steel structures using guided waves and a probability-based imaging approach. Smart Mater. Struct., 20: 015018. doi: 10.1088/0964-1726/20/1/015018
    [43]
    Luo W, Rose J L. 2007. Phased array focusing with guided waves in a viscoelastic coated hollow cylinder. J. Acoust. Soc. Am., 121: 1945-1955. doi: 10.1121/1.2711145
    [44]
    Matlack K H, Kim J Y, Jacobs L J, Qu J M. 2011. Experimental characterization of efficient second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys., 109: 014905. doi: 10.1063/1.3527959
    [45]
    Miao H, Huan Q, Li F. 2016. Excitation and reception of pure shear horizontal waves by using face-shear d24 mode piezoelectric wafers. Smart Mater. Struct., 25: 11LT01. doi: 10.1088/0964-1726/25/11/11LT01
    [46]
    Muller M F, Kim J Y, Qu J, Jacobs L J. 2010. Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am., 174: 2141-2152.
    [47]
    Ostrocsky L A, Johnson P A. 2001. Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cimento, 24: 1-46.
    [48]
    Ostrocsky L A, Johnson P A. 2001. Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cimento, 24: 1-46.
    [49]
    Pau A, Scalea F L di. 2015. Nonlinear guided wave propagation in prestressed plates. J. Acoust. Soc. Am., 137: 1529-1540. doi: 10.1121/1.4908237
    [50]
    Pecorari C. 2003. Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. J. Acoust. Soc. Am., 113: 3065-3072. doi: 10.1121/1.1570437
    [51]
    Pruell C, Kim J-Y, Qu J, Jacobs L J. 2007. Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett., 91: 231911. doi: 10.1063/1.2811954
    [52]
    Purekar A S, Pines D J. 2010. Damage detection in thin composite laminates using piezoelectric phased sensor arrays and guided Lamb wave interrogation. J. Intel. Mat. Syst. Str., 21: 955-1010. doi: 10.1177/1045389X10374163
    [53]
    Qian Z W. 1995. Second order harmonics of surface-waves in isotropic solids. J. Sound Vib., 187: 369-379. doi: 10.1006/jsvi.1995.0530
    [54]
    Qiu L, Yuan S F, Zhang X Y, Wang Y. 2011. A time reversal focusing based impact imaging method and its evaluation on complex composite structures. Smart Mater. Struct., 20: 105014. doi: 10.1088/0964-1726/20/10/105014
    [55]
    Qiu, L., Liu, M.L., Qing, X.L., Yuan, S.F. 2013. A quantitative multidamage monitoring method for large-scale complex composite. Struct. Health. Monit., 12: 183-196. doi: 10.1177/1475921713479643
    [56]
    Rauter N, Lammering R. 2015. Impact damage detection in composite structures considering Nonlinear Lamb wave propagation. Mech. Adv. Mater. Struc., 22: 44-51. doi: 10.1080/15376494.2014.907950
    [57]
    Shen Y, Giurgiutiu V. 2012. Simulation of interaction between Lamb waves and cracks for structural health monitoring with piezoelectric wafer active sensors//ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Stone Moutain, Georgia, USA.
    [58]
    Shui G S, Kim J Y, Qu J M, Jacobs L J. 2008. Nonlinear Lamb waves for the detection of material nonlinearity. Mech. Syst Signal Pr., 22: 638-646. doi: 10.1016/j.ymssp.2007.09.006
    [59]
    Sicard R, Goyette J, Zellouf D E. 2002. A SAFT algorithm for lamb wave imaging of isotropic plate-like structures. Ultrasonics, 39: 487-494. doi: 10.1016/S0041-624X(01)00087-7
    [60]
    Solodov I Y, Krohn N, Busse G. 2002. CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics, 40: 621-625. doi: 10.1016/S0041-624X(02)00186-5
    [61]
    Solodov I Y. 1998. Ultrasonic of nonlinear contacts: propagation, reflection and NDE application. Ultrasonics, 36: 383-390. doi: 10.1016/S0041-624X(97)00041-3
    [62]
    Sonti V R, Kim S J, Jones J D. 1995. Equivalent forces and wavenumber spectra of shaped piezoelectric actuators. J. Sound Vib., 187: 111-131. doi: 10.1006/jsvi.1995.0505
    [63]
    Srivastava A, Scalea F L di. 2009. On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib., 323: 932-943. doi: 10.1016/j.jsv.2009.01.027
    [64]
    Su Z, Ye L. 2005. Lamb wave propagation-based damage identification for quasi-isotropic cf/ep composite laminates using aritificial neural algorithm: part i-methodology and database development. J. Intel. Mat. Syst. Str., 16: 97-111. doi: 10.1177/1045389X05047599
    [65]
    Su Z, Ye L. 2009. Identification of damage using Lamb waves: from fundamentals to applications. Springer, 2009.
    [66]
    Van Den Abeele K, De Visscher J. 2000. Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cement Concrete Res., 30: 1453-1464. doi: 10.1016/S0008-8846(00)00329-X
    [67]
    Van Den Abeele KEA., Sutin A, Carmeliet J, Johnson P A. 2001. Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT & E Int., 34: 239-248.
    [68]
    Viktorov I A. 1965. Ultrasonic Lamb wave (Review). Ultrasonics, 11: 1.
    [69]
    Vishnuvardhan J, Krishnamurthy C V, Balasubramaniam K, 2007. Genetic algorithm based reconstruction of the elastic moduli of orthotropic plates using an ultrasonic guided wave single-transmitter-multiple-receiver SHM array. Smart Mater. Struct., 16: 1639-1650.
    [70]
    Wan X, Zhang Q, Xu G, Tse P W. 2014. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks. Sensors, 14: 8528-8546. doi: 10.3390/s140508528
    [71]
    Wang D, Ye L, Su Z, Lu Y, Li F, Meng G. 2010. Probabilistic damage identification based on correlation analysis using guided wave signals in aluminum plates. Struct. Health. Monit., 9: 133-144. doi: 10.1177/1475921709352145
    [72]
    Worden K, Tomlinson G R. 2001. Nonlinearity in structural dynamics: Detection, Identification and Modelling. Bristol: IOP Publishing Ltd.
    [73]
    Worlton D C. 1961. Experimental confirmation of Lamb waves at Megacycle Frequencies. J. Appl. Phys., 32: 967-971. doi: 10.1063/1.1736196
    [74]
    Wright W, Hutchins D, Jansen D, Schindel D. 1997. Air-coupled lamb wave tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44: 53-59. doi: 10.1109/58.585190
    [75]
    Xiang Y, Deng M, Xuan F-Z, Liu C-J. 2011. Experimental study of thermal degradation in ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves. NDT & E Int., 44: 768-774.
    [76]
    Zabolotskaya E A. 1992. Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids. J. Acoust. Soc. Am., 91: 2569-2575. doi: 10.1121/1.402993
    [77]
    Zhu W J, Deng M X, Xiang Y X, Xuan F Z, Liu C J. 2016. Second harmonic generation of Lamb wave in numerical perspective. Chin. Phys. Lett., 33: 104301. doi: 10.1088/0256-307X/33/10/104301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(1)

    Article Metrics

    Article views (3586) PDF downloads(1372) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return