Volume 46 Issue 1
May  2016
Turn off MathJax
Article Contents
LV Pengyu, XUE Yahui, DUAN Huiling. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46(1): 201604. doi: 10.6052/1000-0992-15-043
Citation: LV Pengyu, XUE Yahui, DUAN Huiling. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46(1): 201604. doi: 10.6052/1000-0992-15-043

Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces

doi: 10.6052/1000-0992-15-043
More Information
  • Corresponding author: DUAN Huiling
  • Received Date: 2015-10-22
  • Rev Recd Date: 2015-12-07
  • Publish Date: 2016-05-20
  • Microstructured superhydrophobic surfaces have broad applications such as anti-fouling and drag reduction.The performance of such surfaces strongly depends on the stability of liquid-gas interfaces, which affects physical processes including wetting transition, restoration and bubble evolution.Various physical factors including pressurization and gas diffusion may destabilize the liquid-air interfaces, and lead to evolution in different manners.In this paper, we first summarize the three types of interfacial stability problems for liquid-gas interfaces.Relying on external stimulations, the liquid-air interface may evolve into different stages and exhibit different morphologies.The recent progress of research on the stability and control of liquid-air interfaces in both droplet systems and submersion circumstances has been reviewed.Based on this review, remaining challenges for future research have been given.

     

  • loading
  • [1]
    康强. 2010. 生物表面湿粘附的理论和实验研究.[硕士论文]. 北京:清华大学(Kang Q. 2010. Theoret-ical and experimental studies of biological wet adhesion.[Master Thesis]. Beijing:Tsinghua University).
    [2]
    刘建林. 2007. 固体表面浸润和毛细粘附的力学研究.[博士论文]. 北京:清华大学(Liu J L. 2007.Mechanical study on wetting and capillary adhesion on solid surfaces.[PhD Dissertation]. Beijing:Tsinghua University).
    [3]
    王新亮, 狄勤丰, 张任良, 顾春元. 2010. 超疏水表面滑移理论及其减阻应用研究进展. 力学进展, 40:241-249(Wang X L, Di Q F, Zhang R L, Gu C Y. 2010. Progress in theories of super-hydrophobic surface slip effect and its application to drag reduction technology. Advances in Mechanics, 40:241-249).
    [4]
    吴承伟, 马国军, 周平. 2008. 流体流动的边界滑移问题研究进展. 力学进展, 38:265-282(Wu C W, Ma G J, Zhou P. 2008. A review of the study on the boundary slip problems of fluid flow. Advances in Mechanics, 38:265-282).
    [5]
    吴承伟, 张伟, 孔祥清. 2010. 生物与仿生材料表面微纳力学行为. 力学进展, 40:542-562(Wu C W, Zhang W, Kong X Q. 2010. The surface micro/nanomechanical behaviors of bio-and bionic-materials.Advances in Mechanics, 40:542-562).
    [6]
    于海江, 罗正鸿. 2009. 超疏水功能材料的理论与应用研究. 功能材料, 增刊:916-920(Yu H J, Luo Z H. 2009 Study on the theory and application of superhydrophobic functional materials. Journal of Functional Materials, supplement:916-920).
    [7]
    张朝能. 1999. 水体中饱和溶解氧的求算方法探讨. 环境科学研究, 12:54-55(Zhang C N. 2010. Study on calculation method of saturation values of dissolved oxygen in waters. Research of Environmental Sciences, 12:54-55).
    [8]
    Adera S, Raj R, Enright R, Wang E N. 2013. Non-wetting droplets on hot superhydrophilic surfaces. Nature Communications, 4:2518.
    [9]
    Aljallis E, Sarshar M A, Datla R, Sikka V, Jones A, Choi C H. 2013. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Physics of Fluids, 25:025103.
    [10]
    Atchley A A, Prosperetti A. 1989. The crevice model of bubble nucleation. Journal of the Acoustical Society of America, 86:1065-1084.
    [11]
    Aytug T, Simpson J T, Lupini A R, Trejo R M, Jellison G E, Ivanov I N, Pennycook S J, Hillesheim D A, Winter K O, Christen D K, Hunter S R, Haynes J A. 2013. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.Nanotechnology, 24:315602.
    [12]
    Bahadur V, Garimella S V. 2008. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces. Langmuir, 24:8338-8345.
    [13]
    Balasubramanian A K, Miller A C, Rediniotis O K. 2004. Microstructured hydrophobic skin for hydrody-namic drag reduction. Aiaa Journal, 42:411-414.
    [14]
    Barth C A, Samaha M A, Tafreshi H V, Gad-el-Hak M. 2013. Convective mass transfer from submerged superhydrophobic surfaces. International Journal of Flow Control, 5:79.
    [15]
    Barthlott W, Neinhuis C. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202:1-8.
    [16]
    Bartolo D, Bouamrirene F, Verneuil E, Buguin A, Silberzan P, Moulinet S. 2006. Bouncing or sticky droplets:Impalement transitions on superhydrophobic micropatterned surfaces. Europhysics Letters, 74:299-305.
    [17]
    Bernoulli D. 1738. Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, 5:175-192.
    [18]
    Bhushan B, Jung Y C, Koch K. 2009. Micro-, nano-and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 367:1631-1672.
    [19]
    Blow M L, Yeomans J M. 2010. Superhydrophobicity on hairy surfaces. Langmuir, 26:16071-16083.
    [20]
    Bobji M S, Kumar S V, Asthana A, Govardhan R N. 2009. Underwater sustainability of the "Cassie" state of wetting. Langmuir, 25:12120-12126.
    [21]
    Boreyko J B, Baker C H, Poley C R, Chen C H. 2011. Wetting and dewetting transitions on hierarchical superhydrophobic surfaces. Langmuir, 27:7502-7509.
    [22]
    Boreyko J B, Chen C H. 2009. Restoring superhydrophobicity of lotus leaves with vibration-induced dewet-ting. Physical Review Letters, 103:174502.
    [23]
    Boreyko J B, Collier C P. 2013. Dewetting transitions on superhydrophobic surfaces:When are Wenzel drops reversible? Journal of Physical Chemistry C, 117:18084-18090.
    [24]
    Borkent B M, Gekle S, Prosperetti A, Lohse D. 2009. Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Physics of Fluids, 21:102003.
    [25]
    Bormashenko E. 2015. Progress in understanding wetting transitions on rough surfaces. Advances in Colloid and Interface Science, 222:92-103.
    [26]
    Bormashenko E, Bormashenko Y, Stein T, Whyman G, Pogreb R. 2007a. Environmental scanning electron microscopy study of the fine structure of the triple line and Cassie-Wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir, 23:4378-4382.
    [27]
    Bormashenko E, Musin A, Whyman G, Zinigrad M. 2012. Wetting transitions and depinning of the triple line. Langmuir, 28:3460-3464.
    [28]
    Bormashenko E, Pogreb R, Whyman G, Bormashenko Y, Erlich M. 2007b. Vibration-induced Cassie-Wenzel wetting transition on rough surfaces. Applied Physics Letters, 90:201917.
    [29]
    Bormashenko E, Pogreb R, Whyman G, Erlich M. 2007c. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces:Is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Langmuir, 23:6501-6503.
    [30]
    Bormashenko E, Pogreb R, Whyman G, Erlich M. 2007d. Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Langmuir, 23:12217-12221.
    [31]
    Bottiglione F, Carbone G. 2013. Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity. Langmuir, 29:599-609.
    [32]
    Bremond N, Arora M, Dammer S M, Lohse D. 2006a. Interaction of cavitation bubbles on a wall. Physics of Fluids, 18:121505.
    [33]
    Bremond N, Arora M, Ohl C D, Lohse D. 2005. Cavitating bubbles on patterned surfaces. Physics of Fluids, 17:091111.
    [34]
    Bremond N, Arora M, Ohl C D, Lohse D. 2006b. Controlled multibubble surface cavitation. Physical Review Letters, 96:224501.
    [35]
    Brennan J C, Geraldi N R, Morris R H, Fairhurst D J, McHale G, Newton M I. 2015. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction. Scientific Reports, 5:10267.
    [36]
    Cannon A H, King W P. 2010. Visualizing contact line phenomena on microstructured superhydrophobic surfaces. Journal of Vacuum Science & Technology B, 28:L21-L24.
    [37]
    Carlborg C F, van der Wijngaart W. 2011. Sustained superhydrophobic friction reduction at high liquid pressures and large flows. Langmuir, 27:487-493.
    [38]
    Cassie A B D, Baxter S. 1944. Wettability of porous surfaces. Transactions of the Faraday Society, 40:0546-0550.
    [39]
    Chappell M A, Payne S J. 2007. The effect of cavity geometry on the nucleation of bubbles from cavities.Journal of the Acoustical Society of America, 121:853-862.
    [40]
    Checco A, Ocko B M, Rahman A, Black C T, Tasinkevych M, Giacomello A, Dietrich S. 2014. Collapse and reversibility of the superhydrophobic state on nanotextured surfaces. Physical Review Letters, 112:216101.
    [41]
    Chen W, Fadeev A Y, Hsieh M C, Oner D, Youngblood J, McCarthy T J. 1999. Ultrahydrophobic and ultralyophobic surfaces:Some comments and examples. Langmuir, 15:3395-3399.
    [42]
    Chen X M, Ma R Y, Li J T, Hao C L, Guo W, Luk B L, Li S C, Yao S H, Wang Z K. 2012. Evaporation of droplets on superhydrophobic surfaces:Surface roughness and small droplet size effects. Physical Review Letters, 109:116101.
    [43]
    Choi C H, Ulmanella U, Kim J, Ho C M, Kim C J. 2006. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of Fluids, 18:087105.
    [44]
    Choi C H, Westin K J A, Breuer K S. 2003. Apparent slip flows in hydrophilic and hydrophobic microchan-nels. Physics of Fluids, 15:2897-2902.
    [45]
    Cortese B, D'Amone S, Manca M, Viola I, Cingolani R, Gigli G. 2008. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir, 24:2712-2718.
    [46]
    Cottin-Bizonne C, Barrat J L, Bocquet L, Charlaix E. 2003. Low-friction flows of liquid at nanopatterned interfaces. Nature Materials, 2:237-240.
    [47]
    Crowdy D. 2010. Slip length for longitudinal shear flow over a dilute periodic mattress of protruding bubbles.Physics of Fluids, 22:121703.
    [48]
    Daniello R J,Waterhouse N E, Rothstein J P. 2009. Drag reduction in turbulent flows over superhydrophobic surfaces. Physics of Fluids, 21:085103.
    [49]
    David R, Neumann A W. 2013. Energy barriers between the Cassie and Wenzel states on random, super-hydrophobic surfaces. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 425:51-58.
    [50]
    Davies J, Maynes D, Webb B W, Woolford B. 2006. Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs. Physics of Fluids, 18:087110.
    [51]
    Davis A M J, Lauga E. 2009a. The friction of a mesh-like super-hydrophobic surface. Physics of Fluids, 21:113101.
    [52]
    Davis A M J, Lauga E. 2009b. Geometric transition in friction for flow over a bubble mattress. Physics of Fluids, 21:011701.
    [53]
    de Gennes P G. 1985. Wetting:Statics and dynamics. Reviews of Modern Physics, 57:827-863.
    [54]
    Deng X, Schellenberger F, Papadopoulos P, Vollmer D, Butt H J. 2013. Liquid drops impacting superam-phiphobic coatings. Langmuir, 29:7847-7856.
    [55]
    Dupeux G, Le Merrer M, Clanet C, Quéré D. 2011. Trapping leidenfrost drops with crenelations. Physical Review Letters, 107:114503
    [56]
    Dupuis A, Yeomans J M. 2005. Modeling droplets on superhydrophobic surfaces:Equilibrium states and transitions. Langmuir, 21:2624-2629.
    [57]
    Eadie L, Ghosh T K. 2011. Biomimicry in textiles:Past, present and potential. An overview. Journal of the Royal Society Interface, 8:761-775.
    [58]
    Emami B, Bucher T M, Tafreshi H V, Pestov D, Gad-el-Hak M, Tepper G C. 2011. Simulation of meniscus stability in superhydrophobic granular surfaces under hydrostatic pressures. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 385:95-103.
    [59]
    Emami B, Hemeda A A, Amrei M M, Luzar A, Gad-el-Hak M, Tafreshi H V. 2013. Predicting longevity of submerged superhydrophobic surfaces with parallel grooves. Physics of Fluids, 25:062108.
    [60]
    Emami B, Tafreshi H V, Gad-el-Hak M, Tepper G C. 2012a. Effect of fiber orientation on shape and stability of air-water interface on submerged superhydrophobic electrospun thin coatings. Journal of Applied Physics, 111:064325.
    [61]
    Emami B, Tafreshi H V, Gad-el-Hak M, Tepper G C. 2012b. Predicting shape and stability of air-water interface on superhydrophobic surfaces comprised of pores with arbitrary shapes and depths. Applied Physics Letters, 100:013104.
    [62]
    Enríquez O R, Hummelink C, Bruggert G W, Lohse D, Prosperetti A, van der Meer D, Sun C. 2013. Growing bubbles in a slightly supersaturated liquid solution. Review of Scientific Instruments, 84:065111.
    [63]
    Enríquez O R, Sun C, Lohse D, Prosperetti A, van der Meer D. 2014. The quasi-static growth of CO2 bubbles. Journal of Fluid Mechanics, 741:R1.
    [64]
    Extrand C W. 2006. Designing for optimum liquid repellency. Langmuir, 22:1711-1714.
    [65]
    Extrand C W, Kumagai Y. 1997. An experimental study of contact angle hysteresis. Journal of Colloid and Interface Science, 191:378-383.
    [66]
    Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. 2002. Super-hydrophobic surfaces:From natural to artificial. Advanced Materials, 14:1857-1860.
    [67]
    Feng L, Song Y L, Zhai J, Liu B Q, Xu J, Jiang L, Zhu D B. 2003. Creation of a superhydrophobic surface from an amphiphilic polymer. Angewandte Chemie-International Edition, 42:800-802.
    [68]
    Feng L, Zhang Y A, Xi J M, Zhu Y, Wang N, Xia F, Jiang L. 2008. Petal effect:A superhydrophobic state with high adhesive force. Langmuir, 24:4114-4119.
    [69]
    Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B. 2004. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. Journal of the American Chemical Society, 126:62-63.
    [70]
    Feuillebois F, Bazant M Z, Vinogradova O I. 2009. Effective slip over superhydrophobic surfaces in thin channels. Physical Review Letters, 102:026001.
    [71]
    Flynn M R, Bush J W M. 2008. Underwater breathing:The mechanics of plastron respiration. Journal of Fluid Mechanics, 608:275-296.
    [72]
    Forsberg P, Nikolajeff F, Karlsson M. 2011. Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter, 7:104-109.
    [73]
    Gao L C, McCarthy T J. 2006a. Contact angle hysteresis explained. Langmuir, 22:6234-6237.
    [74]
    Gao L C, McCarthy T J. 2006b. The "lotus effect" explained:Two reasons why two length scales of topography are important. Langmuir, 22:2966-2967.
    [75]
    Gao L C, McCarthy T J. 2006c. A perfectly hydrophobic surface(theta(A)/theta(R)=180 degrees/180degrees). Journal of the American Chemical Society, 128:9052-9053.
    [76]
    Gao P, Feng J J. 2009. Enhanced slip on a patterned substrate due to depinning of contact line. Physics of Fluids, 21:102102.
    [77]
    Gao X F, Jiang L. 2004. Water-repellent legs of water striders. Nature, 432:36-36.
    [78]
    Genzer J, Efimenko K. 2006. Recent developments in superhydrophobic surfaces and their relevance to marine fouling:A review. Biofouling, 22:339-360.
    [79]
    Giacomello A, Chinappi M, Meloni S, Casciola C M. 2012a. Metastable wetting on superhydrophobic surfaces:Continuum and atomistic views of the Cassie-Baxter-Wenzel transition. Physical Review Letters, 109:226102.
    [80]
    Giacomello A, Meloni S, Chinappi M, Casciola C M. 2012b. Cassie-Baxter and Wenzel states on a nanos-tructured surface:Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir, 28:10764-10772.
    [81]
    Girard P S. 1815. Mémoires de la classe des sciences mathématiques. Physiques de l'Institut de France, 14:329.
    [82]
    Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker C J. 2005. Effective slip on textured superhydrophobic surfaces. Physics of Fluids, 17:051701.
    [83]
    Haase A S, Karatay E, Tsai P A, Lammertink R G H. 2013. Momentum and mass transport over a bubble mattress:The influence of interface geometry. Soft Matter, 9:8949-8957.
    [84]
    Hao C L, Li J, Liu Y, Zhou X F, Liu Y H, Liu R, Che L F, Zhou W Z, Sun D, Li L, Xu L, Wang Z K. 2015.Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nature Communications, 6. doi: 10.1038/ncomms8986.
    [85]
    Harvey E N, Barnes D K, McElroy W D, Whiteley A H, Pease D C, Cooper K W. 1944. Bubble formation in animals I. Physical factors. Journal of Cellular and Comparative Physiology, 24:1-22.
    [86]
    He Z K, Ma M, Lan X R, Chen F, Wang K, Deng H, Zhang Q, Fu Q. 2011. Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter, 7:6435-6443.
    [87]
    Hemeda A A, Gad-el-Hak M, Tafreshi H V. 2014. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves. Physics of Fluids, 26:082103.
    [88]
    Henoch C, Krupenkin T N, Kolodner P, Taylor J A, Hodes M S, Lyons A M, Peguero C, Breuer K. 2006.Turbulent drag reduction using superhydrophobic surfaces//3rd AIAA Flow Control Conference, 2006:3192.
    [89]
    Hensel R, Finn A, Helbig R, Killge S, Braun H G, Werner C. 2014. In situ experiments to reveal the role of surface feature sidewalls in the Cassie-Wenzel transition. Langmuir, 30:15162-15170.
    [90]
    Hensel R, Helbig R, Aland S, Braun H G, Voigt A, Neinhuis C, Werner C. 2013. Wetting resistance at its topographical limit:The benefit of mushroom and serif T structures. Langmuir, 29:1100-1112.
    [91]
    Herbertson D L, Evans C R, Shirtcliffe N J, McHale G, Newton M I. 2006. Electrowetting on superhy-drophobic SU-8 patterned surfaces. Sensors and Actuators A-Physical, 130:189-193.
    [92]
    Herminghaus S. 2000. Roughness-induced non-wetting. Europhysics Letters, 52:165-170.
    [93]
    Hong L F, Pan T R. 2011. Surface microfluidics fabricated by photopatternable superhydrophobic nanocom-posite. Microfluidics and Nanofluidics, 10:991-997.
    [94]
    Hosono E, Fujihara S, Honma I, Zhou H S. 2005. Superhydrophobic perpendicular nanopin film by the bottom-up process. Journal of the American Chemical Society, 127:13458-13459.
    [95]
    Hsieh C T, Wu F L, Chen W Y. 2010. Superhydrophobicity and superoleophobicity from hierarchical silica sphere stacking layers. Materials Chemistry and Physics, 121:14-21.
    [96]
    Huang D M, Cottin-Bizonne C, Ybert C, Bocquet L. 2008a. Massive amplification of surface-induced transport at superhydrophobic surfaces. Physical Review Letters, 101:064503.
    [97]
    Huang D M, Sendner C, Horinek D, Netz R R, Bocquet L. 2008b. Water slippage versus contact angle:A quasiuniversal relationship. Physical Review Letters, 101:226101.
    [98]
    Hyvaluoma J, Harting J. 2008. Slip flow over structured surfaces with entrapped microbubbles. Physical Review Letters, 100:246001.
    [99]
    Hyvaluoma J, Kunert C, Harting J. 2011. Simulations of slip flow on nanobubble-laden surfaces. Journal of Physics-Condensed Matter, 23:184106.
    [100]
    Ishino C, Okumura K, Quéré D. 2004. Wetting transitions on rough surfaces. Europhysics Letters, 68:419-425.
    [101]
    Jeong H E, Lee S H, Kim J K, Suh K Y. 2006. Nanoengineered multiscale hierarchical structures with tailored wetting properties. Langmuir, 22:1640-1645.
    [102]
    Jiang L, Wang R, Yang B, Li T J, Tryk D A, Fujishima A, Hashimoto K, Zhu D B. 2000. Binary cooperative complementary nanoscale interfacial materials. Pure and Applied Chemistry, 72:73-81.
    [103]
    Jin G, Jeon H, Kim G. 2011. Hydrophobic polymer surfaces by lotus leaf replication using an alternating current electric field with an interdigitated electrode. Soft Matter, 7:4723-4728.
    [104]
    Jones S F, Evans G M, Galvin K P. 1999. Bubble nucleation from gas cavities -a review. Advances in Colloid and Interface Science, 80:27-50.
    [105]
    Karatay E, Haase A S, Visser C W, Sun C, Lohse D, Tsai P A, Lammertink R G H. 2013. Control of slippage with tunable bubble mattresses. Proceedings of the National Academy of Sciences of the United States of America, 110:8422-8426.
    [106]
    Koch K, Barthlott W. 2009. Superhydrophobic and superhydrophilic plant surfaces:An inspiration for biomimetic materials. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 367:1487-1509.
    [107]
    Koch K, Bhushan B, Barthlott W. 2009a. Multifunctional surface structures of plants:An inspiration for biomimetics. Progress in Materials Science, 54:137-178.
    [108]
    Koch K, Bhushan B, Jung Y C, Barthlott W. 2009b. Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter, 5:1386-1393.
    [109]
    Koch K, Bohn H F, Barthlott W. 2009c. Hierarchically sculptured plant surfaces and superhydrophobicity.Langmuir, 25:14116-14120.
    [110]
    Kota A K, Kwon G, Choi W, Mabry J M, Tuteja A. 2012a. Hygro-responsive membranes for effective oil-water separation. Nature Communications, 3:1025.
    [111]
    Kota A K, Li Y X, Mabry J M, Tuteja A. 2012b. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. Advanced Materials, 24:5838-5843.
    [112]
    Krupenkin T N, Taylor J A, Schneider T M, Yang S. 2004. From rolling ball to complete wetting:The dynamic tuning of liquids on nanostructured surfaces. Langmuir, 20:3824-3827.
    [113]
    Krupenkin T N, Taylor J A, Wang E N, Kolodner P, Hodes M, Salamon T R. 2007. Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces. Langmuir, 23:9128-9133.
    [114]
    Kusumaatmaja H, Blow M L, Dupuis A, Yeomans J M. 2008. The collapse transition on superhydrophobic surfaces. Europhysics Letters, 81:36003.
    [115]
    Kwon G, Kota A K, Li Y X, Sohani A, Mabry J M, Tuteja A. 2012. On-demand separation of oil-water mixtures. Advanced Materials, 24:3666-3671.
    [116]
    Kwon H M, Paxson A T, Varanasi K K, Patankar N A. 2011. Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces. Physical Review Letters, 106:036102.
    [117]
    Kwon Y, Patankar N, Choi J, Lee J. 2009. Design of surface hierarchy for extreme hydrophobicity. Langmuir, 25:6129-6136.
    [118]
    Lafuma A, Quéré D. 2003. Superhydrophobic states. Nature Materials, 2:457-460.
    [119]
    Lagubeau G, Le Merrer M, Clanet C, Quéré D. 2011. Leidenfrost on a ratchet. Nature Physics, 7:395-398.
    [120]
    Laplace P S. 1805. Traité de mécanique céleste. Paris:Gauthier-Villars, 4:1-79.
    [121]
    Larmour I A, Bell S E J, Saunders G C. 2007. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angewandte Chemie-International Edition, 46:1710-1712.
    [122]
    Lee C, Choi C H, Kim C J. 2008. Structured surfaces for a giant liquid slip. Physical Review Letters, 101:064501.
    [123]
    Lee C, Kim C J. 2009. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostruc-turing their sidewalls. Langmuir, 25:12812-12818.
    [124]
    Lee C, Kim C J. 2011a. Influence of surface hierarchy of superhydrophobic surfaces on liquid slip. Langmuir, 27:4243-4248.
    [125]
    Lee C, Kim C J. 2011b. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Physical Review Letters, 106:014502.
    [126]
    Lee J A, McCarthy T J. 2007. Polymer surface modification:Topography effects leading to extreme wetta-bility behavior. Macromolecules, 40:3965-3969.
    [127]
    Lei L, Li H, Shi J, Chen Y. 2010. Diffraction patterns of a water-submerged superhydrophobic grating under pressure. Langmuir, 26:3666-3669.
    [128]
    Li D D, Li S C, Xue Y H, Yang Y T, Su W D, Xia Z H, Shi Y P, Lin H, Duan H L. 2014. The effect of slip distribution on flow past a circular cylinder. Journal of Fluids and Structures, 51:211-224.
    [129]
    Li W, Amirfazli A. 2005. A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. Journal of Colloid and Interface Science, 292:195-201.
    [130]
    Li Y, Duan G T, Liu G Q, Cai W P. 2013. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique:Fabrication and applications. Chemical Society Reviews, 42:3614-3627.
    [131]
    Liu B, Lange F F. 2006. Pressure induced transition between superhydrophobic states:Configuration diagrams and effect of surface feature size. Journal of Colloid and Interface Science, 298:899-909.
    [132]
    Liu G M, Fu L, Rode A V, Craig V S J. 2011. Water droplet motion control on superhydrophobic surfaces:Exploiting the Wenzel-to-Cassie transition. Langmuir, 27:2595-2600.
    [133]
    Liu J L, Feng X Q, Wang G F, Yu S W. 2007. Mechanisms of superhydrophobicity on hydrophilic substrates.Journal of Physics-Condensed Matter, 19:356002.
    [134]
    Liu T Y, Kim C J. 2014. Turning a surface superrepellent even to completely wetting liquids. Science, 346:1096-1100.
    [135]
    Liu X J, Ye Q A, Song X W, Zhu Y W, Cao X L, Liang Y M, Zhou F. 2011. Responsive wetting transition on superhydrophobic surfaces with sparsely grafted polymer brushes. Soft Matter, 7:515-523.
    [136]
    Liu Y H, Moevius L, Xu X P, Qian T Z, Yeomans J M, Wang Z K. 2014. Pancake bouncing on superhy-drophobic surfaces. Nature Physics, 10:515-519.
    [137]
    Lobaton E J, Salamon T R. 2007. Computation of constant mean curvature surfaces:Application to the gas-liquid interface of a pressurized fluid on a superhydrophobic surface. Journal of Colloid and Interface Science, 314:184-198.
    [138]
    Lohse D, Zhang X H. 2015. Surface nanobubbles and nanodroplets. Reviews of Modern Physics, 87:981-1035.
    [139]
    Luo C, Zheng H, Wang L, Fang H P, Hu J, Fan C H, Cao Y, Wang J A. 2010. Direct three-dimensional imaging of the buried interfaces between water and superhydrophobic surfaces. Angewandte Chemie-International Edition, 49:9145-9148.
    [140]
    Lv P Y, Xue Y H, Liu H, Shi Y P, Xi P, Lin H, Duan H L. 2015. Symmetric and asymmetric meniscus collapse in wetting transition on submerged structured surfaces. Langmuir, 31:1248-1254.
    [141]
    Lv P Y, Xue Y H, Shi Y P, Lin H, Duan H L. 2014. Metastable states and wetting transition of submerged superhydrophobic structures. Physical Review Letters, 112:196101.
    [142]
    Manukyan G, Oh J M, van den Ende D, Lammertink R G H, Mugele F. 2011. Electrical switching of wetting states on superhydrophobic surfaces:A route towards reversible Cassie-to-Wenzel transitions. Physical Review Letters, 106:014501.
    [143]
    Marmur A. 2003. Wetting on hydrophobic rough surfaces:To be heterogeneous or not to be? Langmuir, 19:8343-8348.
    [144]
    Marmur A. 2004. The lotus effect:Superhydrophobicity and metastability. Langmuir, 20:3517-3519.
    [145]
    Marschall H B, Morch K A, Keller A P, Kjeldsen M. 2003. Cavitation inception by almost spherical solid particles in water. Physics of Fluids, 15:545-553.
    [146]
    Martell M B, Perot J B, Rothstein J P. 2009. Direct numerical simulations of turbulent flows over superhy-drophobic surfaces. Journal of Fluid Mechanics, 620:31-41.
    [147]
    Martell M B, Rothstein J P, Perot J B. 2010. An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Physics of Fluids, 22:065102.
    [148]
    Maynes D, Jeffs K, Woolford B, Webb B W. 2007. Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction. Physics of Fluids, 19:093603.
    [149]
    Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. 2000. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 16:5754-5760.
    [150]
    Morch K A. 2009. Cavitation nuclei:Experiments and theory. Journal of Hydrodynamics, 21:176-189.
    [151]
    Moulinet S, Bartolo D. 2007. Life and death of a fakir droplet:Impalement transitions on superhydrophobic surfaces. European Physical Journal E, 24:251-260.
    [152]
    Muralidhar P, Ferrer N, Daniello R, Rothstein J P. 2011. Influence of slip on the flow past superhydrophobic circular cylinders. Journal of Fluid Mechanics, 680:459-476.
    [153]
    Navier C L M H. 1823. Mémoire sur les lois du mouvement des fluides. Mémoires de l'Académie Royale des Sciences de l'Institut de France, 6:389-440.
    [154]
    Neto C, Evans D R, Bonaccurso E, Butt H J, Craig V S J. 2005. Boundary slip in Newtonian liquids:A review of experimental studies. Reports on Progress in Physics, 68:2859-2897.
    [155]
    Noscinovsky M, Bhushan B. 2008. Patterned nonadhesive surfaces:Superhydrophobicity and wetting regime transitions. Langmuir, 24:1525-1533.
    [156]
    Nosonovsky M, Bhushan B. 2007. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy, 107:969-979.
    [157]
    Oner D, McCarthy T J. 2000. Ultrahydrophobic surfaces. Effects of topography length scales on wettability.Langmuir, 16:7777-7782.
    [158]
    Ou J, Perot B, Rothstein J P. 2004. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Physics of Fluids, 16:4635-4643.
    [159]
    Ou J, Rothstein J P. 2005. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Physics of Fluids, 17:103606.
    [160]
    Pan Q M, Wang M. 2009. Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes. Acs Applied Materials & Interfaces, 1:420-423.
    [161]
    Pan S J, Kota A K, Mabry J M, Tuteja A. 2013. Superomniphobic surfaces for effective chemical shielding.Journal of the American Chemical Society, 135:578-581.
    [162]
    Papadopoulos P, Deng X, Mammen L, Drotlef D M, Battagliarin G, Li C, Mullen K, Landfester K, del Campo A, Butt H J, Vollmer D. 2012. Wetting on the microscale:Shape of a liquid drop on a microstructured surface at different length scales. Langmuir, 28:8392-8398.
    [163]
    Papadopoulos P, Mammen L, Deng X, Vollmer D, Butt H J. 2013. How superhydrophobicity breaks down.
    [164]
    Proceedings of the National Academy of Sciences of the United States of America, 110:3254-3258.
    [165]
    Patankar N A. 2004a. Mimicking the lotus effect:Influence of double roughness structures and slender pillars. Langmuir, 20:8209-8213.
    [166]
    Patankar N A. 2004b. Transition between superhydrophobic states on rough surfaces. Langmuir, 20:7097-7102.
    [167]
    Patankar N A. 2009. Hydrophobicity of surfaces with cavities:Making hydrophobic substrates from hy-drophilic materials? Journal of Adhesion Science and Technology, 23:413-433.
    [168]
    Patankar N A. 2010. Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach. Langmuir, 26:8941-8945.
    [169]
    Poetes R, Holtzmann K, Franze K, Steiner U. 2010. Metastable underwater superhydrophobicity. Physical Review Letters, 105:166104.
    [170]
    Qian B T, Shen Z Q. 2005. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir, 21:9007-9009.
    [171]
    Quéré D. 2008. Wetting and roughness. Annual Review of Materials Research, 38:71-99.
    [172]
    Quéré D. 2013. Leidenfrost dynamics. Annual Review of Fluid Mechanics, 45:197-215.
    [173]
    Rahn H, Paganelli C V. 1968. Gas exchange in gas gills of diving insects. Respiration Physiology, 5:145-164.
    [174]
    Rathgen H, Mugele F. 2010. Microscopic shape and contact angle measurement at a superhydrophobic surface. Faraday Discussions, 146:49-56.
    [175]
    Ren H X, Chen X, Huang X J, Im M, Kim D H, Lee J H, Yoon J B, Gu N, Liu J H, Choi Y K. 2009. A conven-tional route to scalable morphology-controlled regular structures and their superhydrophobic/hydrophilic properties for biochips application. Lab on a Chip, 9:2140-2144.
    [176]
    Ren W Q. 2014. Wetting transition on patterned surfaces:Transition states and energy barriers. Langmuir, 30:2879-2885.
    [177]
    Reyssat M, Yeomans J M, Quéré D. 2008. Impalement of fakir drops. Europhysics Letters, 81:26006.
    [178]
    Rothstein J P. 2010. Slip on superhydrophobic surfaces. Annual Review of Fluid Mechanics, 42:89-109.
    [179]
    Rykaczewski K, Landin T, Walker M L, Scott J H J, Varanasi K K. 2012. Direct imaging of complex nano-to microscale interfaces involving solid, liquid, and gas phases. Acs Nano, 6:9326-9334.
    [180]
    Sakai M, Song J H, Yoshida N, Suzuki S, Kameshima Y, Nakajima A. 2006. Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Langmuir, 22:4906-4909.
    [181]
    Sakai M, Yanagisawa T, Nakajima A, Kameshima Y, Okada K. 2009. Effect of surface structure on the sustainability of an air layer on superhydrophobic coatings in a water-ethanol mixture. Langmuir, 25:13-16.
    [182]
    Salvadori M C, Cattani M, Oliveira M R S, Teixeira F S, Brown I G. 2010. Design and fabrication of microcavity-array superhydrophobic surfaces. Journal of Applied Physics, 108:024908.
    [183]
    Samaha M A, Ochanda F O, Tafreshi H V, Tepper G C, Gad-el-Hak M. 2011a. In situ, noninvasive characterization of superhydrophobic coatings. Review of Scientific Instruments, 82:045109.
    [184]
    Samaha M A, Tafreshi H V, Gad-el-Hak M. 2011b. Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness. Physics of Fluids, 23:012001.
    [185]
    Samaha M A, Tafreshi H V, Gad-el-Hak M. 2012a. Influence of flow on longevity of superhydrophobic coatings. Langmuir, 28:9759-9766.
    [186]
    Samaha M A, Tafreshi H V, Gad-el-Hak M. 2012b. Sustainability of superhydrophobicity under pressure.Physics of Fluids, 24:112103.
    [187]
    Sbragaglia M, Peters A M, Pirat C, Borkent B M, Lammertink R G H, Wessling M, Lohse D. 2007. Spon-taneous breakdown of superhydrophobicity. Physical Review Letters, 99:156001.
    [188]
    Scardino A, De Nys R, Ison O, O'Connor W, Steinberg P. 2003. Microtopography and antifouling properties of the shell surface of the bivalve molluscs Mytilus galloprovincialis and Pinctada imbricata. Biofouling, 19:221-230.
    [189]
    Scardino A J, Zhang H, Cookson D J, Lamb R N, de Nys R. 2009. The role of nano-roughness in antifouling.Biofouling, 25:757-767.
    [190]
    Shahraz A, Borhan A, Fichthorn K A. 2012. A theory for the morphological dependence of wetting on a physically patterned solid surface. Langmuir, 28:14227-14237.
    [191]
    Shchukin D G, Skorb E, Belova V, Mohwald H. 2011. Ultrasonic cavitation at solid surfaces. Advanced Materials, 23:1922-1934.
    [192]
    Shirtcliffe N J, McHale G, Newton M I, Chabrol G, Perry C C. 2004. Dual-scale roughness produces unusually water-repellent surfaces. Advanced Materials, 16:1929-1932.
    [193]
    Shiu J Y, Chen P. 2007. Addressable protein patterning via switchable superhydrophobic microarrays.Advanced Functional Materials, 17:2680-2686.
    [194]
    Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E. 2007. High friction on a bubble mattress. Nature Materials, 6:665-668.
    [195]
    Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E. 2008. Nanoscale flow on a bubble mattress:Effect of surface elasticity. Physical Review Letters, 100:134501.
    [196]
    Su Y W, Ji B H, Huang Y, Hwang K C. 2010a. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Langmuir, 26:18926-18937.
    [197]
    Su Y W, Ji B H, Zhang K, Gao H J, Huang Y G, Hwang K. 2010b. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Langmuir, 26:4984-4989.
    [198]
    Sun G Y, Gao T L, Zhao X, Zhang H X. 2010. Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching. Journal of Micromechanics and Microengineering, 20:075028.
    [199]
    Tian S B, Li L, Sun W N, Xia X X, Han D, Li J J, Gu C Z. 2012. Robust adhesion of flower-like few-layer graphene nanoclusters. Scientific Reports, 2:511.
    [200]
    Truesdell R, Mammoli A, Vorobieff P, van Swol F, Brinker C J. 2006. Drag reduction on a patterned superhydrophobic surface. Physical Review Letters, 97:044504.
    [201]
    Tsai P C, Lammertink R G H, Wessling M, Lohse D. 2010. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures. Physical Review Letters, 104:116102.
    [202]
    Tsai P C, Pacheco S, Pirat C, Lefferts L, Lohse D. 2009a. Drop impact upon micro-and nanostructured superhydrophobic surfaces. Langmuir, 25:12293-12298.
    [203]
    Tsai P C, Peters A M, Pirat C, Wessling M, Lammertink R G H, Lohse D. 2009b. Quantifying effective slip length over micropatterned hydrophobic surfaces. Physics of Fluids, 21:112002.
    [204]
    Tuteja A, Choi W, Ma M L, Mabry J M, Mazzella S A, Rutledge G C, McKinley G H, Cohen R E. 2007.Designing superoleophobic surfaces. Science, 318:1618-1622.
    [205]
    Vakarelski I U, Marston J O, Chan D Y C, Thoroddsen S T. 2011. Drag reduction by Leidenfrost vapor layers. Physical Review Letters, 106:214501
    [206]
    Vakarelski I U, Patankar N A, Marston J O, Chan D Y C, Thoroddsen S T. 2012. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 489:274-277.
    [207]
    Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras R H A. 2011. Mechanically durable superhydropho-bic surfaces. Advanced Materials, 23:673-678.
    [208]
    Verho T, Korhonen J T, Sainiemi L, Jokinen V, Bower C, Franze K, Franssila S, Andrew P, Ikkala O, Ras R H A. 2012. Reversible switching between superhydrophobic states on a hierarchically structured surface.Proceedings of the National Academy of Sciences of the United States of America, 109:10210-10213.
    [209]
    Vinogradova O I, Belyaev A V. 2011. Wetting, roughness and flow boundary conditions. Journal of Physics-Condensed Matter, 23:184104.
    [210]
    Vinogradova O I, Dubov A L. 2012. Superhydrophobic textures for microfluidics. Mendeleev Communica-tions, 22:229-236.
    [211]
    Voronov R S, Papavassiliou D V, Lee L L. 2006. Boundary slip and wetting properties of interfaces:Corre-lation of the contact angle with the slip length. Journal of Chemical Physics, 124:204701.
    [212]
    Wang X W, Zhao S W, Wang H, Pan T R. 2012. Bubble formation on superhydrophobic-micropatterned copper surfaces. Applied Thermal Engineering, 35:112-119.
    [213]
    Wenzel R N. 1936. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28:988-994.
    [214]
    Whyman G, Bormashenko E. 2011. How to make the Cassie wetting state stable? Langmuir, 27:8171-8176.
    [215]
    Wiedemann S, Plettl A, Walther P, Ziemann P. 2013. Freeze fracture approach to directly visualize wetting transitions on nanopatterned superhydrophobic silicon surfaces:More than a proof of principle. Langmuir, 29:913-919.
    [216]
    Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477:443-447.
    [217]
    Wong T S, Sun T L, Feng L, Aizenberg J. 2013. Interfacial materials with special wettability. Mrs Bulletin, 38:366-371.
    [218]
    Woolford B, Prince J, Maynes D, Webb B W. 2009. Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls. Physics of Fluids, 21:085106
    [219]
    Wu Y W, Hang T, Yu Z Y, Xu L, Li M. 2014. Lotus leaf-like dual-scale silver film applied as a superhy-drophobic and self-cleaning substrate. Chemical Communications, 50:8405-8407.
    [220]
    Wu Z H, Chen H B, Dong Y M, Mao H L, Sun J L, Chen S F, Craig V S J, Hu J. 2008. Cleaning using nanobubbles:Defouling by electrochemical generation of bubbles. Journal of Colloid and Interface Science, 328:10-14.
    [221]
    Xu X M, Vereecke G, Chen C, Pourtois G, Armini S, Verellen N, Tsai W K, Kim D W, Lee E, Lin C Y, Van Dorpe P, Struyf H, Holsteyns F, Moshchalkov V, Indekeu J, De Gendt S. 2014. Capturing wetting states in nanopatterned silicon. Acs Nano, 8:885-893.
    [222]
    Xue Y H, Chu S G, Lü P Y, Duan H L. 2012. Importance of hierarchical structures in wetting stability on submersed superhydrophobic surfaces. Langmuir, 28:9440-9450.
    [223]
    Xue Y H, Lü P Y, Liu Y, Shi Y P, Lin H, Duan H L. 2015. Morphology of gas cavities on patterned hydrophobic surfaces under reduced pressure. Physics of Fluids, 27:092003.
    [224]
    Yamamoto K, Ogata S. 2008. 3-D thermodynamic analysis of superhydrophobic surfaces. Journal of Colloid and Interface Science, 326:471-477.
    [225]
    Yan Y Y, Gao N, Barthlott W. 2011. Mimicking natural superhydrophobic surfaces and grasping the wetting process:A review on recent progress in preparing superhydrophobic surfaces. Advances in Colloid and Interface Science, 169:80-105.
    [226]
    Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L. 2007. Achieving large slip with superhy-drophobic surfaces:Scaling laws for generic geometries. Physics of Fluids, 19:123601.
    [227]
    Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. 2002. Effects of surface structure on the hydropho-bicity and sliding behavior of water droplets. Langmuir, 18:5818-5822.
    [228]
    Young T. 1805. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95:65-87.
    [229]
    Yount D E. 1979. Skins of varying permeability-stabilization mechanism for gas cavitation nuclei. Journal of the Acoustical Society of America, 65:1429-1439.
    [230]
    Zhang G Y, Zhang X, Huang Y, Su Z H. 2013. A surface exhibiting superoleophobicity both in air and in seawater. Acs Applied Materials & Interfaces, 5:6400-6403.
    [231]
    Zhang J P, Seeger S. 2011. Superoleophobic coatings with ultralow sliding angles based on silicone nanofil-aments. Angewandte Chemie-International Edition, 50:6652-6656.
    [232]
    Zhang J H, Wang J M, Zhao Y, Xu L, Gao X F, Zheng Y M, Jiang L. 2008. How does the leaf margin make the lotus surface dry as the lotus leaf floats on water? Soft Matter, 4:2232-2237.
    [233]
    Zhang Q X, Chen Y X, Guo Z, Liu H L, Wang D P, Huang X J. 2013. Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection. Acs Applied Materials & Interfaces, 5:10633-10642.
    [234]
    Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q. 2008. Superhydrophobic surfaces:From structural control to functional application. Journal of Materials Chemistry, 18:621-633.
    [235]
    Zhao J P, Du X D, Shi X H. 2007. Experimental research on frication-reduction with super-hydrophobic surfaces. Journal of Marine Science and Application, 6:58-61.
    [236]
    Zheng L J, Wu X D, Lou Z, Wu D. 2004. Superhydrophobicity from microstructured surface. Chinese Science Bulletin, 49:1779-1787.
    [237]
    Zheng Q S, Yu Y, Zhao Z H. 2005. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir, 21:12207-12212.
    [238]
    Zhou M, Li J, Wu C X, Zhou X K, Cai L. 2011. Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests(CNTs). Soft Matter, 7:4391-4396.
    [239]
    Zhu H, Guo Z G, Liu W M. 2014. Adhesion behaviors on superhydrophobic surfaces. Chemical Communi-cations, 50:3900-3913.
    [240]
    Zhu M F, Zuo W W, Yu H, Yang W, Chen Y M. 2006. Superhydrophobic surface directly created by electrospinning based on hydrophilic material. Journal of Materials Science, 41:3793-3797.
    [241]
    Zhu Y, Zhang J C, Zheng Y M, Huang Z B, Feng L, Jiang L. 2006. Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive enviromnents. Advanced Functional Materials, 16:568-574.
    [242]
    Zwaan E, Le Gac S, Tsuji K, Ohl C D. 2007. Controlled cavitation in microfluidic systems. Physical Review Letters, 98:254501.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3483) PDF downloads(2208) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return