Citation: | WANG Guozhen, XUAN Fuzhen, TU Shandong. Creep crack-tip constraint effect in high temperature structures[J]. Advances in Mechanics, 2017, 47(1): 122-149. doi: 10.6052/1000-0992-16-019 |
Accurate prediction and assessment of creep crack growth life are key problems for structural integrity assessment, life design, and service maintenance of high temperature components. The life assessment method based on a single-parameter C* in creep fracture mechanics cannot effectively incorporate crack-tip constraint effect, thus the assessment result is either over-conservative or non-conservative. At present, theoretical framework and technical methodology for creep life assessment of high temperature structures have not been established, and there is yet no high temperature structure integrity assessment codes incorporating the creep constraint effect. This paper reviews our recent research work on the constraint effect in high temperature creep fracture. It includes:effect and mechanism of the crack-tip constraint on creep crack growth behavior of materials; the creep crack-tip field, and definition and influencing factors of a constraint parameter R; proposition of a load-independent creep constraint parameter R* and its applications; the creep constraint parameter R* solutions and creep life assessments incorporating the creep constraint effect for surface cracks in pressurized pipes; correlation of the creep crack-tip constraint between test specimens and axially cracked pipelines; study on a unified characterization parameter Ac of in-plane and out-of-plane creep constraints based on crack-tip equivalent creep strain; establishment of constraint-dependent creep crack growth rates of materials; numerical prediction of creep crack growth rate and its constraint effect in a wide range of C*; effect and mechanism of the material constraint on creep crack growth behavior in welded joints. The research work may lay foundation of theory and technology for establishing the life assessment methodology of creep crack growth incorporating the crack-tip constraint effect for high temperature structures. We also present prospects for future explorations.
[1] |
Asadi M, Hegde S R, Sawatzky T, Guillot D, Koul A K, Saari H, Weck A. 2012. Constructing a validated deformation mechanisms map using low temperature creep strain accommodation processes for nickel-base alloy 718//Proceedings of the ASME 2012 Pressure Vessels and Piping Division Conference. Toronto, Ontario, Canada, PVP2012-78092.
|
[2] |
Betegeon C, Hancock J W. 1991. Two parameter characterization of elastic plastic crack-tip fields. Journal of Applied Mechanics, 58:104-110. doi: 10.1115/1.2897135
|
[3] |
Bettinson A D, Nikbin K M, O' Dowd N P, Webster G A. 2000. The influence of constraint on the creep crack growth of 316H stainless steel//Proceedings 5th International Conference Structural Integrity Assessment.Cambridge, UK.
|
[4] |
Bettinson A D, O'Dowd N P, Nikbin K M, Webster G A. 2001. Two parameter characterization of crack tip fields under creep conditions//IUTAM Symposium on creep in structures. Netherlands, 95-104.
|
[5] |
Bettinson A D, O'Dowd N P, Nikbin K M, Webster G A. 2002. Experimental investigation of constraint effects on creep crack growth//ASME 2002 Pressure Vessels and Piping Conference. Vancouver, BC, Canada.
|
[6] |
Budden, P J, Ainsworth, R A. 1999. The effect of constraint on creep fracture assessments. International Journal of Fracture, 97:237-247. doi: 10.1023/A:1018305919622
|
[7] |
Budden P J, Dean D W. 2007. Constraint effects on creep crack growth//Proceedings of eighth international conference on creep and fatigue at elevated temperatures. July 22-26, San Antonio, Texas.
|
[8] |
Chao Y J, Ji W. 1995. Cleavage fracture quantified by J and A2//Constraint Effects in Fracture Theory and Applications, ASTM STP1244, vol. 2. Philadelphia, PA:American Society for Testing and Materials, 1-20.
|
[9] |
Chen G, Wang G Z, Xuan F Z, Tu S T. 2014. Mismatch effect in creep properties on creep crack growth behavior in welded joints. Materials and Design, 63:600-608. doi: 10.1016/j.matdes.2014.06.047
|
[10] |
Chen G, Wang G Z, Xuan F Z, Tu S T. 2015a. Effects of HAZ widths on creep crack growth properties of welded joints. Welding in the World, 59:851-860. doi: 10.1007/s40194-015-0259-7
|
[11] |
Chen G, Wang G Z, Zhang J W, Xuan F Z, Tu S T. 2015b. Effects of initial crack positions and load levels on creep failure behavior in P92 steel welded joint. Engineering Failure Analysis, 47:56-66. doi: 10.1016/j.engfailanal.2014.10.005
|
[12] |
Davies C M, Mueller F, Nikbin K M, O'Dowd N P, Webster G A. 2006. Analysis of creep crack initiation and growth in different geometries for 316H and carbon manganese steels. Journal of ASTM International, 3:1-20. https://www.researchgate.net/profile/Noel_ODowd/publication/240757051_Analysis_of_Creep_Crack_Initiation_and_Growth_in_Different_Geometries_for_316H_and_Carbon_Manganese_Steels/links/557feaae08ae26eada8f7dc0.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
|
[13] |
Dodds R H, Shih J C F, Anderson T L. 1993. Continuum and micromechanics treatment of constraint in fracture. International Journal of Fracture, 64:101-133. https://www.researchgate.net/publication/226442360_Continuum_and_micromechanics_treatment_of_constraint_in_fracture
|
[14] |
Fan K, Wang G Z, Xuan F Z, Tu S T. 2016. Geometry and material constraint effects on fracture resistance behavior of bi-material interfaces. International Journal of Fracture, DOI:10.1007/s10704-016-0112-z. 1-13.
|
[15] |
FITNET FFS Procedure. 2008. Final Draft MK8, Prepared by European fitness-for-service networkFITNET.
|
[16] |
Guo W L. 1993a. Elastoplastic three dimensional crack border field-I. Singular structure of the field.Engineering Fracture Mechanics, 46:93-104. doi: 10.1016/0013-7944(93)90306-D
|
[17] |
Guo W L. 1993b. Elastoplastic three dimensional crack border field-II. Asymptotic solution for the field.Engineering Fracture Mechanics, 46:105-113. https://www.researchgate.net/publication/222241669_Elastoplastic_three_dimensional_crack_border_field-II
|
[18] |
Guo W L. 1995. Elasto-plastic three-dimensional crack border field-III. Fracture parameters. Engineering Fracture Mechanics, 51:51-71. doi: 10.1016/0013-7944(94)00215-4
|
[19] |
Guo W L. 2000. Recent advances in three-dimensional fracture mechanics. Key Engineering Materials, 183:193-198. https://www.researchgate.net/publication/269640253_Recent_Advances_in_Three-Dimensional_Fracture_Mechanics
|
[20] |
Hales R. 1994. The role of cavity growth mechanisms in determining creep-rupture under multiaxial stresses.Fatigue & Fracture of Engineering Materials & Structures, 17:579-591.
|
[21] |
Kim N H, Kim Y J, Davies C M, Nikbin K M, Dean D W. 2012. Creep failures simulations for 316H at 550°//Proceedings of the ASME 2012 Pressure Vessels and Piping Division Conference. Toronto, Ontario, Canada, PVP2012-78133.
|
[22] |
Liu S, Wang G Z, Xuan F Z, Tu S T. 2014. Creep constraint analysis and constraint parameter solutions for axial semi-elliptical surface cracks in pressurized pipes. Engineering Fracture Mechanics, 132:1-15. doi: 10.1016/j.engfracmech.2014.10.019
|
[23] |
Liu S, Wang G Z, Tu S T, Xuan F Z. 2015a. Creep constraint analysis and constraint parameter solutions for circumferential surface cracks in pressurized pipes. Engineering Fracture Mechanics, 148:1-14. doi: 10.1016/j.engfracmech.2015.09.012
|
[24] |
Liu S, Wang G Z, Xuan F Z, Tu S T. 2015b. Three-dimensional finite element analyses of in-plane and outof-plane creep crack-tip constraints for different specimen geometries. Engineering Fracture Mechanics, 133:264-280. doi: 10.1016/j.engfracmech.2015.10.009
|
[25] |
Liu S, Wang G Z, Xuan F Z, Tu S T. 2016a. Effects of creep properties of materials on creep crack-tip constraint parameter R*. Materials at High Temperatures, 33:208-217. doi: 10.1080/09603409.2016.1145397
|
[26] |
Liu S, Wang G Z, Tu S T, Xuan F Z. 2016b. Creep crack growth prediction and assessment incorporating constraint effect for pressurized pipes with axial surface cracks. Engineering Fracture Mechanics, 154:92-110. doi: 10.1016/j.engfracmech.2016.01.009
|
[27] |
Ma H S, Wang GZ, Xuan F Z, Tu S T. 2015. Unified characterization of in-plane and out-of-plane creep constraint based on crack-tip equivalent creep strain. Engineering Fracture Mechanics, 142:1-20. doi: 10.1016/j.engfracmech.2015.05.044
|
[28] |
Ma H S, Wang G Z, Tu S T, Xuan F Z. 2016a. Unified correlation of in-plane and out-of-plane creep constraints with creep crack growth rate. International Journal of Pressure Vessels and Piping, 139-140:47-60. doi: 10.1016/j.ijpvp.2016.03.003
|
[29] |
Ma H S, Wang G Z, Liu S, Tu S T, Xuan F Z. 2016b. In-plane and out-of-plane unified constraint-dependent creep crack growth rate of 316H steel. Engineering Fracture Mechanics, 155:88-101. doi: 10.1016/j.engfracmech.2016.01.017
|
[30] |
Ma H S, Wang G Z, Liu S, Tu S T, Xuan F Z. 2016c. Three-dimensional analyses of unified characterization parameter of in-plane and out-of-plane creep constraint.Fatigue & Fracture of Engineering Materials and Structures, 39:251-263.
|
[31] |
Mostafavi M, Smith D J, Pavier M J. 2011. Fracture of aluminum alloy 2024 under biaxial and triaxial loading. Engineering Fracture Mechanics, 78:1705-1716. doi: 10.1016/j.engfracmech.2010.11.006
|
[32] |
Mostafavi M, Pavier M J, Smith D J. 2009. Unified measure of constraint//International Conference on Engineering Structural Integrity Assessment. Manchester, UK:ESIA10.
|
[33] |
Mostafavi M, Smith D J, Pavier M J. 2010. Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens. Fatigue & Fracture of Engineering Materials & Structures, 33:724-739. http://www.academia.edu/1607620/Reduction_of_measured_toughness_due_to_out-of-plane_constraint_in_ductile_fracture_of_aluminium_alloy_specimens
|
[34] |
Mu M Y, Wang G Z, Xuan F Z, Tu S T. 2014. Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel. International Journal of Fracture, 190:87-98. doi: 10.1007/s10704-014-9976-y
|
[35] |
Nikbin K M, Smith D J, Webster G A. 1984. Prediction of creep crack growth from uniaxial creep data.Procceedings of the Royal Society of London, Series A, 396:183-197. doi: 10.1098/rspa.1984.0116
|
[36] |
Nikbin K M, Smith D J, Webster G A. 1986. An engineering approach to the prediction of creep crack growth. Journal of Engineering Materials and Technology, 108:186-191. doi: 10.1115/1.3225859
|
[37] |
Nikbin K M. 2004. Justification for meso-scale modelling in quantifying constraint during creep crack growth.Materials Science Engineering A, 365:107-113 doi: 10.1016/j.msea.2003.09.014
|
[38] |
O'Dowd N P, Shih C F. 1991. Family of crack-tip fields characterized by a triaxiality parameter. I:Structure of fields. Journal of Mechanics and Physics of Solids, 39:989-1015. doi: 10.1016/0022-5096(91)90049-T
|
[39] |
O'Dowd N P, Shih C F. 1992. Family of crack-tip fields characterized by a triaxiality parameter. II:Fracture Applications. Journal of Mechanics and Physics of Solids, 40:939-963. doi: 10.1016/0022-5096(92)90057-9
|
[40] |
Ozmat B, Argon A S, Parks D M. 1991. Growth modes of cracks in creeping type 304 stainless steel.Mechanics of Materials, 11:1-17. doi: 10.1016/0167-6636(91)90036-Y
|
[41] |
R6 Revision 4, 2006. with amendments, Assessment of the integrity of structures containing defects, British Energy Genation Ltd., Gloucester, UK.
|
[42] |
Shih C F, O'Dowd N P, Kirk M T. 1993. A framework for quantifying crack tip constraint//Constraint Effects in Fracture, American Society for Testing and Materials, Philadelphia, 2-20.
|
[43] |
Sun P J, Wang G Z, Xuan F Z, Tu S T, Wang Z D. 2011. Quantitative characterization of creep constraint induced by crack depths in compact tension specimens. Engineering Fracture Mechanics, 78:653-665. doi: 10.1016/j.engfracmech.2010.11.017
|
[44] |
Sun P J, Wang G Z, Xuan F Z, Tu S T, Wang ZD. 2012. Three-dimensional numerical analyses of out-ofplane creep crack-tip constraint in compact tension specimens. International Journal of Pressure Vessels and Piping, 96-97:78-89. doi: 10.1016/j.ijpvp.2012.06.007
|
[45] |
Tabuchi M, Kubo K, Yagi K. 1991. Effect of specimen size on creep crack growth rate using ultra-large CT specimens for 1Cr-Mo-V steel. Engineering Fracture Mechanics, 40:311-321. doi: 10.1016/0013-7944(91)90266-4
|
[46] |
Takahashi Y, Igari T, Kawashima F, Date S, Titoh N I, Noguchi Y, Kobayashi K, Tabuchi M. 2005. High temperature crack growth behavior of high-chromium steels//18th International conference on structural mechanics in reactor technology. Beijing, China, 1904-1915.
|
[47] |
Tan J P, Wang G Z, Xuan F Z, Tu S T. 2012a. Experimental investigation of in-plane constraint and out-of-plane constraint effects on creep crack growth//Proceedings of the ASME 2012 Pressure Vessels and Piping Division Conference. Toronto, Ontario, Canada, PVP2012-78478.
|
[48] |
Tan J P, Wang G Z, Xuan F Z, Tu S T. 2012b. Correlation of creep crack-tip constraint between axially cracked pipelines and test specimens. International Journal of Pressure Vessels and Piping, 98:16-25. doi: 10.1016/j.ijpvp.2012.06.004
|
[49] |
Tan J P, Tu S T, Wang G Z, Xuan F Z. 2013. Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel. Engineering Fracture Mechanics, 99:324-34. doi: 10.1016/j.engfracmech.2013.01.017
|
[50] |
Tan J P. 2014. Creep life assessment of structures containing crack incorporating constraint effect.[PhD Thesis]. Shanghai:East China University of Science and Technology.
|
[51] |
Tan J P, Tu S T, Wang G Z, Tu S T. 2014. Load-independent creep constraint parameter and its application.Engineering Fracture Mechanics, 116:41-57. doi: 10.1016/j.engfracmech.2013.12.015
|
[52] |
Tan J P, Tu S T, Wang G Z, Xuan F Z. 2015. Characterization and correlation of 3-D creep constraint between axially cracked pipelines and test specimens. Engineering Fracture Mechanics, 136:96-114. doi: 10.1016/j.engfracmech.2015.01.018
|
[53] |
Wang G Z, Liu X L, Xuan F Z, Tu S T. 2010. Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens. International Journal of Solids and Structures, 47:51-57. doi: 10.1016/j.ijsolstr.2009.09.015
|
[54] |
Wang G Z, Kui L B, Xuan F Z, Tu S T. 2012. Numerical investigation on the creep crack-tip constraint induced by loading configuration of specimens. Engineering Fracture Mechanics, 79:353-362. doi: 10.1016/j.engfracmech.2011.11.014
|
[55] |
Webster G A, Ainsworth R A. 1994. High Temperature Component Life Assessment. London:Chapman and Hall, Springer.
|
[56] |
Xiang M J, Yu Z B, Guo W L. 2011. Characterization of three-dimensional crack border fields in creeping solids. International Journal of Solids and Structures, 48:2695-2705. doi: 10.1016/j.ijsolstr.2011.05.013
|
[57] |
Xiang M J, Guo W L. 2013. Formulation of the stress fields in power law solids ahead of three-dimensional tensile cracks. International Journal of Solids and Structures, 50:3067-3088. doi: 10.1016/j.ijsolstr.2013.05.011
|
[58] |
Yatomi M, O'Dowd N P, Nikbin K M, Webster G A. 2006. Theoretical and numerical modelling of creep crack growth in a carbon-manganese steel. Engineering Fracture Mechanics, 73:1158-1175. doi: 10.1016/j.engfracmech.2005.12.012
|
[59] |
Yamamoto M, Miura N, Ogata T. 2009. Effect of constraint on creep crack propagation of mod. 9Cr-1Mo steel weld joint//ASME 2009 Pressure Vessels and Piping Conference:American Society of Mechanical Engineers, 1533-1539.
|
[60] |
Yang J, Wang G Z, Xuan F Z, Tu S T. 2012. Unified characterization of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain. Fatigue & Fracture of Engineering Materials & Structures, 36:504-514. https://www.researchgate.net/publication/264564305_Unified_characterisation_of_in-plane_and_out-of-plane_constraint_based_on_crack-tip_equivalent_plastic_strain?_sg=RICP_cu9Y6bDRW3C983HLgF0212X8Tr-gnJS6J9hjn2r00Bkih6A7rpTEJqHFM4rmQZd2nILqCD54W0d6VTLBw
|
[61] |
Yang J, Wang G Z, Xuan F Z, Tu S T. 2014a. A Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint. Engineering Fracture Mechanics, 115:296-307. doi: 10.1016/j.engfracmech.2013.11.018
|
[62] |
Yang J, Wang G Z, Xuan F Z, Tu S T. 2014b. Unified correlation of in-plane and out-of-plane constraint with fracture toughness. Fatigue & Fracture of Engineering Materials & Structures, 37:132-145. https://www.researchgate.net/publication/261546507_Unified_correlation_of_in-plane_and_out-of-plane_constraint_with_fracture_toughness
|
[63] |
Zhang J W, Wang G Z, Xuan F Z, Tu S T. 2014. Prediction of creep crack growth behavior in Cr-Mo-V steel specimens with different constraints for a wide range of C*. Engineering Fracture Mechanics, 132:70-84. doi: 10.1016/j.engfracmech.2014.10.025
|
[64] |
Zhang J W, Wang G Z, Xuan F Z, Tu S T. 2015a. The influence of stress-regime dependent creep model and ductility in the prediction of creep crack growth rate in Cr-Mo-V steel. Materials and Design, 65:644-651. doi: 10.1016/j.matdes.2014.09.070
|
[65] |
Zhang J W, Wang G Z, Xuan F Z, Tu S T. 2015b. Effect of stress dependent creep ductility on creep crack growth behavior of steels for wide range of C*. Materials at High Temperatures, 32:369-376. doi: 10.1179/1878641314Y.0000000027
|
[66] |
Zhang J W, Wang G Z, Xuan F Z, Tu S T. 2015c. In-plane and out-of-plane constraint effects on creep crack growth rate in Cr-Mo-V steel for a wide range of C*. Materials at High Temperatures, 32:512-523. doi: 10.1179/1878641314Y.0000000039
|
[67] |
Zhao L, Jing H, Xu L, Han Y, Xiu J. 2012. Evaluation of constraint effects on creep crack growth by experimental investigation and numerical simulation. Engineering Fracture Mechanics, 96:251-266. doi: 10.1016/j.engfracmech.2012.08.009
|
[68] |
Zhao L, Jing H Y, Xiu J, Han Y D, Xu L Y. 2014. Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint. Materials & Design, 57:736-743. https://www.researchgate.net/publication/277531292_Experimental_investigation_of_specimen_size_effect_on_creep_crack_growth_behavior_in_P92_steel_welded_joint
|
[69] |
Zhao L, Xu L Y, Han Y D, Jing H Y. 2015. Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel. International Journal of Mechanicals Science, 94-95:63-74. doi: 10.1016/j.ijmecsci.2015.02.009
|