Volume 48 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
WANG Yiwei, HUANG Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process[J]. Advances in Mechanics, 2018, 48(1): 1805. doi: 10.6052/1000-0992-16-020
Citation: WANG Yiwei, HUANG Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process[J]. Advances in Mechanics, 2018, 48(1): 1805. doi: 10.6052/1000-0992-16-020

Research progress on hydrodynamics of high speed vehicles in the underwater launching process

doi: 10.6052/1000-0992-16-020
More Information
  • Author Bio:

    ɛ E-mail:huangcg@imech.ac.cn

  • Corresponding author: HUANG Chenguang
  • Received Date: 2016-05-28
  • Publish Date: 2018-02-08
  • Research on hydrodynamics of high speed vehicles in underwater launch process has a prominent engineering background, and contains typical frontier scientific issues. Relevant unsteady cavitating flow issues including instability and collapse of cavities, are of~crucial importance to the analysis of dynamic load and underwater launching vehicles' safety. In this paper, we first introduce the main scientific problems and the control parameters. Then we review the physical mechanisms on the development instability, collapse and control methods of unsteady fluid cavitation. Finally, remaining challenges and development~tendency for future research are given.

     

  • loading
  • [1]
    鲍文春, 权晓波, 魏海鹏. 2014. 航行体排气水下发射流体动力数值仿真研究. 导弹与航天运载技术, 14-18

    (Bao W C, Quan X B, Wei H P.2014. Numerical simulation on the flow dynamics of underwater vehicle launching with exhaust. Missiles and Space Vehicles,14-18 ).
    [2]
    曹伟, 魏英杰, 王聪, 邹振祝, 黄文虎. 2006. 超空泡技术现状、问题与应用. 力学进展, 36: 571-579

    (Cao W, Wei Y J, Wang C, Zou Z Z, Huang W H.2006. Current status problems and application of supercavitation technology. Advances in Mechanics,36: 571-579).
    [3]
    陈玮琪, 王宝寿, 颜开, 鲁海燕. 2013. 物体垂直出入水的非定常空泡数学模型. 应用数学和力学, 34: 1130-1140

    (Chen W Q, Wang B S, Yan K, Lu H Y.2013. Model of the unsteady vertical water-entry and water-exit cavities. Applied Mathematics and Mechanics,34: 1130-1140).
    [4]
    陈玮琪, 王宝寿, 颜开, 易淑群. 2012. 空化器出水非定常垂直空泡的研究. 力学学报, 45: 76-82

    (Chen W Q, Wang B S, Yan K, Yi S Q.2012. Study on the unsteady vertical cavity of the exit water cavitor. Chinese Journal of Theoretical and Applied Mechanics,45: 76-82).
    [5]
    陈玮琪, 王宝寿, 易淑群, 郑俊, 褚学森. 2012. 非定常空泡闭合区域最大压力的理论研究. 力学学报, 44: 701-708

    (Chen W Q, Wang B S, Yi S Q, Zheng J, Zhu X S.2012. A theoretical investigation on the maximum pressure of the unsteady cavity closure position. Chinese Journal of Theoretical and Applied Mechanics,44: 701-708).
    [6]
    陈玮琪, 颜开, 王宝寿, 史淦君, 汤新元, 刘志勇. 2007. 物体斜出水过程的轴向水动力参数辨识. 船舶力学, 11: 521-527

    (Chen W Q, Yan K, Wang B S, Shi C J, Tang X Y, Liu Z Y.Parameter identification of axial hydrodynamic forces acting on axis-symmetric body exiting water obliquely. Journal of Ship Mechanics,11: 521-527).
    [7]
    陈鑫. 2006. 通气空泡流研究. [博士论文]. 上海: 上海交通大学

    (Chen X.2006. An investigation of the ventilated cavitating flow. [PhD Thesis]. Shanghai: Shanghai Jiaotong University).
    [8]
    程少华, 权晓波, 于海涛, 翟章明, 王占莹. 2015. 小攻角下航行体三维非定常空泡形态理论预示方法. 船舶力学, 19: 889-895

    (Cheng S H, Quan X B, Yu H T, Zhai Z M, Wang Z Y.2015 Three-dimensional cavitation shape of the underwater vehicles at a small attack angle in unsteady flow. Journal of Ship Mechanics, 19: 889-895).
    [9]
    程载斌, 刘玉标, 刘兆, 申仲翰. 2008. 导弹水下潜射过程的流体--固体耦合仿真. 兵工学报, 29: 178-183

    (Cheng Z B, Liu Y B, Liu Z, Shen Z H.2008. FSI simulation on the vertical launching process of underwater missile. Acta Armamentarii,29: 178-183).
    [10]
    戴月进, 张媛媛, 黄典贵. 2012. 水翼表面粗糙带对空化抑制效果的数值研究. 工程热物理学报, 33: 770-773

    (Dai Y J, Zhang Y Y, Huang D G.2012. Numerical study of the impact of hydrofoil surface roughness on cavitation suppression. Journal of Engineering Thermophysics,33: 770-773).
    [11]
    董文才, 郭日修, 刘希武. 2002. 断阶滑行艇气层减阻试验研究. 水动力学研究与进展, 17: 440-447

    (Dong W C, Guo R X, Liu X W.2002. Experimental investigation on the resistance reduction of stepped planning craft by formation of air cavity. Journal of Hydrodynamics, 17: 440-447).
    [12]
    杜特专, 黄晨光, 王一伟, 于娴娴, 吴小翠. 2015. 有限水域内球形气泡振动特性及影响参数研究. 水动力学研究与进展, 30: 1-8

    (Du T Z, Huang C G, Wang Y W, Yu X X, Wu X C.2015. Study on the vibration characteristics and influence parameters of a sphere bubble within finite field. Journal of Hydrodynamics,30: 1-8).
    [13]
    段磊. 2014. 通气空泡多相流流动特性研究. [博士论文]. 北京: 北京理工大学

    (Duan L.2014. Study on Characteristics of ventilated cavitating flows around an axisymmetric body. [PhD Thesis]. Beijing: Beijing Institute of Technology).
    [14]
    傅慧萍, 鲁传敬, 冯学梅. 2003. 超空泡武器技术中的几个水动力学问题. 船舶力学, 7: 112-118

    (Fu H P, Lu C J, Feng X M.2003. Some hydrodynamic problems in supercavitation technology. Journal of Ship Mechanics,7: 112-118).
    [15]
    傅慧萍, 鲁传敬, 吴磊. 2005. 回转体空泡流特性研究. 水动力学研究与进展: A 辑, 20: 84-89

    (Fu H P, Lu C J, Wu L.2005. Research on characteristics of flow around cavitating body of revolution. Journal of Hydrodynamics: Ser. A,20: 84-89).
    [16]
    胡常莉. 2015. 绕回转体空化流动特性与机理研究. [博士论文]. 北京: 北京理工大学

    (Hu C L.2015. Research on characteristics and mechanisms of flow around cavitating body of revolution. [PhD Thesis]. Beijing: Beijing Institute of Technology).
    [17]
    胡影影, 朱克勤, 席葆树. 2002. 半无限长柱体出水数值模拟. 清华大学学报(自然科学版), 42: 235-238

    (Hu Y Y, Zhu K Q, Xi B S.2002. Numerical simulation of a semi-infinite cylinder exited from water. J Tsinghua Univ ( Sci and Tech),42: 235-238 ).
    [18]
    顾巍, 何友声. 2001. 空泡流非稳态现象的流动控制. 力学学报, 33: 19-27

    (Gu W, He Y S.2001. Flow control on unstable cavitation phenomena. Chinese Journal of Theoretical and Applied Mechanics,33: 19-27).
    [19]
    郭峰, 董文才, 毕毅. 2010. 回转体微气泡减阻影响因素理论研究. 哈尔滨工程大学学报, 31: 1443-1449

    (Guo F, Dong W C, Bi Y.2010. The theoretical study on influencing factors to resistance reduction of a gyroidal object by microbubbles. Journal of Harbin Engineering University,31: 1443-1449).
    [20]
    黄彪, 王国玉, 权晓波, 张敏弟. 2011. 绕平头回转体非定常空化流体动力特性研究. 实验流体力学, 25: 22-28

    (Huang B, Wang G Y, Quan X B, Zhang M D.2011. Study on the unsteady cavitating dynamic dynamic characteristics around a 0-caliber ogive revolution body. Journal of Experiments in Fluid Mechanics,25: 22-28).
    [21]
    黄彪, 王国玉, 权晓波, 张敏弟. 2012. 轴对称体空化水动力脉动特性的实验研究. 工程力学, 29: 239-244

    (Huang B, Wang G Y, Quan X B, Zhang M D.2012. Experimental study on fluctuating hydrodynamics around axisymmetric bodies. Engineering Mechanics,29: 239-244).
    [22]
    贾会霞, 胡俊辉, 施红辉, 陈波. 2015. 出水超空泡的形状与弗劳德数影响的实验研究. 西安交通大学学报, 49: 67-73

    (Jia H X, Hu J H, Shi H H, Chen B.2015. Experimental research on the shape of water-exit supercavity and the effect of Froude number. Journal of Xi'an Jiaotong University,49: 67-73).
    [23]
    孔德才, 权晓波, 魏海鹏, 燕国军, 尤天庆. 2015. 锥柱航行体肩空泡界面效应对头锥面受力的影响研究. 水动力学研究与进展 A 辑, 2: 012

    (Kong D C, Quan X B, Wei H P, Yan G J, You T Q.2015. Influence of cavitation interface effect of cone-column vehicle on the forces of the cone. Journal of Hydrodynamics: Ser.A, 2: 012).
    [24]
    李国良, 袁湘江, 敖林. 2013. 潜射导弹出水载荷数值算法研究. 力学与实践, 35: 25-30, 24.

    Li G L, Yuan X J, Ao L. 2013. Simulation of under-water launched missile's water-exit load. Mechanics In Engineering, 35: 25-30, 24
    [25]
    李勇. 2011. 船舶微气泡减阻机理研究. [硕士论文]. 哈尔滨: 哈尔滨工程大学

    (Li Y.2011. Mechanism research on drag reduction of ship by microbubbles. [Master Thesis]. Harbin: Harbin Engineering University).
    [26]
    裴譞, 王育才, 张宇文, 邓飞, 袁绪龙. 2011a. 超空泡航行器舵效的水洞试验研究. 西南交通大学学报, 46: 1008-1012

    (Pei X, Wang Y C, Zhang Y W, Deng F, Yuan X L.2011. Experimental research on tail rudder efficiency of super-cavitation vehicle. Journal of Southwest Jiaotong University,46: 1008-1012).
    [27]
    裴譞, 张宇文, 袁绪龙, 张纪华. 2011b. 尾翼对超空泡航行器形态及力学特性影响实验研究. 实验流体力学, 25: 23-28

    (Pei X, Zhang Y W, Yuan X L, Zhang J H.2011. Exploring experimentally effect of tail wing on shape and dynamics on super-cavitation vehicle, Journal of Experiments in Fluid Mechanics, 25: 23-28).
    [28]
    秦勇. 2014. 均压气体对考虑波浪的航行体水动力特性影响机制研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学

    (Qin Y.2014. Effect of gas exhausting on hydrodynamic characteristic of underwater vehicle considering wave. [Master Thesis]. Harbin: Harbin Institute of Technology).
    [29]
    权晓波, 李岩, 魏海鹏, 吕海波, 辛万青, 鲁传敬. 2008. 航行体出水过程空泡溃灭特性研究. 船舶力学, 12: 545-549

    (Quan X B, Li Y, Wei H P, Lu H B, Xin W Q, Lu C J.2008. Cavitation collapse characteristic research in the out-of-water progress of underwater vehicles. Journal of Ship Mechanics,12: 545-549).
    [30]
    施红辉, 胡俊辉, 周浩磊. 2014. 完全超空泡出水的实验研究及理论分析. 空气动力学学报, 32: 544-550

    (Shi H H, Hu J H, Zhou H L.2014. Experimental and theoretical analysis of water exit of a supercavity. Acta Aerodynamica Sinica,32: 544-550).
    [31]
    王柏秋, 王聪, 黄海龙, 何春涛, 张嘉钟. 2012. 空化模型中的相变系数影响研究. 工程力学, 29: 378-384

    (Wang B Q, Wang C, Huang H L, He C T, Zhang J Z.2012. Study of the influence of phase-changes coefficients in the cavitation model. Engineering Mechanics,29: 378-384).
    [32]
    王国玉, 曹树良. 2001. 通气对空化引起振动的影响. 水力发电学报, 55-62

    (Wang G Y, Cao S L.2001. Ventilation effects on cavitation induced vibration. Journal of Hydroelectric Engineering, 55-62).
    [33]
    王家楣, 姜曼松, 郑晓伟, 詹德新. 2004. 不同喷气形式下船舶微气泡减阻水池试验研究. 华中科技大学学报: 自然科学版, 32: 78-80

    (Wang J M, Jiang M S, Zheng X W, Zhan D X.2004. Study of drag reduction of vessel model by microbubble with different injection forms on the towing basin. J. Huazhong Univ. of Sci. and Tech. ( Nature Science Edition), 32: 78-80).
    [34]
    王家楣, 郑晓伟, 姜曼松. 2004. 船舶吃水对微气泡减阻影响的水池试验研究. 船舶工程, 26: 9-12

    (Wang J M, Zheng X W, Jiang M S.2004. Test research on drag reduction of ship model at different draft by microbubble in towing basin. Ship Engineering,26: 9-12).
    [35]
    王亚东, 袁绪龙, 张宇文, 刘维. 2013. 气泡弹性对同心筒水下发射影响研究. 计算力学学报, 313-318

    (Wang Y D, Yuan X L, Zhang Y W, Liu W.2013. On the effect of bubble elasticity to sub-launch process using concentric canister launcher. Chinese Journal of Computational Mechanics, 313-318).
    [36]
    王一伟. 2013. 高速航行体水动力载荷特征与机理研究. [博士论文]. 北京: 中国科学院大学

    (Wang Y W.2013. Principal characteristics and physical mechanisms of hydrodynamic load for high-speed underwater vehicles. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences).
    [37]
    王一伟, 黄晨光, 杜特专, 方新, 梁乃刚. 2012. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 44: 39-48

    (Wang Y W, Huang C G, Du T Z, Fang X, Liang N G.2012. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process. Chinese Journal of Theoretical and Applied Mechanics,44: 39-48).
    [38]
    王一伟, 黄晨光, 杜特专, 刘维玮. 2011. 航行体有攻角出水全过程数值模拟. 水动力学研究与进展 26: 48-57

    (Wang Y W, Huang C G, Du T Z, Liu W W.2011. Numerical simulation of a submerged body exiting from water with an attack angle. Journal of Hydrodynamics,26: 48-57).
    [39]
    王一伟, 黄晨光, 方新, 杜特专, 于娴娴. 2013. 水下回转航行体的云状空化回射流运动特征研究. 水动力学研究与进展 A辑, 28: 23-29

    (Wang Y Y, Huang C G, Fang X, Du T Z, Yu X X.2013. Characteristics of the re-entry jet in the cloud cavitating flow over a submerged axisymmetric projectile. Journal of Hydrodynamics: Ser.A,28: 23-29).
    [40]
    王一伟, 黄晨光, 吴小翠, 杜特专, 方新, 梁乃刚, 于娴娴. 2015. 航行体水下垂直发射空泡脱落条件研究. 工程力学, 32: 33-39

    (Wang Y W, Huang C G, Wu X C, Du T Z, Fang X, Liang N G, Yu X X.2015. Investigation of cavities shedding condition on underwater vehicles in the vertical launch process. Engineering Mechanics,32: 33-39).
    [41]
    邢景棠, 周盛, 崔尔杰. 1997. 流固耦合力学概述. 力学进展, 27: 19-38

    (Xing J T, Zhou S, Cui E J.1997. A survey on the fluid-solid interaction mechanics. Advances in Mechanics,27: 19-38).
    [42]
    邢彦江, 张嘉钟, 魏英杰, 王聪. 2012. 航行体加速运动对空泡形态影响研究. 工程力学, 29: 343-348

    (Xing Y J, Zhang J Z, Wei Y J, Wang C.2012. Study on effect of vehicle accelerating motion on cavity shape. Engineering Mechanics. Advances in Mechanics,29: 343-348).
    [43]
    颜开, 褚学森, 许晟, 冯光. 2006. 超空泡流体动力学研究进展. 船舶力学, 10: 148-155

    (Yan K, Chu X S, Xu S, Feng G.2006. Research progress of supercavitation hydrodynamics. Journal of Ship Mechanics,10: 148-155).
    [44]
    杨传武, 王安稳. 2008. 超空泡水下航行体振动特性分析. 海军工程大学学报, 20: 30-32

    (Yang C W, Wang A W.2008. Vibration of supercavitating underwater vehicles. Journal of Naval University of Engineering,20: 30-32).
    [45]
    杨传武, 王安稳. 2008. 冲击载荷作用下超空泡水下航行体的结构响应. 华中科技大学学报(自然科学版), 36: 129-132

    (Yang C W, Wang A W.2008. Structural response of supercavitating underwater vehicles subjected to impact loads. J. Huazhong Univ. of Sci. and Tech. (Nature Science Edition), 36: 129-132).
    [46]
    姚琰, 鲁传敬, 朱坤. 2009. 水下高速气体射流的实验研究. 水动力学研究与进展: A 辑, 24: 590-595

    (Yao Y, Lu C J, Zhu K.2009. Experimental study on confined high-speed gas jets in water. Journal of Hydrodynamics: Ser.A,).
    [47]
    叶正寅, 张伟伟, 史爱明. 2010. 流固耦合力学基础及其应用. 哈尔滨工业大学出版社

    (Ye Z, Zhang W W, Shi A M.2010. Fundamentals of Fluid-Structure Coupling and Its Application. Harbin Institute of Technology Press).
    [48]
    于娴娴, 王一伟, 黄晨光, 杜特专. 2012. 水下回转体边界层通气减阻的研究//第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源诞辰110周年纪念大会文集(上册)

    (Yu X X, Wang Y W, Huang C G, Du T Z.2012. Investigation of drag reduction by gas injection into boundary layer of underwater gyroidal bodies//Proceeding of the 11the National Congress on Hydrodynamics and 24the National Conference on Hydrodynamics and Commemoration of the 110th Anniversary of Zhou Pei-yuan's Birth).
    [49]
    于娴娴, 王一伟, 黄晨光, 杜特专. 2014. 轴对称航行体通气云状空化非定常特征研究. 船舶力学, 18: 499-506

    (Yu X X, Wang Y W, Huang C G, Du T Z.2014. Unsteady characteristics of ventilated cloud cavity around symmetrical bodies. Journal of Ship Mechanics,18: 499-506).
    [50]
    于娴娴, 王一伟, 黄晨光, 杜特专. 2015. 通气对云状空化不稳定性调节中的控制参数与影响规律研究. 中国科学: 物理学力学天文学, 45: 034703

    (Yu X X, Wang Y W, Huang C G, Du T Z.2015. Parameters and influence of gas injection on modification of cavitation stability. Scientia Sinitia Physica, Mechanica and Astronomica, 45: 034703).
    [51]
    张阿漫, 姚熊亮. 2008. 基于边界积分法的气泡动态特性综述. 力学进展, 38: 561-570

    (Zhang A M, Yao X L.2008. Review on the bubble dynamics based on boundary integral method. Advances in Mechanics,38: 561-570).
    [52]
    张博, 张宇文, 张纪华. 2011. 通气空泡生成和溃灭特性试验研究. 应用力学学报, 28: 55-58

    (Zhang B, Zhang Y W, Zhang J H.2011. Experimental Study on Formation and Collapse of Ventilation Cavity. Chinese Journal of Applied Mechanics,28: 55-58).
    [53]
    张健, 范国芳, 张兴国. 2014. 航行体垂直出筒载荷特性及影响因素分析. 战术导弹技术, 5: 002

    (Zhang J, Fan G F, Zhang X G.2014. Characteristic analysis and effect factors about dynamic load of underwater vehicles during vertical launching from a tube. Tactical Missile Technology,5: 002 ).
    [54]
    张劲生, 张嘉钟, 魏英杰, 曹伟. 2010. 超空泡水下航行体的结构动力响应特性. 北京航空航天大学学报, 36: 411-414

    (Zhang J S, Zhang J Z, Wei Y J, Cao W.2010. Structural dynamic response characteristics of supercavitating underwater vehicles. Journal of Beijing University of Aeronautics and Astronautics, 36: 411-414).
    [55]
    张凌新, 尹琴, 邵雪明. 2012. 水中气泡溃灭的理论与数值研究. 水动力学研究与进展A辑, 27: 68-73

    (Zhang L X, Yin Q, Shao X M.2012. Theoretical and numerical studies on the bubble collapse in water. Journal of Hydrodynamics: Ser. A,27: 68-73 ).
    [56]
    张马骏, 陈鑫, 鲁传敬. 2014. 锥头航行体非匀速垂直出水数值研究. 水动力学研究与进展: A 辑, 29: 683-690

    (Zhang M J, Chen X, Lu C J.2014. Numerical study of the submerged body with a conical head exiting from water vertically in non-uniform velocity. Journal of Hydrodynamics: Ser. A, 29: 683-690).
    [57]
    张素宾, 鲁传敬, 陈鑫. 2012. 高速航行体通气空泡形态. 上海交通大学学报, 2: 329-334

    (Zhang S B, Lu C J, Chen X.2012. Investigation of ventilated cavity shapes of a high speed underwater vehicle. Journal of Shanghai Jiaotong University,2: 329-334 ).
    [58]
    郑哲敏. 1958. 输水管的振动问题. 力学学报, 2: 100-111

    (Che-Min Cheng.1985. Vibration of water pipes. Chinese Journal of Theoretical and Applied Mechanics,2: 100-111 ).
    [59]
    周浩磊. 2012. 水下高速航行体发射系统的设计及超空泡流场特性研究. [硕士论文]. 杭州: 浙江理工大学

    (Zhou H L.2012. Design of a launch system of high-speed underwater vehicles and research on the characteristics of supercavitation flows. [Master Thesis]. Hangzhou: Zhejiang Sci-Tech University).
    [60]
    Aeschlimann V, Barre S, Legoupil S.2011. X-ray attenuation measurements in a cavitating mixing layer for instantaneous two-dimensional void ratio determination. Physics of Fluids, 23: 253-268.
    [61]
    Amromin E, Kopriva J, Arndt R, Wosnik M.2006. Hydrofoil drag reduction by partial cavitation. Journal of Fluids Engineering, 128: 931-936.
    [62]
    Arakeri V H, Acosta A J.1976. Cavitation inception observations on axisymmetric bodies at supercritical Reynolds numbers. Journal of Ship Research, 20: 40-50.
    [63]
    Arndt R E A, Balas G J, Wosnik M.2005. Control of cavitating flows: A perspective. JSME International Journal, 48: 334-341.
    [64]
    Arndt R E A, Song C C S, Kjeldsen M, He J, Keller A.2001. Instability of partial cavitation: A numerical/experimental approach//Twenty-Third Symposium on Naval Hydrodynamics.
    [65]
    Bensow R E, Bark G.2010. Implicit LES predictions of the cavitating flow on a propeller. Journal of Fluids Engineering-Transactions of the ASME, 132: 041302.
    [66]
    Besant W H, Ramsey A S, 1913. A treatise on hydromechanics: Hydrostatics and hydrodynamics. Deighton, Bell G, USA.
    [67]
    Blake J R, Gibson D C.1987. Cavitation bubbles near boundaries. Annual Review of Fluid Mechanics, 19: 99-123.
    [68]
    Bodgevich V G, Evseev A R.1976. The distribution of skin friction in a turbulent boundary layer of water beyond the location of gas injection. Investigations of Boundary Layer Control (in Russian), Thermophysics Institute Publishing House (in Russian), Thermophysics Institute Publishing House, 62.
    [69]
    Bremond N, Arora M, Ohl C D, Lohse D.2006. Controlled multibubble surface cavitation. Physical Review Letters, 96: 224501.
    [70]
    Brennen C E.1995. Cavitation and Bubble Dynamics. Oxford University Press, USA.
    [71]
    Callenaere M, Franc J P, Michel J M, Riondet M.2001. The cavitation instability induced by the development of a re-entrant jet. Journal of Fluid Mechanics, 444: 223-256.
    [72]
    Ceccio S L.2010. Friction drag reduction of external flows with bubble and gas injection. Annual Review of Fluid Mechanics, 42: 183-203.
    [73]
    Ceccio S L, George D L.1996. A review of electrical impedance techniques for the measurement of multiphase flows. Journal of Fluids Engineering, 118: 391-399.
    [74]
    Cervone A, Bramanti C, Rapposelli E, d'Agostino L.2006. Thermal cavitation experiments on a NACA 0015 hydrofoil. Journal of fluids engineering, 128: 326-331.
    [75]
    Cheng C M.1957. Problems in hydro-elasticity//Proceedings 9th International Congress of Applied Mechanics, University of Bruxelles, Avenue Franklin Roosevelt.
    [76]
    Clark III H, Deutsch S.1991. Microbubble skin friction reduction on an axisymmetric body under the influence of applied axial pressure gradients. Physics of Fluids A: Fluid Dynamics, 3: 2948-2954.
    [77]
    Coutier-Delgosha O, Deniset F, Astolfi J A, Leroux J.2007a. Numerical prediction of cavitating flow on a two-dimensional symmetrical hydrofoil and comparison to experiments. Journal of Fluids Engineering, 129: 279-292.
    [78]
    Coutier-Delgosha O, Devillers J, Leriche M, Pichon T.2005. Effect of wall roughness on the dynamics of unsteady cavitation. Journal of Fluids Engineering, 127: 726-733.
    [79]
    Coutier-Delgosha O, Fortes-Patella R, Reboud J L.2003a. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. Journal of Fluids Engineering, 125: 38-45.
    [80]
    Coutier-Delgosha O, Reboud J L, Delannoy Y.2003b. Numerical simulation of the unsteady behaviour of cavitating flows. International journal for numerical methods in fluids, 42: 527-548.
    [81]
    Coutier-Delgosha O, Stutz B, Vabre A, Legoupil S.2007b. Analysis of cavitating flow structure by experimental and numerical investigations. Journal of Fluid Mechanics, 578: 171-222.
    [82]
    Dittakavi N, Chunekar A, Frankel S.2010. Large eddy simulation of turbulent-cavitation interactions in a venturi nozzle. Journal of Fluids Engineering-Transactions of the ASME, 132: 121302.
    [83]
    Dular M, Bachert R, Stoffel B, Sirok B.2004. Relationship between cavitation structures and cavitation damage. Wear, 257: 1176-1184.
    [84]
    Dular M, Bachert R, Stoffel B, Sirok B.2005. Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. European Journal of Mechanics - B/Fluids, 24: 522-538.
    [85]
    Duplaa S, Coutier-Delgosha O, Dazin A, Roussette O, Bois G, Caignaert G.2010. X-ray measurements in a cavitating centrifugal pump during fast start-ups. Journal of Fluids Engineering, 135: 041204.
    [86]
    Elbing B R, Mäkiharju S, Wiggins A, Perlin M, Dowling D R, Ceccio S L.2013. On the scaling of air layer drag reduction. Journal of Fluid Mechanics, 717: 484-513.
    [87]
    Elbing B R, Winkel E S, Lay K A, Ceccio S L, Dowling D R, Perlin M.2008. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. Journal of Fluid Mechanics, 612: 201-236.
    [88]
    Feng X M, Chuan-Jing L U, Hu T Q, Lei W U, Jie L I.2005. The fluctuation characteristics of natural and ventilated cavities on an axisymmetric body. Journal of Hydrodynamics, 17: 87-91.
    [89]
    Fontaine A A, Deutsch S.1992. The influence of the type of gas on the reduction of skin friction drag by microbubble injection. Experiments in Fluids, 13: 128-136.
    [90]
    Fortes-Patella R, Coutier-Delgosha O, Perrin J, Reboud J L.2007. Numerical model to predict unsteady cavitating flow behavior in inducer blade cascades. Journal of Fluids Engineering, 129: 128-135.
    [91]
    Franc J P.2006. Physics and Control of Cavitation. Grenoble Univ (France).
    [92]
    Franc J P, Michel J M.2004. Fundamentals of Cavitation. Springer.
    [93]
    Fuster D, Colonius T.2011. Modelling bubble clusters in compressible liquids. Journal of Fluid Mechanics, 688: 352-389.
    [94]
    Ganesh H.2015. Bubbly shock propagation as a cause of sheet to cloud transition of partial cavitation and stationary cavitation bubbles forming on a delta wing vortex. [PhD Thesis], University of Michigan.
    [95]
    Gnanaskandan A, Mahesh K.2015. Large Eddy Simulation of turbulent cavitating flows//Proceedings of the 9th International Symposium on Cavitation. Journal of Physics: Conference series, Switzerland, 656: 012135.
    [96]
    Gnanaskandan A, Mahesh K.2016. Numerical investigation of near-wake characteristics of cavitating flow over a circular cylinder. Journal of Fluid Mechanics, 790: 453-491.
    [97]
    Gopalan S, Katz J.2000. Flow structure and modeling issues in the closure region of attached cavitation. Physics of Fluids, 12: 895-911.
    [98]
    Heindel T J.2011. A review of x-ray flow visualization with applications to multiphase flows. Journal of Fluids Engineering, 133: 074001.
    [99]
    Holder D S.2005. Electrical impedance tomography: Methods, history, and applications. Physics in Medicine and Biology, 26: 583-584.
    [100]
    Holl J W, Carroll J A.1981. Observations of the various types of limited cavitation on axisymmetric bodies. Journal of Fluids Engineering, 103: 415-433.
    [101]
    Hu C, Wang G, Chen G, Huang B.2014. A modified PANS model for computations of unsteady turbulence cavitating flows. Science China-Physics Mechanics and Astronomy, 57: 1967-1976.
    [102]
    Huang B. Wang G.2011. Partially averaged Navier--Stokes method for time-dependent turbulent cavitating flows. Journal of Hydrodynamics, 23: 26-33.
    [103]
    Huang B, Wang G, Zhao Y.2014. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model. Journal of Hydrodynamics, 26: 26-36.
    [104]
    Huang B, Zhao Y, Wang G.2014. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Computers & Fluids, 92: 113-124.
    [105]
    Ji B, Luo X, Peng X, Wu Y.2013. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil. Journal of Hydrodynamics, 25: 510-519.
    [106]
    Ji B, Luo X, Arndt R E A, Wu Y.2014. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction. Ocean Engineering, 87: 64-77.
    [107]
    Ji B, Luo X, Peng X, Wu Y, Xu H.2012a. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake. International Journal of Multiphase Flow, 43: 13-21.
    [108]
    Ji B, Luo X, Wu Y, Peng X, Xu H.2012b. Partially-averaged Navier--Stokes method with modified k-epsilon model for cavitating flow around a marine propeller in a non-uniform wake. International Journal of Heat and Mass Transfer, 55: 6582-6588.
    [109]
    Ji B, Luo X, Arndt R E A, Peng X, Wu Y.2015. Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. International Journal of Multiphase Flow, 68: 121-134.
    [110]
    Kawamura T, Moriguchi Y, Kato H, Kakugawa A, Kodama Y.2003. Effect of bubble size on the microbubble drag reduction of a turbulent boundary layer//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference.
    [111]
    Kawanami Y, Kato H, Yamaguchi H, Tanimura M, Tagaya Y.1997. Mechanism and control of cloud cavitation. Journal of Fluids Engineering, 119: 788-794.
    [112]
    Keller A P.2001. Cavitation scale effects-empirically found relations and the correlation of cavitation number and hydrodynamic coefficients//The 4th International Symposium on Cavitation (cav2001: lecture001), Pasadena, CA USA.
    [113]
    Khlifa I, Coutier-Delgosha O.2013. Velocity measurements in cavitating flows using fast X-ray imaging//Congr'{e}s Franc{c}ais de M'{e}canique, France.
    [114]
    Knapp R T, Daily J W, Hammitt F G.1970. Cavitation. McGraw-Hill.
    [115]
    Knapp R T, Hollander A.1948. Laboratory investigations of the mechanism of cavitation. Trans. ASME,70: 419-435.
    [116]
    Kodama Y, Kakugawa A, Takahashi T, Kawashima H.2000. Experimental study on microbubbles and their applicability to ships for skin friction reduction. International Journal of Heat and Fluid Flow, 21: 582--588.
    [117]
    Kodama Y, Kakugawa A, Takahashi T, Nagaya S, Sugiyama K.2002. Microbubbles: Drag reduction mechanism and applicability to ships//24th Symposium on Naval Hydrodynamics.
    [118]
    Konno A, Kato H, Yamaguchi H, Maeda M.2002. On the collapsing behavior of cavitation bubble clusters. JSME International Journal Series B, 45: 631-637.
    [119]
    Kunz R F, Boger D A, Chyczewski T S, Stinebring D, Gibeling H, Govindan T.1999. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies//Proceedings of 3rd ASME/JSME Joint Fluids Engineering Conference.
    [120]
    Kunz R F, Boger D A, Stinebring D R, Chyczewski T S, Lindau J W, Gibeling H J, Venkateswaran S, Govindan T R.2000. A preconditioned Navier--Stokes method for two-phase flows with application to cavitation prediction. Computers & Fluids, 29: 849-875.
    [121]
    Lauer E, Hu X Y, Hickel S, Adams N A.2012. Numerical investigation of collapsing cavity arrays. Physics of Fluids, 24: 052104.
    [122]
    Le Q, Franc J P, Michel J M.1993. Partial cavities: Pressure pulse distribution around cavity closure. Journal of Fluids Engineering, 115: 249-254.
    [123]
    Lee Q, Xue L, He Y.2008. Experimental study of ventilated supercavities with a dynamic pitching model. Journal of Hydrodynamics, Ser. B, 20: 456-460.
    [124]
    Leroux J B, Coutier-Delgosha O, Astolfi J A.2005. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Physics of Fluids, 17: 052101.
    [125]
    Lohrberg H, Stoffel B, Fortes-Patella R, Coutier-Delgosha O, Reboud J.2002. Numerical and experimental investigations on the cavitating flow in a cascade of hydrofoils. Experiments in Fluids, 33: 578-586.
    [126]
    Luo X, Ji B, Peng X, Xu H, Nishi M.2012. Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation. Journal of Fluids Engineering, 134: 041202.
    [127]
    Mäkiharju S A, Gabillet C, Paik B G, Chang N A, Perlin M, Ceccio S L.2013. Time-resolved two-dimensional X-ray densitometry of a two-phase flow downstream of a ventilated cavity. Experiments in Fluids, 54: 1-21.
    [128]
    Madavan N K, Deutsch S, Merkle C L.1984. Reduction of turbulent skin friction by microbubbles. Physics of Fluids, 27: 356-363.
    [129]
    Madavan N K, Deutsch S, Merkle C L.1985. Numerical investigations into the mechanisms of microbubble drag reduction. Journal of Fluids Engineering, 107: 370-377.
    [130]
    Merkle C L, Deutsch S.1992. Microbubble drag reduction in liquid turbulent boundary layers. Applied Mechanics Reviews, 45: 103-127.
    [131]
    Merkle C L, Feng J, Buelow P E O.2001. Computational modeling of the dynamics of sheet cavitation//Proc 3rd International Symposium on Cavitation, Grenoble, France.
    [132]
    Owis F M, Nayfeh A H.2004. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles. European journal of mechanics-B/Fluids, 23: 339-351.
    [133]
    Pelekasis N A, Gaki A, Doinikov A, Tsamopoulos J A.2004. Secondary Bjerknes forces between two bubbles and the phenomenon of acoustic streamers. Journal of Fluid Mechanics, 500: 313-347.
    [134]
    Pham T M, Larrarte F, Fruman D H.1999. Investigation of unsteady sheet cavitation and cloud cavitation mechanisms. Journal of Fluids Engineering, 121: 289-296.
    [135]
    Plesset M S, Chapman R B.1971. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. Journal of Fluid Mechanics, 47: 283-290.
    [136]
    Plesset M S, Prosperetti A.1977. Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 9: 145-185.
    [137]
    Pouffary B, Patella R F, Reboud J, Lambert P.2008. Numerical analysis of cavitation instabilities in inducer blade cascade. Journal of Fluids Engineering, 130: 041302.
    [138]
    Prosperetti A.1998. A brief summary of L. van Wijngaarden's work up till his retirement. Applied Scientific Research, 58: 13-32.
    [139]
    Quinto-Su P A, Ohl C D.2009. Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry. Journal of Fluid Mechanics, 633: 425-435.
    [140]
    Reisman G E, Wang Y, Brennen C E.1998. Observations of shock waves in cloud cavitation. Journal of Fluid Mechanics, 355: 255-283.
    [141]
    Roohi E, Zahiri A P, Passandideh-Fard M.2013. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Applied Mathematical Modelling, 37: 6469-6488.
    [142]
    Saito Y, Sato K.2003. Cavitation bubble collapse and impact in the wake of a circular cylinder//Fifth International Symposium on Cavitation (CAV2003), Osaka, Japan.
    [143]
    Saito Y, Takami R, Nakamori I, Ikohagi T.2007. Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil. Computational Mechanics, 40: 85-96.
    [144]
    Sanders W C, Winkel E S, Dowling D R, Perlin M, Ceccio S L.2006. Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. Journal of Fluid Mechanics, 552: 353-380.
    [145]
    Schnerr G H, Sezal I H, Schmidt S J.2008. Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics. Physics of Fluids, 20: 040703.
    [146]
    Senocak I, Shyy W.2004. Interfacial dynamics based modelling of turbulent cavitating flows, Part 2: Time dependent computations. International journal for numerical methods in fluids, 44: 997-1016.
    [147]
    Seo J H, Lele S K, Tryggvason G.2010. Investigation and modeling of bubble-bubble interaction effect in homogeneous bubbly flows. Physics of Fluids, 22: 063302.
    [148]
    Shen X, Ceccio S L, Perlin M.2006. Influence of bubble size on micro-bubble drag reduction. Experiments in Fluids, 41: 415-424.
    [149]
    Singhal A K, Athavale M M, Li H, Jiang Y.2002. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124: 617-624.
    [150]
    Stutz B, Legoupil S.2003. X-ray measurements within unsteady cavitation. Experiments in Fluids, 35: 130-138.
    [151]
    Stutz B, Reboud J L.1997. Experiments on unsteady cavitation. Experiments in Fluids, 22: 191-198.
    [152]
    Stutz B, Reboud J L.2000. Measurements within unsteady cavitation. Experiments in Fluids, 29: 545-552.
    [153]
    Takahashi T, Kakugawa A, Nagaya S, Yanagihara T, Kodama Y.2001. Mechanisms and scale effects of skin friction reduction by microbubbles//Proceedings of 2nd Symposium on Smart Control of Turbulence, University of Tokyo, Japan.
    [154]
    Tanimura M, Tagaya Y, Kato H, Yamaguchi H, Maeda M, Kawanami Y.1995. Mechanism of cloud cavitation and its control. Journal-Society of Naval Architects of Japan, 178: 41-50.
    [155]
    Tijsseling A S, Vardy A E.2005. Fluid-structure interaction and transient cavitation tests in a T-piece pipe. Journal of Fluids and Structures, 20: 753-762.
    [156]
    Tong R P.1997. A new approach to modelling an unsteady free surface in boundary integral methods with application to bubble-structure interactions. Mathematics and computers in simulation, 44: 415-426.
    [157]
    Toumi I, Kumbaro A, Paillere H.1999. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow//Proceedings of the 30th Computational Fluid Dynamics, von Karman Inst. Lecture Ser.
    [158]
    Wang G, Ostoja-Starzewski M.2007. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Applied Mathematical Modelling, 31: 417-447.
    [159]
    Wang G, Senocak I, Shyy W, Ikohagi T, Cao S.2001. Dynamics of attached turbulent cavitating flows. Progress in Aerospace Sciences, 37: 551-581.
    [160]
    Wang Q X, Yeo K S, Khoo B C, Lam K Y.1996. Nonlinear interaction between gas bubble and free surface. Computers {& Fluids}, 25: 607-628.
    [161]
    Wang Y, Huang C, Fang X, Yu X, Wu X, Du T.2016. Cloud cavitating flow over a submerged axisymmetric projectile and comparison between two-dimensional rans and three-dimensional large-eddy simulation methods. Journal of Fluids Engineering, 138: 061102.
    [162]
    Wang Y, Huang C, Wu X.2015. On the scaling of bubble cluster collapse in cloud cavitating flow around a slender projectile//Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition (IMECE-2015), USA.
    [163]
    Wang Y W, Huang C G, Fang X.2016. On the internal collapse phenomenon at the closure ofcavitation bubbles in a deceleration process of underwater vertical launching. Applied Ocean Research, 56: 157-165.
    [164]
    Wang Y W, Huang C G, Du T Z, Wu X C, Fang X, Liang N G, Wei Y P.2012. Shedding phenomenon of ventilated partial cavitation around an underwater projectile. Chinese Physics Letters, 29: 014601.
    [165]
    Wang Y, Wu X, Huang C, Yu X.2015. On the flow structure of cloud cavitating flow around an axisymmetric body near the free surface//9th International Symposium on Cavitation (CAV2015) Swizerland.
    [166]
    Watanabe O, Masuko A, Shirose Y.1998. Measurements of drag reduction by microbubbles using very long ship models. Journal of the Society of Naval Architects of Japan, 183: 53-63.
    [167]
    Wang Y, Liao L, Du T, Huang C, Liu Y, Fang X, Liang N.2014. A study on the collapse of cavitation bubbles surrounding the underwater-launched projectile and its fluid-structure coupling effects. Ocean Engineering, 84: 228--236.
    [168]
    Wei Y P, Wang Y W, Fang X, Huang C G, Duan Z P.2011. A scaled underwater launch system accomplished by stress wave propagation technique. Chinese Physics Letters, 28: 024601.
    [169]
    Welle R V D.1985. Void fraction, bubble velocity and bubble size in two-phase flow. International Journal of Multiphase Flow, 11: 317-345.
    [170]
    Wilcox D C.1998. Turbulence Modeling for CFD. (2nd edition). DCW Industries, Inc.
    [171]
    Winkel E S, Ceccio S L, Dowling D R, Perlin M.2004. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions. Experiments in Fluids, 37: 802-810.
    [172]
    Wosnik M, Qin Q, Arndt R E A.2005. Identification of large scale structures in the wake of cavitating hydrofoils using les and time-resolved PIV//58th Annual Meeting of the Division of Fluid Dynamics.
    [173]
    Wu J Y, Wang G Y, Shyy W.2005. Time-dependent turbulent cavitating flow computations with interfacial transport and filter-based models. International Journal for Numerical Methods in Fluids, 49: 739-761.
    [174]
    Wu T Y.1972. Cavity and Wake Flows. Annual Review of Fluid Mechanics, 4: 243-294.
    [175]
    Wu X C, Wang Y W, Huang C G.2015. Effect of mesh resolution on large eddy simulation of cloud cavitating flow around a three dimensional twisted hydrofoil. European Journal of Mechanics - B/Fluids, 55: 229-240.
    [176]
    Xin C, LU C, Jie L I, PAN Z C.2008. The wall effect on ventilated cavitating flows in closed cavitation tunnels. Journal of Hydrodynamics, Ser. B, 20: 561-566.
    [177]
    Young Y L.2007. Time-dependent hydroelastic analysis of cavitating propulsors. Journal of Fluids and Structures, 23: 269-295.
    [178]
    Young Y L.2008. Fluid-structure interaction analysis of flexible composite marine propellers. Journal of Fluids and Structures, 24: 799-818.
    [179]
    Yu K, Zhang G, Zhou J, Zou W, Li Z.2012. Numerical study of the pitching motions of supercavitating vehicles. Journal of Hydrodynamics, Ser. B, 24: 951-958.
    [180]
    Yu K, Zhou J, Min J, Zhang G.2010. A contribution to study on the lift of ventilated supercavitating vehicle with low froude number. Journal of Fluids Engineering, 132: 111303.
    [181]
    Yu X, Wang Y, Huang C, Du T.2013. Study on the influence of phase change rate on cloud cavitation. Procedia Engineering, 61: 204-206.
    [182]
    Yu X, Huang C, Du T, Liao L, Wu X, Zheng Z, Wang Y.2014. Study of characteristics of cloud cavity around axisymmetric projectile by large eddy simulation. Journal of Fluids Engineering, 136: 051303.
    [183]
    Yu X, Wang Y, Huang C, Wei Y, Fang X, Du T, Wu X.2015. Experiment and simulation on air layer drag reduction of high-speed underwater axisymmetric projectile. European Journal of Mechanics-B/Fluids, 52: 45-54.
    [184]
    Zhang A M, Yao X L, Feng L H.2009. The dynamic behavior of a gas bubble near a wall. Ocean Engineering, 36: 295-305.
    [185]
    Zhao W, Zhang L, Shao X, Deng J.2010. Numerical study on the control mechanism of cloud cavitation by obstacles. Journal of Hydrodynamics, Ser. B, 22: 792-797.
    [186]
    Zhou L, Wang Z.2008. Numerical Simulation of Cavitation Around a Hydrofoil and Evaluation of a RNG (kappa )-(varepsilon ) Model. Journal of Fluids Engineering, 130: 011302.
    [187]
    v{Z}nidarv{c}iv{c} A, Coutier-Delgosha O, Marquillie M. 2015. A new algorithm for DNS simulations of cavitating flows using homogeneous mixture approach. In: Simos T E, Tsitouras C eds. AIP Conference Proceedings, 1648: 030018.
    [188]
    Zou W, Yu K P, Arndt R E A, Zhang G, Li Z W.2013. On the shedding of the ventilated supercavity with velocity disturbance. Ocean Engineering, 57: 223-229.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3514) PDF downloads(1342) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return