Citation: | YANG Jimingy, LI Zhufei, ZHU Yujian, ZHAI Zhigang, LUO Xisheng, LU Xiyun. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46(1): 201613. doi: 10.6052/1000-0992-16-009 |
[1] |
包醒东, 李志强, 妥欢, 董鹤. 2013. 斜向环形激波聚焦诱导直接起爆的大涡模拟. 航空动力学报, 28: 2455-2461 (Bao X D, Li Z Q. Tuo H, Dong H. 2013. LES of direct detonation induced by incident circular shock wave focusing. Journal of Aerospace Power, 28: 2455-2461).
|
[2] |
蔡佳, 苏纬仪, 张堃元, 李永洲. 2013. 高超声速二元进气道脉冲起动双波结构的理论与数值研究. 推进技术, 34: 1165-1171 (Cai J, SuWY, Zhang K Y, Li Y Z. 2013. Theoretical and numerical study of double shock structure during 2D hypersonic inlet pulse-starting process. Journal of Propulsion Technology, 34: 1165-1171).
|
[3] |
陈强. 1978. 激波管流动的理论和实验技术. 中国科学技术大学讲义(Chen Q. 1978. Theory and experimental techniques of shock tube flow. Teaching-book printed by the University of Science and
|
[4] |
董刚, 叶经方, 范宝春. 2006. 激波聚焦反射的实验和数值研究. 高压物理学报, 20: 359-364 (Dong G, Ye J F, Fang B C. 2006. Experimental and numerical investigation of shock wave focusing and reflection. Chinese Journal of High Pressure Physics, 20: 359-364).
|
[5] |
董平, 罗喜胜, 翟志刚. 2015. 平面激波与V 形air/SF6 肥皂膜界面相互作用的研究. 中国科学: 物理学力学天文学, 45: 044701 (Dong P, Luo X S, Zhai Z G. 2015. Research on the interaction of planar shock with ‘inverse chevron’ air/SF6 soap film interface. Scientia Sinica Physica, Mechanica & Astronomica, 45: 044701).
|
[6] |
范晓樯, 贾地, 冯定华, 李桦. 2007. 脉冲风洞中进气道起动过程试验研究. 推进技术, 28: 60-64 (Fan X Q, Jia D, Feng D H, Li H. 2007. Experimental investigation on starting process of hypersonic inlet in gun tunnel. Journal of Propulsion Technology, 28: 60-64).
|
[7] |
高波. 2010. 二维定常超音速流中激波马赫反射的波系结构与转捩研究. [博士论文]. 北京: 清华大学(Gao B. 2010. Wave structure and transition of Mach reflection in two-dimensional steady supersonicflows. [PhD Thesis]. Beijing: Tsinghua University).
|
[8] |
高山和喜. 1995. 衝擊波ハンドブック. 东京: Springer 1-1256 (Takayama K. 1995. Handbook of shock waves. Tokyo: Springer Press).
|
[9] |
高雄, 满延进, 李大进, 朱守梅. 2015. 试验研究高超二元进气道超额定状态//第五届冲压发动机技术交流会. 厦门, 下册: 348-353 (Gao X, Man Y J, Li D J, Zhu S M. 2015. An experimental investigation of supernormal condition of a hypersonic 2D inlet//Proceedings of 5th Chinese National Symposium on Ramjet Engine Technology. Xiamen, China, 3: 348-353).
|
[10] |
何立明, 荣康, 曾昊, 陈鑫, 张强, 于鹏祥. 2015. 激波聚焦及起爆爆震波的研究进展. 推进技术, 36: 1441-1458 (He L M, Rong K, Zeng H, Chen X, Zhang Q, Yu P X. 2015. Advances in shock wave focusing and induced detonation initiation. Journal of Propulsion Technology, 36: 1441-1458).
|
[11] |
黄伟, 王振国, 罗世彬, 柳军. 2009. 高超声速乘波体飞行器机身/发动机一体化关键技术研究. 固体火箭技术, 32: 242-248 (Huang W, Wang Z G, Luo S B, Liu J. 2009. An overview of research on engine/airframe integration for hypersonic waverider vehicles. Journal of Solid Rocket Technology, 32: 242-248).
|
[12] |
黄志澄. 1994. 空天飞机的乘波外形. 气动实验与测量控制, 6: 1-10 (Huang Z C. 1994. Waverider shapes for aerospace plane. Aerodynamic Experiment and Measurement & Control, 6: 1-10).
|
[13] |
姜宗林, 李进平, 赵伟, 刘云峰, 俞鸿儒. 2012. 长试验时间爆轰驱动激波风洞技术研究. 力学学报, 44: 824-831 (Jiang Z L, Li J P, Zhao W, Liu Y F, Yu H R. 2012. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels. Acta Mechanica Sinica, 44: 824-831).
|
[14] |
姜宗林, 俞鸿儒. 2009. 高超声速激波风洞研究进展. 力学进展, 39: 766-776 (Jiang Z L, Yu H R. 2009. Progress of the research on hypersonic shock tunnels. Advances in Mechanics, 39: 766-776).
|
[15] |
焦晓亮, 崔涛, 于达仁. 2012. 超声速气流中双楔块结构的激波反射滞后现象及突变模型//高超声速专题研讨会暨第五届全国高超声速科学技术会议论文集(Jiao X L, Cui T, Yu D R. 2012. Hysteresis behaviors of shock reflection in supersonic double-wedge flow and catastrophe model//Proceedings of 5th Chinese National Symposium on Hypersonic Technology).
|
[16] |
焦晓亮, 常军涛, 王仲奇, 于达仁. 2015. 高马赫数下高超声速进气道迟滞现象研究//第五届冲压发动机技术交流会. 厦门, 下册: 58-66 (Jiao X L, Chang J T, Wang Z Q, Yu D R. 2015. An investigation on the hysteresis behaviors under high Mach number flows//Proceedings of 5th Chinese National Symposium on Ramjet Engine Technology. Xiamen, China, 3: 58-66).
|
[17] |
乐嘉陵, 倪鸿礼. 1999 激波(爆炸波) 与物体相互作用的数值模拟. 流体力学实验与测量, 13: 1-9 (Le 574 力学进展第46 卷: 2016013 J L, Ni H L. 1999. Numerical simulation of shock (blast) wave interaction with bodies. Experiments and Measurements in Fluid Mechanics, 13: 1-9).
|
[18] |
李海鹏, 何立明, 陈鑫, 曾昊. 2010. 凹面腔内激波聚焦起爆爆震波过程的数值模拟. 推进技术, 31: 87-91 (Li H P, He L M, Chen X, Zeng H. 2010. Numerical investigation of detonation initiation by shock wave focusing over parabolic reflector. Journal of Propulsion Technology, 31: 87-91).
|
[19] |
李季. 2015. 高温非平衡效应下的激波干扰与激波反射. [博士论文]. 合肥: 中国科学技术大学(Li J. 2015. On shock interactions and reflections with high temperature non-equilibrium effects. [PhD Thesis]. Hefei: University of Science and Technology of China).
|
[20] |
李素循. 2007. 激波与边界层主导的复杂流动, 北京: 科学出版社(Li S X. 2007. Complex flows domi-nated by shock waves and boundary layers. Beijing: Beijing Science Press).
|
[21] |
李新亮, 傅德薰, 马延文, 梁贤. 2010. 压缩折角激波- 湍流边界层干扰直接数值模拟. 中国科学: 物理学力学天文学, 40: 791-799 (Li X L, Fu D X, Ma Y W, Liang X. 2010. A direct numerical simulation on shock wave-turbulent boundary layer interaction over a compression ramp. Scientia Sinica Physica, Mechanica & Astronomica, 40: 791-799).
|
[22] |
李新亮. 2015. 高超声速湍流直接数值模拟技术. 航空学报. 36: 147-158 (Li X L. 2015. Direct numerical simulation techniques for hypersonic turbulent flows. Acta Aeronautica et Astronautica Sinica, 36: 147-158).
|
[23] |
李宇飞, 何国强, 刘佩进. 2007. 一种辅助高超音速进气道起动方法研究. 固体火箭技术, 30: 392-395 (Li Y F, He G Q, Liu P J. 2007. Investigation on one aid hypersonic inlet starting method. Journal of Solid Rocket Technology, 30: 392-395).
|
[24] |
李祝飞, 高文智, 李鹏, 姜宏亮, 杨基明. 2013. 一种进气道自起动特性检测方法. 实验流体力学, 27: 14-18, 23 (Li Z F, Gao W Z, Li P, Jiang H L, Yang J M. 2013. A test method for inlet self-starting ability detection. Journal of Experiments in Fluid Mechanics, 27: 14-18, 23).
|
[25] |
李祝飞, 杨基明. 2016. 预设堵块法检测进气道自起动能力的数值研究. 推进技术, 10 (Li Z F, Yang J M. 2016. A numerical investigation of the pre-setting-blockage method to detect the self-starting ability of an inlet. Journal of Propulsion Technology, 10).
|
[26] |
李祝飞, 高文智, 李鹏, 姜宏亮, 杨基明. 2012. 二元高超声速进气道激波振荡特性实验. 推进技术, 33: 676-682 (Li Z F, Gao W Z, Li P, Jiang H L, Yang J M. 2012. Experimental investigation on the shock wave oscillation behaviors in a two-dimensional hypersonic inlet flow. Journal of Propulsion Technology, 33: 676-682).
|
[27] |
李祝飞. 2013. 高超声速进气道起动特性机理研究. [博士论文]. 合肥: 中国科学技术大学(Li Z F. 2013. An investigation on starting characteristics of hypersonic inlets. [PhD Thesis]. Hefei: University of Science and Technology of China).
|
[28] |
刘儒勋, 舒其望. 2003. 计算流体力学的若干新方法. 北京: 科学出版社, 42-76 (Liu R X, Shu Q W. 2003. Advances in Computational Fluid Mechanics. Beijing: Beijing Science Press, 42-76).
|
[29] |
罗喜胜, 翟志刚, 司廷, 杨基明. 2014. 激波诱导下的气体界面不稳定性实验研究. 力学进展, 44: 201407 (Luo X S, Zhai Z G, Si T, Yang J M. 2014. Experimental study on the interfacial instability induced by shock waves. Advances in Mechanics, 44: 201407).
|
[30] |
全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 2014. 激波与层流湍流边界层相互作用实验研究. 物理学报, 63: 084703 (Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z. 2014. Experimental investigation of interactions between laminar or turbulent boundary layer and shock wave. Acta Phys. Sin., 63: 084703).
|
[31] |
荣康, 何立明, 张建邦, 曾昊, 张强. 2012. 喷口导流环结构对激波聚焦起爆的影响分析. 推进技术, 33: 299-305 (Rong K, He L M, Zhang J B, Zeng H, Zhang Q. 2012. Investigation on the effects of
|
[32] |
杨基明, 李祝飞, 朱雨建, 翟志刚, 罗喜胜, 陆夕云: 激波的传播与干扰575 deflector structure on detonation initiation by shock wave focusing. Journal of Propulsion Technology, 33: 299-305).
|
[33] |
陶渊, 范晓樯. 2014. 二维定常激波反射迟滞现象研究进展// 第十六届全国激波与激波管学术会议论文集. 洛阳, 1: 75-82 (Tao Y, Fan X Q. 2014. Advances in two-dimensional shock reflection hysteresis in steady supersonic flows//The 16th Chinese National Symposium on Shock waves. Luoyang, 1: 75-82).
|
[34] |
陶渊, 刘卫东, 范晓樯. 2015. 进气道前体激波与唇口边界层相互作用流场结构分析// 第五届冲压发动机技术交流会. 厦门, 下册: 33-42 (Tao Y, Liu W D, Fan X Q. 2015. Analysis of the shock wave/boundary layer interactions near the cowl-lip of an inlet. Proceedings of 5th Chinese National Symposium on Ramjet Engine Technology. Xiamen, China, 3: 33-42).
|
[35] |
滕宏辉, 姜宗林, 韩肇元. 2004. 环形激波绕射、反射和聚焦的数值模拟研究. 力学学报, 36: 9-15 (Teng H H, Jiang Z L, Han Z Y. 2004. Numerical investigation of diffraction, focusing and reflection of toroidal shock waves. Acta Mechanica Sinica, 36: 9-15).
|
[36] |
滕宏辉, 王春, 邓博, 姜宗林. 2007. 可燃气体中激波聚焦的点火特性. 力学学报, 39: 171-180 (Teng H H, Wang C, Deng B, Jiang Z L. 2007. Ignition characteristics of the shock wave focusing in combustive gases. Chinese Journal of Theoretical and Applied Mechanics, 39: 171-180).
|
[37] |
王淦昌, 袁之尚. 1996. 惯性约束核聚变. 合肥: 安徽教育出版社, 96-125, 234-238 (Wang G C, Yuan Z S. 1996. Inertial Confinement Fusion. Hefei: Anhui Education Press. 96-125, 234-238).
|
[38] |
王国蕾, 陆夕云. 2012. 激波和湍流相互作用的数值模拟. 力学进展, 42: 274-281(Wang G L, Lu X Y. 2012. Numerical simulation of shock wave/turbulent boundary layer interactions. Advances in Mechanics, 42: 274-281).
|
[39] |
肖丰收, 李祝飞, 朱雨建, 杨基明. 2016. 带凹腔钝头体第IV 类激波干扰特性研究. 推进技术. 37: 1-7 (Xiao F S, Li Z F, Zhu Y J, Yang J M. 2016. Effects of forward-facing cavity on behaviors of type IV shock interaction of blunt body flows. Journal of Propulsion Technology, 37: 1-7).
|
[40] |
徐骁, 岳连捷, 卢洪波, 肖雅彬, 张新宇. 2015. 高超声速进气道快速破膜开启的流动特性. 航空学报, 36: 1795-1804 (Xu X, Yue L J, Lu H B, Xiao Y B, Zhang X Y. 2015. Flow characteristics of hypersonic inlet starting with diaphragm rupture. Acta Aeronautica et Astronautica Sinica, 36: 1795-1804).
|
[41] |
杨剑挺, 朱雨建, 詹东文, 杨基明. 2016. 收缩楔腔内激波汇聚诱导点火实验. 气体物理, 1: 25-30 (Yang J T, Zhu Y J, Zhan D W, Yang J M. Experiment on the shock-induced ignition in a converging wedged cavity. Physics of Gases. 1: 25-30).
|
[42] |
杨旸, 姜宗林, 胡宗民. 2012. 激波反射现象的研究进展. 力学进展, 42: 141-161 (Yang Y, Jiang Z L, Hu Z M. 2012. Advances in shock wave reflection phenomena. Advances in Mechanics, 42: 141-161).
|
[43] |
易仕和, 陈植, 朱杨柱, 何霖, 武宇. 2015. 高超声速流动试验技术及研究进展. 航空学报, 36: 98-119 (Yi S H, Chen Z, Zhu Y Z, He L, Wu Y. 2015. Progress of experimental techniques and studies on hypersonic/supersonic flows. Acta Aeronautica et Astronautica Sinica, 36: 98-119).
|
[44] |
岳连捷, 刘红, 徐骁, 彭辉, 张新宇. 2013. 激波风洞进气道自起动实验方法// 第九届全国实验流体力学学术会议论文集. 杭州(Yue L J, Liu H, Xu X, Zhang X Y. 2013. Self-starting characteristics of hypersonic inlets in shock tunnel//Proc. of 9th Chinese National Symposium on Experimental Fluid Mechanics. Hangzhou, China).
|
[45] |
张志雨, 肖丰收, 李祝飞, 朱雨建, 杨基明. 2016. 钝化V 形前缘激波干扰特性研究//第17 届全国激波与激波管学术会议. 成都(Zhang Z Y, Xiao F S, Li Z F, Zhu Y J, Yang J M. 2016. On shock-shock interaction of a V-shaped blunt leading edge//The 17th Chinese National Symposium on Shock waves. Chengdu, China).
|
[46] |
曾昊, 何立明, 章雄伟, 李海鹏, 陈鑫. 2010. 环形射流喷口位置对激波聚焦起爆的影响分析. 航空动力学报, 25: 1964-1970 (Zeng H, He L M, Zhang X W, Li H P, Chen X. 2010. Investigation on the influence of jet pressure on detonation initiation via imploding annular shock waves. Journal of Aerospace Power, 25: 1964-1970).
|
[47] |
曾昊, 陈鑫, 何立明, 吴春华. 2013. 凹面腔内二维激波会聚特性研究. 空气动力学学报, 31: 316-320 (Zeng H, Chen X, He L M, Wu C H. 2013. Investigation of two-dimensional shock wave focusing. Acta Aerodynamica Sinica, 31: 316-320).
|
[48] |
中国力学学会激波与激波管专业委员会. 2014//第16 届全国激波与激波管学术会议论文集. 洛阳, 1: 1-726 (Division of Shock wave and Shock Tube, The Chinese Society of Theoretical and Applied Mechanics. 2014//Proceedings of 16th Chinese National Symposium on Shock Waves. Luoyang, China. 1: 1-726).
|
[49] |
朱建士, 胡晓棉, 王裴, 陈军, 许爱国. 2010. 爆炸与冲击动力学若干问题研究进展. 力学进展, 40: 400-423 (Zhu J S, Hu X M, Wang P, Chen J, Xu A G. 2010. A review on research progress in explosion mechanics and impact dynamics. Advances in Mechanics, 40: 400-423).
|
[50] |
Abd-EL Fattah A M, Henderson L F. 1978a. Shock waves at a fast-slow gas interface. Journal of Fluid Mechanics, 86: 15-32.
|
[51] |
Abd-EL Fattah A M, Henderson L F. 1978b. Shock waves at a slow-fast gas interface. Journal of Fluid Mechanics, 89: 79-95.
|
[52] |
Ackeret, J F, Feldmann, Rott N. 1947. Investigations of compression shocks and boundary layers in gases moving at high speed. NACA-TM-1113.
|
[53] |
Adamson T C, Messiter A F. 1980. Analysis of two-dimensional interactions between shock waves and boundary layers. Annual Review of Fluid Mechanics, 12: 103-138.
|
[54] |
Albertson C, Venkat V. 2005. Shock interaction control for scramjet cowl leading edges. AIAA 2005-3289.
|
[55] |
Anderson J D. 2006. Hypersonic and High-Temperature Gas Dynamics. Second Edition, AIAA Education, 449-462.
|
[56] |
Anderson J, Lewis M, Kothari A. 1990. Hypersonic waveriders for planetary atmospheres. 28th Aerospace Sciences Meeting, AIAA-90-0538.
|
[57] |
Andreopoulos Y, Agui, J H, Briassulis G. 2000. Shock wave-turbulence interactions. Annual Review of Fluid Mechanics, 32: 309-345.
|
[58] |
ArnettWD, Bahcall J N, Kirshner R P,Woosley S E. 1989. Supernova 1987A. Annual Review of Astronomy and Astrophysics, 27: 629-700.
|
[59] |
Babinsky H, Takayama K. 1998. The influence of entrance geometry of circular reflectors on shock wave focusing. Computers and Fluids, 27: 611-618.
|
[60] |
Babinsky H, Harvey J K. 2011. Shock Wave-Boundary-Layer Interactions. Cambridge: Cambridge Univer-sity Press.
|
[61] |
Baltrusaitis R M, Gittings M L, Weaver R P, Benjamin R F, Budzinski J M. 1996. Simulation of shock-generated instabilities. Physics of Fluids, 8: 2471-2483.
|
[62] |
Bartenev A M, Khomik S V, Gelfand B E, Gronig H, Olivier H. 2000. Effect of reflection type on detonation initiation at shock-wave focusing. Shock Waves, 10: 205-215.
|
[63] |
Belford R L, Strehlow R A. 1969. Shock tube technique in chemical kinetics. Annu. Rev. Phys. Chem., 20: 247-272.
|
[64] |
Ben-Dor G, Igra O, Elperin T. 2001. Handbook of Shock Waves. New York: Academic Press.
|
[65] |
Ben-Dor G. 2007. Shock Wave Reflection Phenomena. (2nd edition). New York: Springer Press.
|
[66] |
Ben-Dor G. 2015. 30th International Symposium on Shock Waves. Tel-Aviv, Israel. http://www.ortra.com/ events/issw30/Home.aspx.
|
[67] |
Berets D J, Greene E F, Kistiakows G B. 1950. Gaseous detonations. II. Initiation by shock waves. Journal of the American Chemical Society, 72: 1086-1091.
|
[68] |
Bernard Finn S. 1964. Laplace and the speed of sound. ISIS Journal, 55: 7-19.
|
[69] |
Biamino L, Jourdan G, Mariani C, Houas L, Vandenboomgaerde M, Souffland D. 2015. On the possibility of studying the converging Richtmyer-Meshkov instability in a conventional shock tube. Experiments in
|
[70] |
Fluids, 56: 26.
|
[71] |
Bilbal L E, Gratton J. 1996. Spherical and cylindrical convergent shocks. Il Nuovo Cimento, 18: 1041-1060.
|
[72] |
Boldyrev S M, Borovoy V Y, Chinilov A Y, Gusev V N, Struminskaya I V, Yakovleva L V, Delery J, Chanetz
|
[73] |
B. 2001. A thorough experimental investigation of shock/shock interference in high Mach number flows.
|
[74] |
Aerospace Science and Technology, 5: 167-178.
|
[75] |
Bond C, Hill D J, Meiron D I, Dimotakis P E. 2009. Shock focusing in a planar convergent geometry:
|
[76] |
Experiment and simulation. Journal of Fluid Mechanics, 641: 297-333.
|
[77] |
Borisov A A, Zamanskii V M, Kosenkov V V, Lisyanskii V V, Skachkov G I, Troshin K Y, Gelfand B E. 1990. Ignition of gaseous combustible mixtures in focused shock waves. AIP Conference Proceedings, 208: 696-701.
|
[78] |
Brouillette M. 2002. The Richtmyer-Meshkov instability. Annual Review of Fluid Mechanics, 34: 445-468.
|
[79] |
Brouillette M, Sturtevant B. 1989. Growth induced by multiple shock waves normally incident on plane gaseous interfaces. Physica D, 37: 248-263.
|
[80] |
Brouillette M, Sturtevant B. 1993. Experiments on the Richtmyer-Meshkov instability: Small-scale pertur-bations on a plane interface. Physics of Fluids A, 5: 916-930.
|
[81] |
Brown C J, Thomas G O. 1999. Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures. Combustion and Flame, 117: 861-870.
|
[82] |
Budzinski J M, Zukoski E E, Marble F E. 1992 Rayleigh scattering measurements of shock enhanced mixing. AIAA paper, 1992-3546.
|
[83] |
Burcat A, Scheller K, Lifshitz A. 1971. Shock tube investigation of comparative ignition delay times for C1-C5 alkanes. Combustion and Flame, 16: 29-33.
|
[84] |
Burcat A, Crossley R W, Scheller K, Skinner G B. 1972. Shock tube investigation of ignition in ethane-oxygen-argon mixtures. Combustion and Flame, 18: 115-123.
|
[85] |
Chapman P R, Jacobs J W. 2006. Experiments on the three-dimensional incompressible Richtmyer-Meshkov instability. Physics of Fluids, 18, 074101.
|
[86] |
Charwat A F and Redekeopp L G. 1967. Supersonic Interference along the Corner of Intersecting Wedges. AIAA Journal, 5: 480-488.
|
[87] |
Chaumeix N, Imbert B, Catoire L, Paillard C E. 2014. The onset of detonation behind shock waves of moderate intensity in gas phase. Combustion Science and Technology, 186: 4-5.
|
[88] |
Chaussy C. 1987. Development of extracorporeal shock wave lithotripsy. In: Kandel L B, ed. Extracorporeal
|
[89] |
Shock Wave Lithotripsy. New York: Future Publishing Co. 1-27.
|
[90] |
Chester W. 1954. The quasi-cylindrical shock tube. Phil. Mag., 45: 1293-1301.
|
[91] |
Chisnell R F. 1957. The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. Journal of Fluid Mechanics, 2: 286-298.
|
[92] |
Chu Y, Lu X. 2012. Characteristics of unsteady type IV shock/shock interaction. Shock Waves, 22: 225-235.
|
[93] |
Clemens N T, Narayanaswamy V. 2014. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annual Review of Fluid Mechanics, 46: 469-492.
|
[94] |
Collins B D, Jacobs J W. 2002. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface. Journal of Fluid Mechanics, 464: 113-136.
|
[95] |
Cooke D F, Williams A. 1975. Shock tube studies of methane and ethane oxidation. Combustion and Flame, 24: 245-256.
|
[96] |
Courant R, Friedrichs K O. 1948. Supersonic Flow and shock waves. New York: Interscience Publishers, Pure and Applied Mathematics (Academic Press).
|
[97] |
Degrez G. 1993. Special Course on Shock-Wave/Boundary-Layer Interactions in Supersonic and Hypersonicm Flows. AGARD REPORT, NATO AGARD R-792.
|
[98] |
Debiève J F, Dupont P. 2009. Dependence between the shock and the separation bubble in a shock wave boundary layer interaction. Shock Waves, 19: 499-506.
|
[99] |
Délery J, Dussauge J P. 2009. Some physical aspects of shock wave/boundary layer interactions. Shock Waves, 19: 453-468.
|
[100] |
Degrez G. 1993. Special course on shock-wave/boundary-layer interactions in supersonic and hypersonic flows. AGARD REPORT, NATO AGARD R-792.
|
[101] |
Deville M, Le T H, Sagaut P. 2008. Special issue of the "Turbulence and Interaction" conference. Flow Turbulence Combust, 80: 1-2.
|
[102] |
Dimotakis P E. 2005. Turbulent mixing. Annual Review of Fluid Mechanics, 37: 329-356.
|
[103] |
Dimotakis P E, Samtaney R. 2006. Planar shock cylindrical focusing by a perfect-gas lens. Physics of Fluids, 18: 031705.
|
[104] |
Dolling D S. 2001. Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA Journal, 39: 1517-1531.
|
[105] |
Dussauge J P, Piponniau S. 2008. Shock/boundary-layer interactions: Possible sources of unsteadiness. Journal of Fluids and Structures, 24: 1166-1175.
|
[106] |
Dyke M, Guttmann A J. 1982. The converging shock wave from a spherical or cylindrical piston. Journal of Fluid Mechanics, 120: 451-462.
|
[107] |
Earmshaw S. 1860. On the mathematical theory of sound (communicated in Nov. 1858). Phil. Trans. Roy. Soc. London, 150: 133-148.
|
[108] |
Edney B. 1968. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. Technical Report 115.
|
[109] |
Edwards J R. 2008. Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: A survey of recent results. Progress in Aerospace Sciences, 44: 447-465.
|
[110] |
Eliasson V, Apazidis N, Tillmark N, Lesser M B. 2006. Focusing of strong shocks in an annular shock tube. Shock Waves, 15: 205-217.
|
[111] |
Eliasson V. 2007. On focusing of shock waves. Technical Reports from Royal Institute of Technology, Sweden.
|
[112] |
Erskin D J, Nellis W J. 1991. Shock-induced martensitic phase transformation of oriented graphite to diamond. Nature, 349: 317-319.
|
[113] |
Ferri A. 1940. Experimental results with airfoils tested in the high-speed tunnel at Guidonia. NACA-TM-946.
|
[114] |
Fraley G. 1986. Rayleigh-Taylor stability for a normal shock wave-density discontinuity interaction. Physics of Fluids, 29: 376-386.
|
[115] |
Fujii N, Koshi, M Ando H, Asaba T. 1979. Evaluation of boundary layer effects in shock-tube studies of chemical kinetics. Int. J. Chem. Kinet., 11: 285-304.
|
[116] |
Fureby C. 2008. Towards the use of large eddy simulation in engineering. Progress in Aerospace Sciences, 44: 381-396.
|
[117] |
Gaitonde D, Shang J S. 1995. On the structure of an unsteady type IV interaction at Mach 8. Computers and Fluids, 24: 469-485.
|
[118] |
Gaitonde D V. 2015. Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 72: 80-99.
|
[119] |
Gallis M A, Koehler T P, Torczynski J R, Plimpton S J. 2015. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability. Physics of Fluids, 27: 084105.
|
[120] |
Ganapathisubramani B, Clemens N T, Dolling D S. 2007. Effects of upstream boundary layer on the unsteadiness of shock-induced separation. Journal of Fluid Mechanics, 585: 369-394.
|
[121] |
Gao B, Wu Z N. 2010. A study of the flow structure for Mach reflection in steady supersonic flow. Journal of Fluid Mechanics, 656: 29-50.
|
[122] |
Gardner J H, Book D L, Bernstain I B. 1982. Stability of imploding shocks in the CCW approximation.
|
[123] |
Journal of Fluid Mechanics, 114: 41-58.
|
[124] |
Garrison T J, Settles G S, Narayanswami N, Knight D D. 1996. Measurements of the triple shock wave turbulent boundary-layer interaction. AIAA Journal 34: 57-64.
|
[125] |
Garrison T J, Settles G S, Narayanswami N, Knight D D. 1993. Structure of crossing-shock-wave turbulent-boundary-layer interactions. AIAA Journal, 31: 2204-2211.
|
[126] |
Garrison T J, Settles G S, Narayanswami N, Knight D D. 1994. Laser interferometer skin-friction measure-ments of crossing-shock-wave turbulent-boundary-layer interaction. AIAA Journal , 32: 1234-1241.
|
[127] |
Gaydon A G, Hurle I R. 1963. The shock tube in high temperature chemical physics. Journal of Chemical Education, 41: 114.
|
[128] |
Gelfand B E, Khomik S V, Bartenev A M, Medvedev S P, Gronig H, Olivier H. 2000. Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves, 10: 197-204.
|
[129] |
Glass II. 1975. Shock Wave and Man. Toronto: Toronto University Press.
|
[130] |
Goonko Y P, Kharitonov A M, Latypov A F, Mazhul I I, Rostand P, Yaroslavtsev M I. 2003. Structure of flow over a hypersonic inlet with side compression wedges. AIAA Journal, 41: 436-447.
|
[131] |
Grainger A L, Boyce R R, Tirtey S C, Ogawa H, Paniagua G, Paris S. 2012. The unsteady flow physics of hypersonic inlet starting processes. AIAA 2012-5937.
|
[132] |
Gray J A, Westbrook C K. 1994. High-temperature ignition of propane with MTBE as an additive: Shock tube experiments and modeling. J. Chem. Kinet., 26: 757-770.
|
[133] |
Greene E F, Toennies J P. 1964. Chemical Reactions in Shock Waves. New York: Academic Press.
|
[134] |
Guderley G. 1942. Starke kugelige und zylindrische VerdichtungsstÄosse in der NÄahe des Kugelmittelpunk bzw. der Zylinderachse. Luftfahrtforschung 19: 302-313.
|
[135] |
Haas J F, Sturtevant B. 1987. Interaction of weak shock waves with cylindrical and spherical gas inhomo-geneities. Journal of Fluid Mechanics, 181: 41-76.
|
[136] |
Hafner P. 1988. Strong convergent shock waves near the center of convergence. Siam J. Appl. Math., 48: 1244-1261.
|
[137] |
Han Z Y, Yin X Z. 1992. Shock Dynamics. Beijing: Science Press.
|
[138] |
Henderson L F. 1989. On the refraction of shock waves. Journal of Fluid Mechanics, 198: 365-386.
|
[139] |
Henderson L F. 2001. General laws for propagation of shock waves through matter//Ben-Dor G, Igra O, Elperin T, eds. Handbook of Shock Waves. New York: Academic Press.1: 143-151.
|
[140] |
Holmes R L, Grove J W, Sharp D H. 1995. Numerical investigation of Richtmyer-Meshkov instability using front tracking. Journal of Fluid Mechanics, 301: 51-64.
|
[141] |
Hosseini S H R, Takayama K. 2010. Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube. Shock Waves, 20: 1-7.
|
[142] |
Hosseini S H R, Takayama K. 2005. Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves, Physics of Fluids, 17: 084101.
|
[143] |
Humble R A, Scarano F, van Oudheusden B W. 2009. Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. Journal of Fluid Mechanics, 635: 47-74.
|
[144] |
Izumi K, Aso S, Nishida M. 1994. Experimental and computational studies focusing process of shock waves reflected from parabolic reflectors. Shock Waves, 4: 213-222.
|
[145] |
Jacobs J W. 1992. Shock-induced mixing of a light-gas cylinder. Journal of Fluid Mechanics, 234: 629-649.
|
[146] |
Jacobs J W, Krivets V V. 2005. Experiments on the late-time development of single-mode Richtmyer-Meshkov instability. Physics of Fluids, 17: 034105.
|
[147] |
Jackson S, Grunthaner M, Shepherd J. 2003. Wave implosion as an initiation mechanism for pulse detonation engines. AIAA Paper 2003-4820.
|
[148] |
Jackson S, Shepherd J. 2002. Initiation systems for pulse detonation engines. AIAA Paper 2002-3627.
|
[149] |
Jackson S I, Buraczewski P M, Shepherd J E. 2005. Initiation of detonations and deflagrations by shock reflection and focusing//20th ICDERS, Montreal, Canada.
|
[150] |
Jackson S I, Shepherd J E. 2007. Detonation initiation via imploding shock waves in a tube//21st ICDERS,
|
[151] |
July 23-27, Poitiers, France.
|
[152] |
Jackson S I, Shepherd J E. 2008. Detonation initiation in a tube via imploding toroidal shock waves. AIAA
|
[153] |
Journal, 46: 2357-2367.
|
[154] |
Jiang Z L, Takayama K. 1998. Reflection and focusing of toroidal shock waves from coaxial annular shock tubes. Computers and Fluids, 27: 553-562.
|
[155] |
Jiao X, Chang, J, Wang Z, Yu D. 2015. Mechanism study on local unstart of hypersonic inlet at high Mach number. AIAA Journal, 53: 3102-3112.
|
[156] |
Jones M A, Jacobs J W. 1997. A membraneless experiment for the study of Richtmyer-Meshkov instability of a shock-accelerated gas interface. Physics of Fluids, 9: 3078-3085.
|
[157] |
Kawamura R, Saito H. 1956. Reflection of shock waves-pseudo-stationary case. Journal of the Physical Society of Japan, 11: 584-592.
|
[158] |
Keyes J W, Hains F D. 1973. Analytical and experimental studies of shock interference heating in hypersonic flows. NASA TN D-7139.
|
[159] |
Khomik S V, Medvedev S P, Polenov A N, Gelfand B E. 2007. Conditions of detonation initiation by focusing shock waves in a combustible gas mixture. Combustion, Explosion, and Shock Waves, 43: 697-702.
|
[160] |
Kisbige H, Tesbima K, Nishida M. 1992. Focusing of shock waves reflected from an axisymmetrically parabolic wall. Shock Waves, 1: 341-345.
|
[161] |
Kjellander M. 2012. Energy concentration by converging shock waves in gases. Technical Reports from Royal Institute of Technology, Sweden.
|
[162] |
Kjellander M, Tillmark N, Apazidis N. 2010. Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects. Physics of Fluids, 22: 116102.
|
[163] |
Kim H D, Setoguchi T. 2007. Shock induced boundary layer separation//8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, Lyon, France, Invited Lecture: ISAIF8-IL142.
|
[164] |
Knight D, Yan H, Panaras A G, Zheltovodov A. 2003. Advances in CFD prediction of shock wave turbulent boundary layer interactions. Progress in Aerospace Sciences, 39: 121-184.
|
[165] |
Larsson J, Lele SK. 2009. Direct numerical simulation of canonical shock/turbulence interaction. Physics of Fluids, 21: 126101.
|
[166] |
Latini M, Schilling O, Don W S. 2007. High-resolution simulations and modeling of reshocked single-mode RMI comparison to experimental data and to amplitude growth model predictions. Physics of Fluids, 19: 024104.
|
[167] |
Layes G, Jourdan G, Houas L. 2003. Distortion of a spherical gaseous interface accelerated by a plane shock wave. Physics Review Letters, 91: 174502.
|
[168] |
Layes G, Jourdan G, Houas L. 2009. Experimental study on a plane shock wave accelerating a gas bubble. Physics of Fluids, 21: 074102.
|
[169] |
Lee J H S. 2008. The Detonation Phenomenon. New York: Cambridge University Press.
|
[170] |
Leyva I A, Tangirala V, Dean A J. 2003. Investigation of unsteady flow field in a 2-stage PDE resonator. AIAA 2003-0715.
|
[171] |
Li X L, Zhang Q. 1997. A comparative numerical study of the Richtmyer-Meshkov instability with nonlinear analysis in two and three dimensions. Physics of Fluids, 9: 3069-3077.
|
[172] |
Li Z, Gao W, Jiang H, Yang J. 2013. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel. AIAA Journal, 51: 2485-2492.
|
[173] |
Li Z, Huang B, Yang J. 2011. A novel test of starting characteristics of hypersonic inlets in shock tunnel. AIAA Paper 2011-2308.
|
[174] |
Liepmann H W. 1946. The interaction between boundary layer and shock waves in transonic flow. Journal of the Aeronautical Sciences, 13: 623-637.
|
[175] |
Likhachev O A, Tsiklashvili V. 2014. Integral constraints in the study of Richtmyer-Meshkov turbulent mixing. Physics of Fluids, 26, 102101.
|
[176] |
Lindl J, Landen O, Edwards J, Moses E, Team N. 2014. Review of the national ignition campaign 2009-2012. Physics of Plasmas, 21: 020501.
|
[177] |
Liverts M, Apazidis N. 2016. Limiting temperatures of spherical shock wave implosion. Physical Review Letters, 116: 014501.
|
[178] |
Lombardini M, Pullin D I, Meiron D I. 2014a. Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. Journal of Fluid Mechanics, 748: 85-112.
|
[179] |
Lombardini M, Pullin D I, Meiron D I. 2014b. Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics. Journal of Fluid Mechanics, 748: 113-142.
|
[180] |
Long C C, Krivets V V, Greenough J A, Jacobs J W. 2009. Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer-Meshkov instability. Physics of Fluids, 21: 114104.
|
[181] |
Lu F, Marren D. 2002. Advanced hypersonic facilities//Zarchan P, ed. Progress in astronautics and aero-nautics. AIAA Inc, 198: 1-616.
|
[182] |
Luo X, Ding J, Wang M, Zhai Z, Si T. 2015. A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability. Physics of Fluids, 27, 091702.
|
[183] |
Luo X, Wang X, Si T. 2013.The Richtmyer-Meshkov instability of a three-dimensional air/SF6 interface with a minimum-surface feature. Journal of Fluid Mechanics, 722, R2.
|
[184] |
Luo X, Wang M, Si T, Zhai Z. 2015. On the interaction of a planar shock with an SF6 polygon. Journal of Fluid Mechanics, 773: 366-394.
|
[185] |
Ma Y B, Zhong X L. 2003. Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions. Journal of Fluid Mechanics, 488: 31-78.
|
[186] |
Mahapatra D, Jagadeesh, G. 2009. Studies on unsteady shock interactions near a generic scramjet inlet. AIAA Journal, 47: 2223-2231.
|
[187] |
Malamud G, Leinov E, Sadot O, Elbaz Y, Ben-Dor G, Shvarts D. 2014. Reshocked Richtmyer-Meshkov instability: Numerical study and modeling of random multi-mode experiments. Physics of Fluids, 26: 084107.
|
[188] |
Marvin J G, Brown J L, Gnoffo P A. 2010. Experimental database with baseline CFD solutions: 2-D and axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions. NASA/TM-2013-216604.
|
[189] |
McFarland J A, Greenough J A, Ranjan D. 2013. Investigation of the initial perturbation amplitude for the inclined interface Richtmyer-Meshkov instability. Physica Scripta, 155: 014014.
|
[190] |
McFarland J, Reilly D, Creel S, McDonald C, Finn T, Ranjan D. 2014. Experimental investigation of the inclined interface Richtmyer-Meshkov instability before and after reshock. Experiments in Fluids, 55: 1640.
|
[191] |
Meshkov E E. 1969. Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics, 4: 101-104.
|
[192] |
Meyer K A, Blewett P J. 1972. Numerical investigation of the stability of a shock accelerated interface between two fluids. Physics of Fluids, 15: 753-759.
|
[193] |
Meyer J W, Oppenheim A K. 1971. On the shock-induced ignition of explosive gases//13th Symp (Int'l) on Combustion: 1153-1164.
|
[194] |
Myers B F, Bartle E R. 1969. Reaction and ignition delay times in the oxidation of propane. AIAA Journal, 7: 1862-1869.
|
[195] |
Mikaelian K O. 2015. Testing an analytic model for Richtmyer-Meshkov turbulent mixing widths. Shock Waves, 25: 35-45.
|
[196] |
Mooradian A J, Gordon W E. 1951. Gaseous detonation. I. Initiation of detonation. The Journal of Chemical Physics, 19: 1166-1172.
|
[197] |
Muylaert J A, Kumar, Christian D. 1998. Hypersonic experimental and computational capability, improve-ment and validation. Volume II. AGARD Advisory Report, NATO AGARD AR-319.
|
[198] |
Ogawa H, Grainger A L, Boyce R R. 2010. Inlet starting of high-contraction axisymmetric scramjets. Journal of Propulsion and Power, 26: 1247-1258.
|
[199] |
Olson B J, Greenough J. 2014. Large eddy simulation requirements for the Richtmyer-Meshkov instability. Physics of Fluids, 26, 044103.
|
[200] |
Orlicz G C, Balakumar B J, Tomkins C D, Prestridge K P. 2009. A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain. Physics of Fluids, 21: 064102.
|
[201] |
Panaras A G. 1996. Review of the physics of swept-shock boundary layer interactions. Progress in Aerospace Sciences, 32: 173-244.
|
[202] |
Perkins L J, Betti R, LaFortune K N, Williams W H. 2009. Shock ignition: A new approach to high gain inertial confinement fusion on the national ignition facility. Physical Review Letters, 103: 045004.
|
[203] |
Perry R W, Kantrowitz A. 1951. The production and stability of converging shock waves. J. Appl. Phys., 22: 878-886.
|
[204] |
Petersen E L, Hanson R K. 2001. Non-ideal effects behind reflected shock waves in a high pressure shock tube. Shock Waves, 10: 405-420.
|
[205] |
Piponniau S J, Dussauge P, Debieve J F, Dupont P. 2009. A simple model for low-frequency unsteadiness in shock-induced separation. Journal of Fluid Mechanics, 629: 87-108.
|
[206] |
Pirozzoli S, Grasso F. 2006. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2:25. Physics of Fluids, 18: 065113.
|
[207] |
Ponchaut N F, Hornung H G, Pullin D I, Mouton C A.2006. On imploding cylindrical and spherical shock waves in a perfect gas. Journal of Fluid Mechanics, 560: 103-122.
|
[208] |
Radha C, Sharma V D. 1993. Imploding cylindrical shock in a perfectly conducting and radiating gas. Physics of Fluids B, 5: 4287.
|
[209] |
Ranjan D, Anderson M H, Oakley J, Bonazza R. 2005. Experimental investigation of a strongly shocked gas bubble. Physics Review Letters, 94: 184507.
|
[210] |
Ranjan D, Niederhaus J H J, Motl B, Anderson M H, Oakley J, Bonazza R. 2007. Experimental investigation of primary and secondary features in high-mach-number shock-bubble interaction. Physics Review Letters, 98: 024502.
|
[211] |
Ranjan D, Oakley J, Bonazza R. 2011. Shock-bubble interactions. Annual Review of Fluid Mechanics, 43: 117-140.
|
[212] |
Richtmyer R D. 1960. Taylor instability in shock acceleration of compressible fluids. Communication on Pure and Applied Mathematics, 13: 297-319.
|
[213] |
Ringuette M J, Wu M, Mart-n M P. 2008. Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. Journal of Fluid Mechanics, 594: 59-69.
|
[214] |
Roy C J, Blottner F G. 2006. Review and assessment of turbulence models for hypersonic flows. Prog. Aerospace Sci., 42: 469-530.
|
[215] |
Sadot O, Erez L, Alon U, Oron D, Levin L A, Erez G, Ben-Dor G, Shvarts D. 1998. Study of nonlinear evo-lution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability. Physical Review Letters, 80: 1654-1657.
|
[216] |
Saillard Y, Barbry H, Mournier C. 1985. Transformation of a plane uniform or spherical shock by wall shaping//Shock waves and shock tubes, Proc. 15th Intern. Symp., 147-154. Stanford, CA: Stanford University Press.
|
[217] |
Samtaney R, Meiron D I. 1997. Hypervelocity Richtmyer-Meshkov instability. Physics of Fluids, 9: 1783-1803.
|
[218] |
Saric W S, Muylaert J, Christian D. 1996. Hypersonic experimental and computational capability, improve-ment and validation Volume I. AGARD Advisory Report, NATO AGARD AR-319.
|
[219] |
Schultz E, Shepherd J. 2000. Validation of detailed reaction mechanisms for detonation simulation. Explo-sion Dynamics Laboratory Report FM99-5, California Institute of Technology, USA.
|
[220] |
Schwendeman D W, Whitham G B. 1987. On converging shock waves. Proc. R. Soc. Lond. A, 413: 297-311.
|
[221] |
Setchell R E, Storm E, Sturtevant B. 1972. An investigation of shock strengthening in a conical converging channel. Journal of Fluid Mechanics, 56: 505-522.
|
[222] |
Settles G S, Dodson L J. 1991. Hypersonic shock/boundary-layer interaction database. NASA-CR-177577.
|
[223] |
Settles G S, Dodson L J. 1993. Hypersonic turbulent boundary-layer and free shear database. NASA-CR-177610.
|
[224] |
Settles G S, Dodson L J. 1994. Hypersonic shock/boundary-layer interaction database. New and Corrected Data. NASA-CR-177638.
|
[225] |
Settles G S, Dodson L J. 1994. Supersonic and hypersonic shock boundary-layer interaction database. AIAA Journal, 32: 1377-1383.
|
[226] |
Sharp D H. 1984. An overview of Rayleigh-Taylor instability. Physical D, 12: 3-18.
|
[227] |
Si T, Long T, Zhai Z, Luo X. 2015. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. Journal of Fluid Mechanics, 784: 225-251.
|
[228] |
Si T, Zhai Z, Luo X. 2014. Experimental study of Richtmyer-Meshkov instability in a cylindrical converging shock tube. Laser and Particle Beams, 32: 343-351.
|
[229] |
Si T, Zhai Z G, Yang J M, Luo X S. 2012. Experimental investigation of reshocked spherical gas interfaces. Physics of Fluids, 24: 054101.
|
[230] |
Skews B, Gray B, Paton R. 2015. Experimental production of two-dimensional shock waves of arbitrary profile. Shock Waves, 25: 1-10.
|
[231] |
Skews B W, Menon N, Bredin M. 2002. An experiment on imploding conical shock waves. Shock Waves, 11: 323-326.
|
[232] |
Skews B W, Kleine H. 2007. Flow features resulting from shock wave impact in a cylindrical cavity. J. Fluid Mech., 580: 481-493.
|
[233] |
Strehlow R A, Cohen A. 1962. Initiation of detonation. Physics of Fluids, 5: 97-101.
|
[234] |
Strehlow R A, Dyner H B. 1963. One-dimensional detonation initiation. AIAA Journal, 1: 591-595.
|
[235] |
Tahir R B, MÄolder, S and Timofeev E V. 2003. Unsteady starting of high mach number air inlets-A CFD study. AIAA Paper 2003-5191.
|
[236] |
Takayama K, Onodera O, Hoshizawa Y. 1984. Experiments on the stability of converging cylindrical shock waves. Theor. Appl. Mech., 32: 305-329.
|
[237] |
Takayama K, Kleine H, Gronig H. 1987. An experimental investigation of the stability of converging cylin-drical shock waves in air. Experiments in Fluids, 5: 315-322.
|
[238] |
Tan H J, Li L G, Wen Y F, Zhang Q F. 2011. Experimental investigation of the unstart process of a generic hypersonic inlet. AIAA Journal, 49: 279-288.
|
[239] |
Tao Y, Fan X, Zhao Y. 2014. Viscous effects of shock reflection hysteresis in steady supersonic flows. Journal of Fluid Mechanics, 759: 134-148.
|
[240] |
Tomkins C D, Kumar S, Orlicz G C, Prestridge K P. 2008. An experimental investigation of mixing mechanisms in shock-accelerated flow. Journal of Fluid Mechanics, 611: 131-150.
|
[241] |
Tomkins C D, Prestridge K P, Rightley P M, Marr-Lyon M, Vorobieff P, Benjamin R F. 2003. A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders. Physics of Fluids, 15: 986-1004.
|
[242] |
Tomkins C D, Prestridge K P, Rightley P M, Vorobieff P, Benjamin R F. 2002. Flow morphologies of two shock accelerated unstable gas cylinders. Journal of Visualization, 5: 273-283.
|
[243] |
Tsang W, Lifshitz A. 1990. Shock tube techniques in chemical kietics. Annu. Rev. Phys. Chem., 41: 559-599.
|
[244] |
Vandenboomgaerde M, Gauthier S, Mugler C. 2002. Nonlinear regime of a multimode Richtmyer-Meshkov instability: A simplified perturbation approach. Physics of Fluids, 14: 1111-1122.
|
[245] |
Vandenboomgaerde M, Mugler C, Gauthier S. 1998. Impulsive model for the Richtmyer-Meshkov instability. Physical Review E, 58: 1874-1882.
|
[246] |
Velikovich A L. 1996. Analytic theory of Richtmyer-Meshkov instability for the case of reflected rarefaction wave. Physics of Fluids, 8: 1666-1679.
|
[247] |
Velikovicha A L, Dimonte G. 1996. Nonlinear perturbation theory of the incompressible Richtmyer-Meshkov instability. Physical Review Letters, 76: 3112-3115.
|
[248] |
Voevodsky V V, Soloukhin R I. 1965. On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves//10 International Symposium on Combustion, The Comb. Institute, Pittsburgh, 279-283.
|
[249] |
Wang M, Si T, Luo X. 2013. Generation of polygonal gas interfaces by soap film for Richtmyer-Meshkov instability study. Experiments in Fluids, 54: 1427.
|
[250] |
Wang T, Liu J H, Bai J S, Jiang Y, Li P, Liu K. 2012 Experimental and numerical investigation of inclined air/SF6 interface instability under shock wave. Applied Mathematic and Mechanics, 33: 37-50.
|
[251] |
Wang W, Guo R. 2013. Numerical study of unsteady starting characteristics of a hypersonic inlet. Chinese Journal of Aeronautics, 26: 563-571.
|
[252] |
Wang Z, Zhao Y, Zhao Y, Fan X. 2015. Prediction of massive separation of unstarted inlet via free-interaction theory. AIAA Journal, 53: 1108-1112.
|
[253] |
Watanabe M, Takayama K. 1991. Stability of converging cylindrical shock waves. Shock Waves, 1: 149-160.
|
[254] |
Weirs V G, Dupont T, Plewa T. 2008. Three-dimensional effects in shock-cylinder interactions. Physics of Fluids, 20: 044102.
|
[255] |
West J E, Korkegi R H. 1972. Supersonic interaction in the corner of intersecting wedges at high Reynolds numbers. AIAA Journal, 10: 652-656.
|
[256] |
Whitham G B. 1957. A new approach to problems of shock dynamics. Part I. Two-dimensional problems. Journal of Fluid Mechanics, 2: 145-171.
|
[257] |
Whitham G B. 1959. A new approach to problems of shock dynamics. Part 2. Three-dimensional problems. Journal of Fluid Mechanics, 5: 369-386.
|
[258] |
Wouchuk J G, Nishihara K. 1996. Linear perturbation growth at a shocked interface. Physics of Plasmas, 3: 3761-3776.
|
[259] |
Wieting A R, Holden M S. 1989. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8. AIAA Journal, 27: 1557-1565.
|
[260] |
WuMW, MartinM P. 2008. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics, 594: 71-83.
|
[261] |
Wyckham C M, Zaidi S H, Miles R B, Smits A. 2005. Measurement of aero-optic distortion in transonic and hypersonic, turbulent boundary layers with gas injection. AIAA Paper 2005-4775.
|
[262] |
Yamashita H, Kasahara J, Sugiyama Y, Matsuo A. 2012. Visualization study of ignition modes behind bifurcated-reflected shock waves. Combustion and Flame, 159: 2954-2966.
|
[263] |
Yang J, Kubota T, Zukoski E E. 1993. Applications of shock-induced mixing to supersonic combustion.AIAA Journal, 35: 854-862.
|
[264] |
Yang Y, Zhang Q, Sharp D H. 1994. Small amplitude theory of Richtmyer-Meshkov instability. Physics of Fluids, 6: 1856-1873.
|
[265] |
Yao Y, Li S G, Wu Z N. 2013. Shock reflection in the presence of an upstream expansion wave and a downstream shock wave. Journal of Fluid Mechanics, 735: 61-90.
|
[266] |
Zabusky N J. 1999. Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments. Annual Review of Fluid Mechanics, 31: 495-536.
|
[267] |
Zhai Z G, Liu C L, Qin F H, Yang J M, Luo X S. 2010. Generation of cylindrical converging shock waves based on shock dynamics theory. Physics of Fluids, 22: 041701.
|
[268] |
Zhai Z G, Si T, Luo X S, Yang J M. 2011. On the evolution of spherical gas interfaces accelerated by a planar shock wave. Physics of Fluids, 23: 084104.
|
[269] |
Zhai Z G, Si T, Luo X S, Yang J M, Liu C L, Tan D W, Zou L Y. 2012. Parametric study on the cylindrical converging shock waves generated based on shock dynamics theory. Physics of Fluids, 24: 026101.
|
[270] |
Zhai Z, Wang M, Si T, Luo X. 2014. On the interaction of a planar shock with a light polygonal interface. Journal of Fluid Mechanics, 757: 800-816.
|
[271] |
Zhang Q, Graham M J. 1998. A numerical study of Richtmyer-Meshkov instability driven by cylindrical shocks. Physics of Fluids, 10: 974-992.
|
[272] |
Zhang Q, Sohn S I. 1996. An analytical nonlinear theory of Richtmyer-Meshkov instability. Physical Letter A, 212: 149-155.
|
[273] |
Zhang Q, Sohn S I. 1997. Nonlinear theory of unstable fluid mixing driven by shock wave. Physics of Fluids, 5: 1106-1124.
|
[274] |
Zheltovodov A A. 1996. Shock waves/turbulent boundary-layer interactions-Fundamental studies and applications. AIAA Paper 1996-1977.
|
[275] |
Zheltovodov A A. 2006. Some advances in research of shock wave turbulent boundary layer interactions. AIAA Paper 2006-496.
|
[276] |
Zhong X. 1994. Application of essentially nonoscillatory schemes to unsteady hypersonic shock-shock inter-ference heating problems. AIAA Journal, 32: 1606-1616.
|
[277] |
Zou L Y, Liu C L, Tan D W, Huang W B, Luo X S. 2010. On interaction of shock wave with elliptic gas cylinder. Journal of Visaulization, 13: 347-353.
|