Volume 47 Issue 1
Feb.  2017
Turn off MathJax
Article Contents
SI Ting, LI Guangbin, YIN Xiezhen. Flow focusing and jet instability[J]. Advances in Mechanics, 2017, 47(1): 178-226. doi: 10.6052/1000-0992-16-026
Citation: SI Ting, LI Guangbin, YIN Xiezhen. Flow focusing and jet instability[J]. Advances in Mechanics, 2017, 47(1): 178-226. doi: 10.6052/1000-0992-16-026

Flow focusing and jet instability

doi: 10.6052/1000-0992-16-026
More Information
  • Corresponding author: SI Ting
  • Received Date: 2016-08-23
    Available Online: 2016-11-18
  • Publish Date: 2017-02-24
  • Flow focusing is an effective method to form thin jets. It can be characterized by the formation of a steady cone-jet configuration in the core of a focusing high-speed fluid stream, as the focused fluid is continuously supplied through a capillary needle. The jet issued from the vertex of the cone passes through an orifice, and eventually breaks up into monodisperse droplets due to flow instability. First proposed in 1998, the flow focusing principle has been adopted to develop a series of capillary flow techniques such as single flow focusing, electro-flow focusing, co-flow focusing and microfluidic flow focusing. These techniques are steady, controllable and gentle in producing monodisperse droplets, particles and capsules down to micrometer scale and below. Therefore they have great significance in science, technology and engineering applications. In flow focusing, the formation of the stable cone is the prerequisite condition to form the stable jet; the process parameters influence the perturbations deposited on the jet interface; and the growth of perturbations results in the breakup of the jet. This is a complex problem in fluid mechanics due to its multi-scale, multi-interface and multi-coupling characteristics. Jet instability analysis is the most useful tool for exploring the mechanisms of jet breakup. In this paper, we review the progress of flow focusing with different geometrical structures during recent two decades, and summarize the key mechanics problems of flow focusing including process control, flow modes, scaling laws and instability analyses. The methods and achievements in the study of jet instability are also briefly described. Finally, some future research topics and opportunities for applications are provided.

     

  • loading
  • [1]
    陈晓东, 胡国庆. 2015.微流控器件中的多相流动.力学进展, 45:201503 https://www.researchgate.net/publication/273755498_Multiphase_flow_in_microfluidic_devices

    Chen X D, Hu G Q. 2015.Multiphase flow in microfluidic devices. Advances in Mechanics, 45:201503. https://www.researchgate.net/publication/273755498_Multiphase_flow_in_microfluidic_devices
    [2]
    陈晓慧, 张君鹏, 李广滨, 司廷, 尹协振. 2013.电流动聚焦中非牛顿流体射流影响因素的实验研究.实验力学. 28:284-289 http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201303003.htm

    Chen X H, Zhang J P, Li G B, Si T, Yin X Z. 2013. Experimental study on the influencing factors of non-Newtonian fluid jets in electro-flow focusing. J. Exp. Mech., 28:284-289. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201303003.htm
    [3]
    陈效鹏. 2003.静电雾化电流体力学研究.[博士论文].合肥:中国科学技术大学.
    [4]
    陈效鹏, 程久生, 尹协振. 2003.电流体动力学研究进展及应用.科学通报, 48:637-646 doi: 10.1360/03tb9136

    Chen X P, Cheng J S, Yin X Z. 2003. Progress and application of electrohydrodynamics. Chinese Science Bulletin, 48:637-646. doi: 10.1360/03tb9136
    [5]
    李芳. 2007.同轴带电射流的稳定性研究.[博士论文].合肥:中国科学技术大学. http://cdmd.cnki.com.cn/Article/CDMD-10358-2008039430.htm
    [6]
    李广滨. 2016.复合流动聚焦的实验和理论研究.[博士论文].合肥:中国科学技术大学 http://cdmd.cnki.com.cn/Article/CDMD-10358-1016103170.htm

    Li G B. 2016.Experimental and theoretical investigation on compound flow focusing.[PhD Thesis]. Hefei:University of Science and Technology of China. http://cdmd.cnki.com.cn/Article/CDMD-10358-1016103170.htm
    [7]
    李广滨, 司廷, 尹协振. 2012.电场作用下无黏聚焦射流的时间不稳定性研究.力学学报, 44:876-883 http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201205010.htm

    Li G B, Si T, Yin X Z. 2012. Temporal instability study of an inviscid focusing jet under an electric field. Chinese J. Theo. Appl. Mech., 44:876-883. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201205010.htm
    [8]
    李战华, 吴健康, 胡国庆, 胡国辉. 2012.微流控芯片中的流体流动.北京:科学出版社

    Li Z H, Wu J K, Hu G Q, Hu G H. 2012. Fluid Flow in Microfluidic Chips. Beijing:Science Press.
    [9]
    林炳承. 2013.微纳流控芯片实验室.北京:科学出版社.
    [10]
    司廷. 2009.流动聚焦的实验和理论研究.[博士论文]合肥:中国科学技术大学

    Si T. Experimental and theoretical investigation on flow focusing.[PhD Thesis]. Hefei:University of Science and Technology of China.
    [11]
    司廷, 李广滨, 田瑞军, 尹协振. 2011.电场作用下流动聚焦的实验研究.力学学报, 43:1030-1036 http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXXB201106007.htm

    Si T, Li G B, Tian R J, Yin X Z. 2011. Experimental study of the flow focusing under an electric field.Chinese J. Theor. Appl. Mech., 43:1030-1036. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXXB201106007.htm
    [12]
    司廷, 刘志勇, 尹协振. 2008.流动聚焦中锥形和射流直径影响因素的实验研究.实验流体力学, 22:21-26 http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200801005.htm

    Si T, Liu Z Y, Yin X Z. 2008. Experimental study of influencing parameters on the cone and the jet diameter in flow focusing. J. Exp. Fluid Mech., 22:21-26. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200801005.htm
    [13]
    司廷, 尹协振. 2011.流动聚焦研究进展及其应用.科学通报, 56:537-546 doi: 10.1360/972010-1639

    Si T, Yin X Z. 2011. Progress and application of flow focusing. Chinese Science Bulletin, 56:537-546. doi: 10.1360/972010-1639
    [14]
    尹协远, 孙德军. 2003.旋涡流动的稳定性.第1版.北京:国防工业出版社

    Yin X Y, Sun D J. 2003.Vortex Stability. Beijing:National Defense Industry Press.
    [15]
    尹协振, 李芳. 2009.电雾化、电纺丝和带电射流稳定性研究.力学与实践, 31:1-7 http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200901004.htm

    Yin X Z, Li F. 2009.Electrospraying, electrospinning and instability of electrified jets. Mechanics in Engineering, 31:1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200901004.htm
    [16]
    Acero A J, Ferrera C, Montanero J M, Gañán-Calvo A M. 2012a. Focusing liquid microjets with nozzles.J. Micromech. Microeng., 22:065011. doi: 10.1088/0960-1317/22/6/065011
    [17]
    Acero A J, Montanero J M, Ferrera C, Herrada M A, Gañán-Calvo A M. 2012b. Enhancement of the stability of the flow focusing technique for low-viscosity liquids. J. Micromech. Microeng., 22:115039. doi: 10.1088/0960-1317/22/11/115039
    [18]
    Acero A J, Rebollo-Muñoz N, Montanero J M, Gañán-Calvo A M, Vega E J. 2013. A new flow focusing technique to produce very thin jets. J. Micromech. Microeng., 23:065009. doi: 10.1088/0960-1317/23/6/065009
    [19]
    Agnihotri S A, Mallikarjuna N N, Aminabhavi T M. 2004. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Control. Release, 100:5-28. doi: 10.1016/j.jconrel.2004.08.010
    [20]
    Anna S L, Bontoux N, Stone H A. 2003. Formation of dispersions using 'flow focusing' in microchannels.Appl. Phys. Lett., 82:364-67. doi: 10.1063/1.1537519
    [21]
    Artana G, Romat H, Touchard G. 1998. Theoretical analysis of linear stability of electrified jets flowing at high velocity inside a coaxial electrode. J. Electrost., 43:83-100. doi: 10.1016/S0304-3886(97)00163-0
    [22]
    Artana G, Touchard G, Romat H. 1997. Absolute and convective instabilities in an electrified jet. J.Electrost., 40:33-38. https://www.researchgate.net/publication/222507266_Absolute_and_convective_instabilities_in_an_electrified_jet
    [23]
    Bailey A G. 1988. Electrostatic Spraying of Liquids. UK:Research Studies Press Ltd.
    [24]
    Barrero A, Loscertales I G. 2007. Micro-and nanoparticles via capillary flows. Annu. Rev. Fluid Mech., 39:89-106. doi: 10.1146/annurev.fluid.39.050905.110245
    [25]
    Boeck T, Zaleski S. 2005. Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys. Fluids, 17:032106. doi: 10.1063/1.1862234
    [26]
    Chandrasekhar S. 1961. The capillary instability of a liquid jet. In Hydrodynamic and Hydromagnetic Stability. Oxford:Oxford University Press, 537-542.
    [27]
    Chang S F, Si T, Zhang S W, Merrick M A, Cohn D E, Xu R X. 2016. Ultrasound mediated destruction of multifunctional microbubbles for image guided delivery of oxygen and drugs. Ultrason. Sonochem., 28:31-38. doi: 10.1016/j.ultsonch.2015.06.024
    [28]
    Chauhan A, Maldarelli C, Papageorgiou D T, Rumschitzki D S. 2000. Temporal instability of compound threads and jets. J. Fluid Mech., 420:1-25. doi: 10.1017/S0022112000001282
    [29]
    Chauhan A, Maldarelli C, Rumschitzki D S, and Papageorgiou D T. 1996. Temporal and spatial instability of an inviscid compound jet. Rheol. Acta, 35:567-583. doi: 10.1007/BF00396508
    [30]
    Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A. 2007. Controllable monodisperse multiple emulsions.Angew. Chem., 119:9128-9132. doi: 10.1002/(ISSN)1521-3757
    [31]
    Clanet C, Lasheras J C. 1999. Transition from dripping to jetting. J. Fluid Mech., 383:307-326. doi: 10.1017/S0022112098004066
    [32]
    Cohen I, Nagel S R. 2002. Scaling at the selective withdrawal transition through a tube suspended above the fluid surface. Phys. Rev. Lett., 88:074501. doi: 10.1103/PhysRevLett.88.074501
    [33]
    Donnelly R J, Glaberson W. 1966. Experimnets on the capillary instability of a liquid jet. Proc. R. Soc.London Ser. A., 290:547-556. doi: 10.1098/rspa.1966.0069
    [34]
    Eggers J. 1997. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys., 69:865-929. doi: 10.1103/RevModPhys.69.865
    [35]
    Eggers J, Villermaux E. 2008. Physics of liquid jets. Rep. Prog. Phys., 71:036601. doi: 10.1088/0034-4885/71/3/036601
    [36]
    Elhefnawy A F F, Agoor B M H, Elcoot A E K. 2001. Nonlinear electrohydrodynamic stability of a finitely conducting jet under an axial electric field. Physica A, 297:368-388. doi: 10.1016/S0378-4371(01)00173-X
    [37]
    Elhefnawy A F F, Moatimid G M, Elcoot A E K. 2004. Nonlinear electrohydrodynamic instability of a finitely conducting cylinder:Effect of interfacial surface charges. Z. angew. Math. Phys., 55:63-91. doi: 10.1007/s00033-003-1115-y
    [38]
    Eroglu H, Chigier N, Farago Z. 1991. Coaxial atomizer liquid intact lengths. Phys. Fluids A, 3:303-308. doi: 10.1063/1.858139
    [39]
    Fernández de la Mora J. 2007. The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech., 39:217-243. doi: 10.1146/annurev.fluid.39.050905.110159
    [40]
    Freiberg S, Zhu X X. 2004. Polymer microspheres for controlled drug release. Int. J. Pharm., 282:1-18. doi: 10.1016/j.ijpharm.2004.04.013
    [41]
    Funada T, Joseph D D. 2002. Viscous potential flow analysis of capillary instability. Intl J. Multiphase Flow, 28:1459-1478. doi: 10.1016/S0301-9322(02)00035-6
    [42]
    Gaonkar A G, Vasisht N, Khare A R, Sobel R. 2014. Microencapsulation in the Food Industry:A Practical Implementation Guide. Amsterdam:Elsevier.
    [43]
    Graham D Y, Lacey Smith J, Bouvet A A. 1990. What happens to tablets and capsules in the stomach:endoscopic comparison of disintegration and dispersion characteristics of two microencapsulated potassium formulations. J. Pharm. Sci., 79:420-424. doi: 10.1002/jps.2600790512
    [44]
    Gañán-Calvo A M. 1997. Cone-jet analytical extension of Taylor's electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys. Rev. Lett., 79:217-220. doi: 10.1103/PhysRevLett.79.217
    [45]
    Gañán-Calvo A M. 1998. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett., 80:285-288. doi: 10.1103/PhysRevLett.80.285
    [46]
    Gañán-Calvo A M. 2004. Perfectly monodisperse microbubbling by capillary flow focusing:an alternate physical description and universal scaling. Phys. Rev. E, 69:027301. doi: 10.1103/PhysRevE.69.027301
    [47]
    Gañán-Calvo A M. 2005. Enhanced liquid atomization:from flow-focusing to flow-blurring. Appl. Phys.Lett., 86:214101. doi: 10.1063/1.1931057
    [48]
    Gañán-Calvo A M. 2007a. Electro-flow focusing:the high-conductivity low-viscosity limit. Phys. Rev.Lett., 98:134503. doi: 10.1103/PhysRevLett.98.134503
    [49]
    Gañán-Calvo A M. 2007b. Absolute instability of a viscous hollow jet. Phys. Rev. E, 75:027301. doi: 10.1103/PhysRevE.75.027301
    [50]
    Gañán-Calvo A M, Barrero A. 1999. A novel pneumatic technique to generate steady capillary microjets.J. Aerosol Sci., 30:117-125. doi: 10.1016/S0021-8502(98)00029-9
    [51]
    Gañán-Calvo A M, Fernández J M, Oliver A M, Marquez M. 2004. Coarsening of monodisperse wet micro-foams. Appl. Phys. Lett., 84:4989-4991. doi: 10.1063/1.1762992
    [52]
    Gañán-Calvo A M, Ferrera C, Torregrosa M, Herrada M A, and Marchand M. 2011. Experimental and numerical study of the recirculation flow inside a liquid meniscus focused by air. Microfluid. Nanofluid., 11:65-74. doi: 10.1007/s10404-011-0774-9
    [53]
    Gañán-Calvo A M, González-Prieto R, Riesco-Chueca P, Herrada M A, Flores-Mosquera M. 2007. Focusing capillary jets close to the continuum limit. Nat. Phys., 3:737-742. doi: 10.1038/nphys710
    [54]
    Gañán-Calvo A M, Gordillo J M. 2001. Perfectly monodisperse mircobubbling by capillary flow focusing.Phys. Rev. Lett., 87:274501. doi: 10.1103/PhysRevLett.87.274501
    [55]
    Gañán-Calvo A M, Herrada M A, Garstecki P. 2006a. Bubbling in unbounded coflowing liquids. Phys. Rev.Lett., 96:124504. doi: 10.1103/PhysRevLett.96.124504
    [56]
    Gañán-Calvo A M, López-Herrera J M, Riesco-Chueca P. 2006b. The combination of electrospray and flow focusing. J. Fluid Mech., 566:421-445. doi: 10.1017/S0022112006002102
    [57]
    Gañán-Calvo A M, Martín-Banderas L, González-Prieto R, Rodríguez-Gil A, Berdún-Alvarez T, Cebolla Á, Chávez S, Flores-Mosquera M. 2006c. Straightforward production of encoded microbeads by flow focusing:potential applications for biomolecule detection. Int. J. Pharm., 324:19-26. doi: 10.1016/j.ijpharm.2006.05.032
    [58]
    Gañán-Calvo A M. Montanero J M. 2009. Revision of capillary cone-jet physics:Electrospray and flow focusing. Phys. Rev. E, 79:066305. doi: 10.1103/PhysRevE.79.066305
    [59]
    Gañán-Calvo A M, Castro-Hernández E, Flores-Mosquera M, Martín-Banderas L. 2015. Massive, generic, and controlled microencapsulation by flow focusing:some physicochemical aspects and new applications.J.Flow Chem., 5:DOI: 10.1556/JFC-D-14-00022
    [60]
    Gañán-Calvo A M, Montanero J M, Martín-Banderas L, Flores-Mosquera M. 2013. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing. Adv. Drug Deliv.Rev., 65:1447-1469. doi: 10.1016/j.addr.2013.08.003
    [61]
    Gañán-Calvo A M, Riesco-Chueca P. 2006. Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid:the minimum flow rate in flow focusing. J. Fluid Mech., 553:75-84. doi: 10.1017/S0022112006009013
    [62]
    Goedde E F, Yuen M C. 1970. Experiments on liquid jet instability. J. Fluid Mech., 40:495-512. doi: 10.1017/S0022112070000289
    [63]
    Gordillo J M, Gañán-Calvo A M, Pérez-Saborid M. 2001a. Monodisperse microbubbling:absolute instabil-ities in coflowing gas-liquid jets. Phys. Fluids, 13:3839-3842. doi: 10.1063/1.1416188
    [64]
    Gordillo J M, Pérez-Saborid M, Gañán-Calvo A M. 2001b. Linear stability of co-flowing liquid-gas jets. J.Fluid Mech., 448:23-51. https://www.researchgate.net/publication/231901466_Linear_stability_of_co-flowing_liquid-gas_jets
    [65]
    Gu X L, Zhu X, Kong X Z, Tan Y. 2010. Comparisons of simple and complex coacervations for preparation of sprayable insect sex pheromone microcapsules and release control of the encapsulated pheromone molecule.J. Microencapsul., 27:355-364. doi: 10.3109/02652040903221532
    [66]
    Herrada M A, Gañán-Calvo A M, Guillot P. 2008a. Spatiotemporal instability of a confined capillary jet.Phys. Rev. E, 78:046312. doi: 10.1103/PhysRevE.78.046312
    [67]
    Herrada M A, Gañán-Calvo A M, Ojeda-Monge A, Bluth B, Riesco-Chueca P. 2008b. Liquid flow focused by a gas:Jetting, dripping, and recirculation. Phys. Rev. E, 78:036323. doi: 10.1103/PhysRevE.78.036323
    [68]
    Herrada M A, Montanero J M, Ferrera C, Gañán-Calvo A M. 2010. Analysis of the dripping-jetting transition in compound capillary jets. J. Fluid Mech., 649:523-536. doi: 10.1017/S0022112010000443
    [69]
    Hertz C H, Hermanrud B. 1983. A liquid compound jet.J. Fluid Mech., 131:271-287. doi: 10.1017/S0022112083001329
    [70]
    Hettiarachchi K, Talu E, Longo M L, Dayton P A, Lee A P. 2007. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab Chip, 7:463-468. doi: 10.1039/b701481n
    [71]
    Holgado M A, Arias J L, Cózar M J, Alvarez-Fuentes J, Gañán-Calvo A M, Fernández-Arévalo M. 2008.Synthesis of lidocaine-loaded PLGA microparticales by flow focusing effects on drug loading and release properties. Int. J. Pharm., 358:27-35. doi: 10.1016/j.ijpharm.2008.02.012
    [72]
    Huerre P, Monkewitz P A. 1985. Absolute and convective instabilities in free shear flows. J. Fluid Mech., 159:151-168. doi: 10.1017/S0022112085003147
    [73]
    Huerre P, Monkewitz P A. 1990. Local and global instabilities in spatially developing flows. Annu. Rev.Fluid Mech., 22:473-537. doi: 10.1146/annurev.fl.22.010190.002353
    [74]
    Kang D J, Lin S P. 1989. Breakup of swirling liquid jets. Int. J. Eng. Fluid Mech., 2:47-62.
    [75]
    Keller J B, Rubinow S I, Tu Y O. 1973. Spatial instability of a jet. Phys. Fluids, 16:2052-2055. doi: 10.1063/1.1694264
    [76]
    Kim S H, Weitz D A. 2011. One-step emulsification of multiple concentric shells with capillary microfluidic devices. Angew. Chem. Int. Ed. Engl., 50:8731-8734. doi: 10.1002/anie.201102946
    [77]
    Kong X Z, Gu X, Zhu X, Zhang Z. 2009. Spreadable dispersion of insect sex pheromone capsules, preparation via complex coacervation and release control of the encapsulated pheromone component molecule. Biomed.Microdevices, 11:275-285. doi: 10.1007/s10544-008-9234-z
    [78]
    Kumar M. 2000. Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci., 3:234-258. http://www.docin.com/p-332134818.html
    [79]
    Laryea G N, No S Y. 2003. Development of electrostatic pressure-swirl nozzle for agricultural applications.J. Electrostat., 57:129-142. doi: 10.1016/S0304-3886(02)00122-5
    [80]
    Lasheras J C, Hopfinger E J. 2000. Liquid jet instability and atomization in a coaxial gas stream. Annu.Rev. Fluid Mech., 32:275-308. doi: 10.1146/annurev.fluid.32.1.275
    [81]
    Law S E. 2001. Agricultural electrostatic spray application:a review of significant research and development during the 20th century. J. Electrostat., 51:25-42. https://www.researchgate.net/publication/223352325_Agricultural_electrostatic_spray_application_A_review_of_significant_research_and_development_during_the_20th_century
    [82]
    Leib S J, Goldstein M E. 1986a. Convective and absolute instability of a viscous liquid jet. Phys. Fluids, 29:952-954. doi: 10.1063/1.866000
    [83]
    Leib S J, Goldstein M E. 1986b. The generation of capillary instabilities on a liquid jet. J. Fluid Mech., 168:479-500. doi: 10.1017/S0022112086000472
    [84]
    Li F, Yin X Y, Yin X Z. 2005. Linear instability analysis of an electrified coaxial jet. Phys. Fluids, 17:077104. doi: 10.1063/1.1996571
    [85]
    Li F, Yin X Y, Yin X Z. 2006. Linear instability of a coflowing jet under an axial electric field. Phys. Rev.E, 74:036304. doi: 10.1103/PhysRevE.74.036304
    [86]
    Li F, Yin X Y, Yin X Z. 2008. Instability of a viscous coflowing jet in a radial electric field. J. Fluid Mech., 596:285-311. https://www.researchgate.net/publication/232010693_Instability_of_a_viscous_coflowing_jet_in_a_radial_electric_field
    [87]
    Li F, Yin X Y, Yin X Z. 2009. Axisymmetric and non-axisymmetric instability of an electrified viscous coaxial jet. J. Fluid Mech., 632:199-225. doi: 10.1017/S0022112009006429
    [88]
    Li G B, Luo X S, Si T, Xu RX. 2014. Temporal instability of coflowing liquid-gas jets under an electric field.Phys. Fluids, 26:054101. doi: 10.1063/1.4875109
    [89]
    Lin S P. 2003. Breakup of Liquid Sheets and Jets. Cambridge:Cambridge University Press.
    [90]
    Lin S P., Chen, J. N. 1998. Role played by the interfacial shear in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech., 376:37-51. doi: 10.1017/S0022112098002894
    [91]
    Lin S P, Ibrahim E A. 1990. Instability of a viscous liquid jet surrounded by a viscous gas in a pipe. J.Fluid Mech., 218:641-658. doi: 10.1017/S002211209000115X
    [92]
    Lin S P, Lian Z W. 1989. Absolute instability in a gas. Phys. Fluids A, 1:490-493.
    [93]
    Lin S P, Lian Z W. 1993. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids A, 5:771-773. doi: 10.1063/1.858662
    [94]
    Lin S P, Reitz R D. 1998. Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech., 30:85-105. doi: 10.1146/annurev.fluid.30.1.85
    [95]
    López-Herrera J M, Gañán-Calvo A M, Perez-Saborid M. 1999. One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to EHD spraying. J. Aerosol Sci., 30:895-912. https://www.researchgate.net/profile/Jose_Lopez-Herrera/publication/241509235_The_breakup_of_a_conducting_charged_jet/links/0a85e5318ba0016fca000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    [96]
    López-Herrera J M, Riesco-Chueca P, Gañán-Calvo A M. 2005. Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets. Phys. Fluids, 17:034106. doi: 10.1063/1.1863285
    [97]
    Loscertales I G, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo A M. 2002. Micro/nano encapsulation via electrified coaxial liquid jets. Science, 295:1695-1698. doi: 10.1126/science.1067595
    [98]
    Martín-Banderas L, Flores-Mosquera M, Riesco-Chueca P, Rodríguez-Gil A, Cebolla A, Chávez S, Gañán-Ćalvo A M. 2005. Flow Focusing:A Versatile Technology to Produce Size-Controlled and Specific Mor-phology Microparticles. Small, 7:688-692. https://www.researchgate.net/publication/6606265_Flow_Focusing_A_Versatile_Technology_to_Produce_Size-Controlled_and_Specific-Morphology_Microparticles?_sg=rmX4av7HDUTQJxf4Wrssmm_l2nVitG4FFSYk7o0-aYRQnQXL-SohROVTPUBEzUsbsKuinVNyRJEfVxh8jD6-vA
    [99]
    Martín-Banderas L, Rodríguez-Gil A, Cebolla A, Chávez S, Berdún-Alvarez T, Fernendez-Garcia J M, Flores-Mosquera M, Gañán-Calvo A M. 2006. Towards High-Throughput Production of Uniformly En-coded Microparticles. Adv. Mater., 18:559-564. doi: 10.1002/(ISSN)1521-4095
    [100]
    Melcher J R. 1963. Field-coupled surface waves. Cambridge MA:MIT.
    [101]
    Michelson D. 1990. Electrostatic atomization. New York:American Institute of Physics.
    [102]
    Monkewitz P A. 1990. The role of absolute and convective instability in predicting the behavior of fluid systems. Eur. J. Mech. B/Fluids, 9:395-413.
    [103]
    Montanero J M, Gañán-Calvo A M. 2008a. Stability of coflowing capillary jets under nonaxisymmetric perturbations. Phys. Rev. E, 77:046301. https://www.researchgate.net/publication/51394443_Stability_of_coflowing_capillary_jets_under_nonaxisymmetric_perturbations
    [104]
    Montanero J M, Gañán-Calvo A M. 2008b. Viscoelastic effects on the jetting-dripping transition in co-flowing capillary jets. J. Fluid Mech., 610:249-260. https://www.researchgate.net/publication/231884488_Viscoelastic_effects_on_the_jetting-dripping_transition_in_co-flowing_capillary_jets
    [105]
    Nie Z, Xu S, Seo M, Lewis P C, Kumacheva E. 2005. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors, J. Am. Chem. Soc., 127:8058-8063. doi: 10.1021/ja042494w
    [106]
    Ponce-Torres A, Montanero J M, Vega E J, Gañán-Calvo A M. 2016. The production of viscoelastic capillary jets with gaseous flow focusing. J. Non-Newton. Fluid Mech., 229:8-15. doi: 10.1016/j.jnnfm.2016.01.004
    [107]
    Radev S, Shkadov V. 1985. On a stability of two-layer capillary jet. Theor. Appl. Mech., 16:68-75.
    [108]
    Radev S, Tchavdarov B. 1988. Linear capillary instability of compound jets. Intl J. Multiphase Flow, 14:67-79. doi: 10.1016/0301-9322(88)90034-1
    [109]
    Rayleigh L. 1878. On the instability of jets. Proc. London Math. Soc., 10:4-13.
    [110]
    Rayleigh L. 1879. On the capillary phenomenon of jets. Proc. R. Soc. London, 29:71-97. doi: 10.1098/rspl.1879.0015
    [111]
    Rayleigh L. 1882. On the equilibrium of liquid conducting masses charged with electricity. Philos. Mag., 14:184-186. doi: 10.1080/14786448208628425
    [112]
    Rayleigh L. 1892. On the instability of a cylinder of viscous liquid under capillary force. Phil. Mag., 34:145-154. doi: 10.1080/14786449208620301
    [113]
    Reitz R D, Bracco F V. 1982. Mechanism of atomization of a liquid jet. Phys. Fluids, 25:1730-1742. doi: 10.1063/1.863650
    [114]
    Reitz R D, Bracco F V. 1986. Mechanisms of breakup of round liquid jets.//Cheremisnoff N ed. The Encyclopedia of Fluid Mechanics, Houston:Gulf. 233-249.
    [115]
    Reneker D H, Yarin A L. 2008. Electrospinning jets and polymer nanofibers. Polymer, 49:2387-2425. doi: 10.1016/j.polymer.2008.02.002
    [116]
    Reneker D H, Yarin A L, Fong H. 2000. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys., 87:4531-4547. doi: 10.1063/1.373532
    [117]
    Rosell-Llompart J, Gañán-Calvo A M. 2008. Turbulence in pneumatic flow focusing and flow blurring regimes. Phys. Rev. E, 77:036321. doi: 10.1103/PhysRevE.77.036321
    [118]
    Sanz A, Meseguer J. 1985. One-dimensional linear analysis of the compound jet. J. Fluid Mech., 159:55-68. doi: 10.1017/S0022112085003093
    [119]
    Saville D A. 1997. Electrohydrodynamics:the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech., 29:27-64. doi: 10.1146/annurev.fluid.29.1.27
    [120]
    Sevilla A, Gordillo J M, Martínez-Bazán C. 2002. The effect of the diameter ratio on the absolute and convective instability of free coflowing jets. Phys. Fluids, 14:3028-3038. doi: 10.1063/1.1496511
    [121]
    Seo M, Paquet C, Nie Z, Xu S, Kumacheva E. 2007. Microfluidic consecutive flowfocusing droplet generators, Soft Matter, 3:986-992. doi: 10.1039/b700687j
    [122]
    Sheeran P S, Dayton P A. 2012. Phase-Change Contrast Agents for Imaging and Therapy. Current Phar-maceutical Design, 18:2152-2165. doi: 10.2174/138161212800099883
    [123]
    Shkadov V Y, Sisoev G M. 1996. Instability of a two-layer capillary jet. Intl J. Multiphase Flow, 22:363-377. doi: 10.1016/0301-9322(95)00073-9
    [124]
    Si T, Feng H X, Luo X S, Xu R X. 2015. Formation of steady compound cone-jet modes and multilayered droplets in a tri-axial capillary flow focusing device. Microfluid. Nanofluid., 18:967-977. doi: 10.1007/s10404-014-1486-8
    [125]
    Si T, Li F, Yin X Y, Yin X Z. 2009. Modes in flow focusing and instability of coaxial liquid-gas jets. J.Fluid Mech., 629:1-23. doi: 10.1017/S0022112009006211
    [126]
    Si T, Li F, Yin X Y, Yin X Z. 2010. Spatial instability of co-flowing liquid-gas jets in capillary flow focusing.Phys. Fluids, 22:112105. doi: 10.1063/1.3490066
    [127]
    Si T, Li G B, Wu Q, Zhu Z Q, Luo X S, Xu R X. 2016a. Optical droplet vaporization of nanoparticle-loaded stimuli-responsive microbubbles. Appl. Phys. Lett., 108:111109. doi: 10.1063/1.4944539
    [128]
    Si T, Yin C S, Gao P, Li G B, Ding H, He X M, Xie B, Xu R X. 2016b. Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompartment microcapsules. Appl. Phys. Lett., 108:021601. doi: 10.1063/1.4939632
    [129]
    Si T, Zhang L L, Li G B, Roberts C J, Yin X Z, Xu R X. 2013. Experimental design and instability analysis of coaxial electrospray process for microencapsulation of drugs and imaging agents. J. Biomed. Opt., 18:075003. doi: 10.1117/1.JBO.18.7.075003
    [130]
    Sterling A M, Sleicher C A. 1975. The instability of capillary jets. J. Fluid Mech., 68:477-495. doi: 10.1017/S0022112075001772
    [131]
    Taylor G I. 1940. Generation of ripples by wind blowing over viscous fluids//Batchelor G K ed. The Scientific Papers of G.I. Taylor. Cambridge:Cambridge University Press. 244-254.
    [132]
    Taylor G I. 1964. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A, 280:383-397. doi: 10.1098/rspa.1964.0151
    [133]
    Tomotika S. 1935. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. London Ser. A, 150:322-337. doi: 10.1098/rspa.1935.0104
    [134]
    Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A. 2005. Monodisperse double emulsions generated from a microcapillary device. Science, 308:537-541. doi: 10.1126/science.1109164
    [135]
    Vega E J, Gañán-Calvo A M, Montanero J M, Cabezas M G, Herrada M A. 2013. A novel technique for producing metallic microjets and microdrops. Microfluid. Nanofluid., 14:101-111. doi: 10.1007/s10404-012-1027-2
    [136]
    Vega E J, Montanero J M, Herrada M A, Gañán-Calvo A M. 2010. Global and local instability of flow focusing:The influence of the geometry. Phys. Fluids, 22:064105. doi: 10.1063/1.3450321
    [137]
    Vladisavljevi G T, Khalid N, Neves M A., Kuroiwa T, Nakajima M, Uemura K, Ichikawa S, Kobayashi I. 2013. Industrial lab-on-a-chip:Design, applications and scale-up for drug discovery and delivery. Adv.Drug Deliv. Rev., 65:1626-1663. doi: 10.1016/j.addr.2013.07.017
    [138]
    Wang H, Agarwal P, Zhao S, Yu J, Lu X, He X. 2015. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of theranostic agents. Nature Comm., 6:10081. doi: 10.1038/ncomms10081
    [139]
    Weber C Z. 1931. Zum Zerfall eines Flussigkeitsstrahles. Math. Mech., 11:136-154.
    [140]
    Wu P K, Tseng L K, Faeth G M. 1992. Primary breakup in gas/liquid mixing layers for turbulent liquids.At. Sprays, 2:295-318. doi: 10.1615/AtomizSpr.v2.i3
    [141]
    Xiao J, Yu H, Yang J. 2011. Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chem., 125:1267-1272. doi: 10.1016/j.foodchem.2010.10.063
    [142]
    Xu J S, Huang J, Qin R, Hinkle G H, Povoski S P, Martin E W, Xu R X. 2010. Synthesizing and binding dual-mode poly (lactic-co-glycolic acid)(plga) nanobubbles for cancer targeting and imaging. Biomaterials, 31:1716-1722. doi: 10.1016/j.biomaterials.2009.11.052
    [143]
    Xu R X, Huang J, Xu J S, Sun D, Hinkle G H, Martin E W, Povoski S P. 2009. Fabrication of indocya-nine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer. J.Biomed. Opt., 14:034020. doi: 10.1117/1.3147424
    [144]
    Yarin A L. 1993. Free Liquid Jets and Films:Hydrodynamic and Rheology. Essex:Longman Science and Technology.
    [145]
    Yarin A L, Koombhongse, Reneker D H. 2001. Bending instability in electrospinning of nanofibers. J. Appl.Phys., 89:3018-3026. doi: 10.1063/1.1333035
    [146]
    Yecko P, Zaleski S, Fullana J M. 2002. Viscous modes in two-phase mixing layers. Phys. Fluids, 14:4115-4122. doi: 10.1063/1.1513987
    [147]
    Yow H N, Routh A F. 2006. Formation of liquid core-polymer shell microcapsules. Soft Matter, 2:940-949. doi: 10.1039/B606965G
    [148]
    Yuan S, Lei F, Liu Z F, Tong Q P, Si T, Xu R X. 2015. Coaxial electrospray of curcumin-loaded microparticles for sustained drug release. Plos One, 10:e0132609. doi: 10.1371/journal.pone.0132609
    [149]
    Zakaria K. 2000. Nonlinear instability of a liquid jet in the presence of a uniform electric field. Fluid Dyn.Res., 26:405-420. doi: 10.1016/S0169-5983(99)00021-0
    [150]
    Zeleny J. 1914. The electrical discharge from liquid points and a hydrostatic method of measuring the electric intensity at their surface. Phys. Rev., 3:69-91. doi: 10.1103/PhysRev.3.69
    [151]
    Zeleny J. 1915. On the conditions of instability of electrified drops, with applications to the electric discharge from liquid points. Proc. Camb. Phil. Soc., 18:71-83.
    [152]
    Zhang L L, Huang J W, Si T, Xu R X. 2012. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev. Med. Devices, 9:595-612. doi: 10.1586/erd.12.58
    [153]
    Zhang L L, Si T, Fischer A, Letson A, Yuan S, Roberts C J, Xu R X. 2015. Coaxial electrospray of ranibizumab-loaded microparticles for sustained release of anti-VEGF therapies. PloS One, 10:e0135608. doi: 10.1371/journal.pone.0135608
    [154]
    Zhao C. 2013. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Deliv. Rev., 65:1420-1446. doi: 10.1016/j.addr.2013.05.009
    [155]
    Zhu Z Q, Si T, Xu R X. 2015. Microencapsulation of Indocyanine Green for potential applications in image-guided drug delivery. Lab Chip, 15:646-649. doi: 10.1039/C4LC01032A
    [156]
    Zhu Z Q, Wu Q, Li G B, Han S Y, Si T, Xu R X. 2016. Microfluidic fabrication of stimuli-responsive microdroplets for acoustic and optical droplet vaporizations. J. Mater. Chem. B, 4:2723-2730. doi: 10.1039/C5TB02402A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)

    Article Metrics

    Article views (5362) PDF downloads(2106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return