Citation: | WU Bin, ZHANG Chunli, ZHANG Chuanzeng, CHEN Weiqiu. Theory of electroelasticity accounting for biasing fields: Retrospect, comparison and perspective[J]. Advances in Mechanics, 2016, 46(1): 201601. doi: 10.6052/1000-0992-15-020 |
[1] |
苏益品, 陈伟球. 2014. 偏场作用下不可压缩软电弹性圆柱壳的轴对称波动. 应用力学学报, 31: 7-13 (Su Y P, Chen W Q. 2014. Axisymmetric waves in incompressible soft electroactive cylindrical shells subject to a biasing field. Chinese Journal of Applied Mechanics, 31: 7-13).
|
[2] |
锁志刚. 2011. 介电高弹聚合物理论. 力学进展, 41: 730-750 (Suo Z G. 2010. Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23: 549-578).
|
[3] |
杨庆生, 魏巍, 马连华. 2014. 智能软材料热-电-化-力学耦合问题的研究进展. 力学进展, 44: 201404. (Yang Q S, Wei W, Ma L H. 2014. Research advances in thermo-electro-chemo-mechanical coupling problem for intelligent soft materials. Advances in Mechanics, 44: 201404).
|
[4] |
赵晓鹏, 尹剑波. 2011. 电场调控的智能软材料. 北京: 科学出版社(Zhao X P, Yin J B. 2011. Smart Soft Materials Tuned by Electric Fields. Beijing: Science Press).
|
[5] |
周伟建, 陈伟球. 2015. 表面效应对偏场下介电高弹体表面波传播的影响. 应用数学和力学, 36: 119-127 (Zhou W J, Chen W Q. 2015. Surface effect on propagation of surface waves in a dielectric elastomer half space subject to biasing fields. Applied Mathematics and Mechanics, 36: 119-127).
|
[6] |
Arruda E M, Boyce M C. 1993. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41: 389-412.
|
[7] |
Baesu E, Fortune D, Soós E. 2003. Incremental behaviour of hyperelastic dielectrics and piezoelectric crystals. Zeitschrift fÄur angewandte Mathematik und Physik, 54: 160-178.
|
[8] |
Bassett C A L, Becker R O. 1962. Generation of electric potentials by bone in response to mechanical stress. Science, 137: 1063-1064.
|
[9] |
Bauer S. 2006. Piezo-, pyro-and ferroelectrets: Soft transducer materials for electromechanical energy conversion. IEEE Transactions on Dielectrics and Electrical Insulation, 13: 953-962.
|
[10] |
Baumhauer J C, Tiersten H F. 1972. Nonlinear electroelastic equations for small fields superposed on a bias.Journal of the Acoustical Society of America, 54: 1017-1034.
|
[11] |
Bayat A, Gordaninejad F. 2015. Bandgaps of a soft magneitorheological phononic crystal. Journal of Vibration and Acoustics, 137: 011011.
|
[12] |
Bazant Z. 1971. A correlation study of formulations of incremental deformation and stability of continuous bodies. Journal of Applied Mechanics, 38: 919-928.
|
[13] |
Bercoff J, Tanter M, Fink M. 2004. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51: 396-409.
|
[14] |
Bertoldi K, Boyce M C. 2008a. Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Physical Review B, 77: 052105.
|
[15] |
Bertoldi K, Boyce M C. 2008b. Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations. Physical Review B, 78: 184107.
|
[16] |
Bertoldi K, Gei M. 2011. Instabilities in multilayered soft dielectrics. Journal of the Mechanics and Physics of Solids, 59: 18-42.
|
[17] |
Bigoni D. 2012. Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability, Cambridge: Cam-bridge University Press.
|
[18] |
Biot M A. 1965. Mechanics of Incremental Deformations: Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications to Finite Strain. New York: Wiley.
|
[19] |
Boyce M C, Arruda E M. 2000. Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 73: 504-523.
|
[20] |
Brun M, Colquitt D J, Jones I S, Movchan A B, Movchan N V. 2014. Transformation cloaking and radial approximations for fiexural waves in elastic plates. New Journal of Physics, 16: 093020.
|
[21] |
Bustamante R. 2009. Transversely isotropic non-linear electro-active elastomers. Acta Mechanica, 206: 237-259.
|
[22] |
Bustamante R, Dorfmann A, Ogden R W. 2009a. Nonlinear electroelastostatics: A variational framework. Zeitschrift fÄur angewandte Mathematik und Physik, 60: 154-177.
|
[23] |
Bustamante R, Dorfmann A, Ogden R W. 2009b. On electric body forces and Maxwell stresses in nonlinearly electroelastic solids. International Journal of Engineering Science, 47: 1131-1141.
|
[24] |
Bustamante R, Ogden R W. 2013. Nonlinear magnetoelastostatics: Energy functionals and their second variations. Mathematics and Mechanics of Solids, 18: 760-772.
|
[25] |
Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. 2004. Fast liquid-crystal elastomer swims into the dark. Nature Materials, 3: 307-310.
|
[26] |
Campbell C. 1998. Surface Acoustic Wave Devices for Mobile and Wireless Communications. Boston: Academic Press.
|
[27] |
Carpi F, Rossi D, Kornbluh R, Pelrine R, Sommer-Larsen P. 2011. Dielectric Elastomers as Electromechani-cal Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. New York: Elsevier.
|
[28] |
Chai J F, Wu T T. 1996. Propagation of surface waves in a prestressed piezoelectric material. Journal of the Acoustical Society of America, 100: 2112-2122.
|
[29] |
Chee C Y, Tong L, Steven G P. 1998. A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. Journal of Intelligent Material Systems and Structures, 9: 3-19.
|
[30] |
ChenWQ, Dai H H. 2012. Waves in pre-stretched incompressible soft electroactive cylinders: Exact solution. Acta Mechanica Solida Sinica, 25: 530-541.
|
[31] |
Cho Y, Yamanouchi K. 1987. Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate. Journal of Applied Physics, 61: 875-887.
|
[32] |
Colquitt D J, Brun M, Gei M, Movchan A B, Movchan N V, Jones I S. 2014. Transformation elastodynamics and cloaking for fiexural waves. Journal of the Mechanics and Physics of Solids, 72: 131-143.
|
[33] |
Deng Q, Liu L, Sharma P. 2013. Flexoelectricity and electrets in soft materials and biological membranes. Journal of the Mechanics and Physics of Solids, 62: 209-227.
|
[34] |
Destrade M, Gilchrist M D, Ogden R W. 2010a. Third-and fourth-order elasticities of biological soft tissues. Journal of the Acoustical Society of America, 127: 2103-2106.
|
[35] |
Destrade M, Gilchrist M D, Saccomandi G. 2010b. Third-and fourth-order constants of incompressible soft solids and the acousto-elastic effect. Journal of the Acoustical Society of America, 127: 2759-2763.
|
[36] |
Diao J, Gall K, Dunn M L, Zimmerman J A. 2006. Atomistic simulations of the yielding of gold nanowires. Acta Materialia, 54: 643-653.
|
[37] |
Díaz-Calleja R, Riande E, Sanchis M J. 2008. On electromechanical stability of dielectric elastomers. Applied Physics Letters, 93: 101902.
|
[38] |
Dingreville R. 2007. Modeling and characterization of the elastic behavior of interfaces in nanostructured materials: From an atomistic description to a continuum approach. [PhD Dissertation]. Atlanta: Georgia Institute of Technology.
|
[39] |
Dingreville R, Hallil A, Berbenni S. 2014. From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses. Journal of the Mechanics and Physics of Solids, 72: 40-60.
|
[40] |
Domenjoud M, Lematre M, Gratton M, Lethiecq M, Tran-Huu-Hue L-P. 2013. Theoretical and experimen-tal study of the electroacoustic behavior of lithium niobate under an initial mechanical stress. IEEE
|
[41] |
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60: 2219-2224.
|
[42] |
Dorfmann A, Ogden R W. 2005. Nonlinear electroelasticity. Acta Mechanica, 174: 167-183.
|
[43] |
Dorfmann A, Ogden R W. 2006. Nonlinear electroelastic deformations. Journal of Elasticity, 82: 99-127.
|
[44] |
Dorfmann A, Ogden R W. 2010a. Electroelastic waves in a finitely deformed electroactive material. IMA Journal of Applied Mathematics, 75: 603-636.
|
[45] |
Dorfmann A, Ogden R W. 2010b. Nonlinear electroelastostatics: Incremental equations and stability. In-ternational Journal of Engineering Science, 48: 1-14.
|
[46] |
Dorfmann L, Ogden R W. 2014a. Instabilities of an electroelastic plate. International Journal of Engineering Science, 77: 79-101.
|
[47] |
Dorfmann L, Ogden R W. 2014b. Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. New
|
[48] |
York: Springer.
|
[49] |
Doyley M M. 2012. Model-based elastography: A survey of approaches to the inverse elasticity problem.
|
[50] |
Physics in Medicine and Biology, 57: R35-R73.
|
[51] |
Du J, Jin X, Wang J. 2007a. Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta Mechanica, 192: 169-189.
|
[52] |
Du J, Jin X, Wang J, Zhou Y. 2007b. SH wave propagation in a cylindrically layered piezoelectric structure with initial stress. Acta Mechanica, 191: 59-74.
|
[53] |
Du J, Xian K, Wang J, Yong Y-K. 2008. Propagation of Love waves in prestressed piezoelectric layered structures loaded with viscous liquid. Acta Mechanica Solida Sinica, 21: 542-548.
|
[54] |
Duquennoy M, Devos D, Ouaftouh M, Lochegnies D, Roméro E. 2006. Ultrasonic evaluation of residual stresses in fiat glass tempering: Comparing experimental investigation and numerical modeling. Journal of the Acoustical Society of America, 119: 3773-3781.
|
[55] |
Duquennoy M, Ouaftouh M, Deboucq M, Lefebvre J-E, Jenot F, Ourak M. 2012. Infiuence of a superficial field of residual stress on the propagation of surface waves-Applied to the estimation of the depth of the superficial stressed zone. Applied Physics Letters, 101: 234104.
|
[56] |
Duquennoy M, Ouaftouh M, Deboucq M, Lefebvre J-E, Jenot F, Ourak M. 2013. Characterization of micrometric and superficial residual stresses using high frequency surface acoustic waves generated by interdigital transducers. Journal of the Acoustical Society of America, 134: 4360-4371.
|
[57] |
Duquennoy M, Ouaftouh M, Ourak M. 1999a. Determination of stresses in aluminium alloy using optical detection of Rayleigh waves. Ultrasonics, 37: 365-372.
|
[58] |
Duquennoy M, Ouaftouh M, Ourak M. 1999b. Ultrasonic evaluation of stresses in orthotropic materials using Rayleigh waves. NDT&E International, 32: 189-199.
|
[59] |
Duquennoy M, Ouaftouh M, Ourak M, Jenot F. 2002. Theoretical determination of Rayleigh wave acous-toelastic coe±cients: Comparison with experimental values. Ultrasonics, 39: 575-583.
|
[60] |
Eliseev E A, Morozovska A N, Glinchuk M D, Blinc R. 2009. Spontaneous fiexoelectric/fiexomagnetic effect in nanoferroics. Physical Review B, 79: 165433.
|
[61] |
Eliseev E A, Morozovska A N, Glinchuk M D, Zaulychny B Y, Skorokhod V V, Blinc R. 2010. Surface-induced piezomagnetic, piezoelectric, and linear magnetoelectric effects in nanosystems. Physical Review
|
[62] |
B, 82: 085408.
|
[63] |
Ericksen J L. 2007. Theory of elastic dielectrics revisited. Archive for Rational Mechanics and Analysis, 183: 299-313.
|
[64] |
Eringen A, Maugin G. 1990. Electrodynamics of Continua, Vol. 1: Foundations and Solid Media. New
|
[65] |
York: Springer-Verlag.
|
[66] |
Foo C C, Cai S Q, Koh S J A, Bauer S, Suo Z. 2012. Model of dissipative dielectric elastomers. Journal of
|
[67] |
Applied Physics, 111: 034102.
|
[68] |
Fox J W, Goulbourne N C. 2008. On the dynamic electromechanical loading of dielectric elastomer mem-branes. Journal of the Mechanics and Physics of Solids, 56: 2669-2686.
|
[69] |
Fukada E. 1968. Piezoelectricity in polymers and biological materials. Ultrasonics, 6: 229-234.
|
[70] |
Fung Y C. 1990. Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag.
|
[71] |
Gafka D, Tani J. 1993. Sensitivity of surface acoustic wave velocity in lithium niobate to electric field or biasing stress. Journal of Applied Physics, 73: 7145-7151.
|
[72] |
Gao L, Parker K J, Lerner R M, Levinson S F. 1996. Imaging of the elastic properties of tissue|A review.
|
[73] |
Ultrasound in Medicine & Biology, 22: 959-977.
|
[74] |
Gei M, Movchan A B, Bigoni D. 2009. Band-gap shift and defect-induced annihilation in prestressed elastic structures. Journal of Applied Physics, 105: 063507.
|
[75] |
Gei M, Roccabianca S, Bacca M. 2011. Controlling bandgap in electroactive polymer-based structures.
|
[76] |
IEEE/ASME Transactions on Mechatronics, 16: 102-107.
|
[77] |
Gent A N. 1996. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69: 59-61.
|
[78] |
Gennisson J L, Rénier M, Catheline S, Barriµere C, Bercoff J, Tanter M, Fink M. 2007. Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic radiation force. Journal of the
|
[79] |
Acoustical Society of America, 122: 3211-3219.
|
[80] |
Gennisson J L, De±eux T, Macé E, Montaldo G, Fink M, Tanter M. 2010. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound in
|
[81] |
Medicine & Biology, 36: 789-801.
|
[82] |
Goncu F, Luding S, Bertoldi K. 2012. Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal. Journal of the Acoustical Society of America, 131: 475-480.
|
[83] |
Hashimoto K Y. 2000. Surface Acoustic Wave Devices in Telecommunications. Berlin: Springer.
|
[84] |
He X, Yong H, Zhou Y. 2011. The characteristics and stability of a dielectric elastomer spherical shell with a thick wall. Smart Materials and Structures, 20: 055016.
|
[85] |
Hoger A. 1993. The constitutive equation for finite deformations of a transversely isotropic hyperelastic material with residual stress. Journal of Elasticity, 33: 107-118.
|
[86] |
Holzapfel G A. 2000. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester:
|
[87] |
Wiley.
|
[88] |
Hong W. 2011. Modeling viscoelastic dielectrics. Journal of the Mechanics and Physics of Solids, 59: 637-650.
|
[89] |
Hu Y T, Yang J S, Jiang Q. 2002. On modeling of extension and fiexure response of electroelastic shells under biasing fields. Acta Mechanica, 156: 163-178.
|
[90] |
Hu Y T, Yang J S, Jiang Q. 2004. Surface waves in electrostrictive materials under biasing fields. Zeitschrift fÄur angewandte Mathematik und Physik, 55: 678-700.
|
[91] |
Huang J S, Lu T Q, Zhu J, Clarke D R, Suo Z. 2012. Large, uni-directional actuation in dielectric elastomers achieved by fiber stiffening. Applied Physics Letters, 100: 211901.
|
[92] |
Huang W J, Sun R, Tao J, Menard L D, Nuzzo R G, Zuo J M. 2008. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nature Materials, 7: 308-313.
|
[93] |
Huang Y, Shen X D, Zhang C L, Chen W Q. 2014. Mechanically tunable band gaps in compressible soft phononic laminated composites with finite deformation. Physics Letters A, 378: 2285-2289.
|
[94] |
Huang Y, Zhang C L, Chen W Q. 2014. Tuning band structures of two-dimensional phononic crystals with biasing fields. Journal of Applied Mechanics, 81: 091008.
|
[95] |
Jacob X, Catheline S, Gennisson J L, Barriµere C, Royer D, Fink M. 2007. Nonlinear shear wave interaction in soft solids. Journal of the Acoustical Society of America, 122: 1917-1926.
|
[96] |
Jang J H, Koh C Y, Bertoldi K, Boyce M C, Thomas E L. 2009. Combining pattern instability and shape-memory hysteresis for phononic switching. Nano Letters, 9: 2113-2119.
|
[97] |
Jiang Y, Li G Y, Qiang L X, Hu X D, Liu D, Liang S, Cao Y P. 2015. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: Inverse method, ex vivo and in vivo experiments. Medical Image Analysis, 20: 97-111.
|
[98] |
Junge M, Qu J, Jacobs L J. 2006. Relationship between Rayleigh wave polarization and state of stress.Ultrasonics, 44: 233-237.
|
[99] |
Khaled W, Ermert H. 2008. Ultrasonic strain imaging and reconstructive elastography for biological tissue.In: Artmann G M, Chien S. Bioengineering in Cell and Tissue Research, Springer, New York, 103-132.
|
[100] |
Kosinski J, Pastore R A, Yang J S, Yang X M, Turner J A. 2002. Second-order frequency shifts in crystal resonators under relatively large biasing fields. In: Proc. of IEEE International Frequency Control Symposium, New Orleans LA, 103-110.
|
[101] |
Kovetz A. 2000. Electromagnetic Theory. Oxford: Oxford University Press.
|
[102] |
Latorre-Ossa H, Gennisson J L, De Brosses E, Tanter M. 2012. Quantitative imaging of nonlinear shear mod-ulus by combining static elastography and shear wave elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59: 833-839.
|
[103] |
Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, KrÄuger P, LÄosche M, Kremer F. 2001. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature, 410: 447-450.
|
[104] |
Lematre M, Domenjoud M, Tran-Huu-Hue L P. 2011. Exact second order formalism for the study of electro-acoustic properties in piezoelectric structures under an initial mechanical stress. Ultrasonics, 51: 898-910.
|
[105] |
Lematre M, Feuillard G, Clézio E L, Lethiecq M. 2006a. Modeling of the infiuence of a prestress gradient on guided wave propagation in piezoelectric structures. Journal of the Acoustical Society of America, 120: 1964-1975.
|
[106] |
Lematre M, Feuillard G, Delaunay T, Lethiecq M. 2006b. Modeling of ultrasonic wave propagation in inte-grated piezoelectric structures under residual stress. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53: 685-696.
|
[107] |
Leng J, Liu L, Liu Y, Yu K, Sun S. 2009. Electromechanical stability of dielectric elastomer. Applied Physics Letters, 94: 211901.
|
[108] |
Li B, Chen H, Qiang J, Hu S, Zhu Z, Wang Y. 2011. Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. Journal of Physics D: Applied Physics, 44: 155301.
|
[109] |
Li B, Liu L, Suo Z. 2011. Extension limit, polarization saturation, and snap-through instability of dielectric elastomers. International Journal of Smart and Nano Materials, 2: 59-67.
|
[110] |
Liang H, Upmanyu M, Huang H. 2005. Size-dependent elasticity of nanowires: Nonlinear effects. Physical Review B, 71: 241403.
|
[111] |
Lines M E, Glass A M. 1977. Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon Press.
|
[112] |
Liu H, Kuang Z B, Cai Z M. 2003a. Propagation of Bleustein-Gulyaev waves in a prestressed layered piezoelectric structure. Ultrasonics, 41: 397-405.
|
[113] |
Liu H, Kuang Z B, Cai Z M, Wang T J, Wang Z K. 2003b. Propagation of surface acoustic waves in prestressed anisotropic layered piezoelectric structures. Acta Mechanica Solida Sinica, 16: 16-23.
|
[114] |
Liu H, Lee J J, Cai Z M. 2004. Analysis of nonlinear acoustoelastic effect of surface acoustic waves in laminated structures by transfer matrix method. Mechanics Research Communications, 31: 667-675.
|
[115] |
Liu H, Shin K C, Lee J J, Cai Z M. 2004. Nonlinear acoustoelastic interactions of Lamb waves with LiNbO3 films deposited on sapphire substrates. Key Engineering Materials, 261: 263-268.
|
[116] |
Liu H, Wang T J, Wang Z K, Kuang Z B. 2002a. Effect of a biasing electric field on the propagation of antisymmetric Lamb waves in piezoelectric plates. International Journal of Solids and Structures, 39: 1777-1790.
|
[117] |
Liu H, Wang T J, Wang Z K, Kuang Z B. 2002b. Effect of a biasing electric field on the propagation of symmetric Lamb waves in piezoelectric plates. International Journal of Solids and Structures, 39: 2031-2049.
|
[118] |
Liu L P. 2013a. An energy formulation of continuum magneto-electro-elasticity with applications. Journal of the Mechanics and Physics of Solids, 63: 451-480.
|
[119] |
Liu L P. 2013b. On energy formulations of electrostatics for continuum media. Journal of the Mechanics and Physics of Solids, 61: 968-990.
|
[120] |
Liu L W, Liu Y J, Li B, Yang K, Li T F, Leng J S. 2011. Thermo-electro-mechanical instability of dielectric elastomers. Smart Materials and Structures, 20: 075004.
|
[121] |
Liu L W, Liu Y J, Luo X J, Li B, Leng J S. 2012. Electromechanical instability and snap-through instability of dielectric elastomers undergoing polarization saturation. Mechanics of Materials, 55: 60-72.
|
[122] |
Liu Y M, Zhang Y H, Chow M J, Chen Q N, Li J Y. 2012. Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy. Physical Review Letters, 108: 078103.
|
[123] |
Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z. 2010. Highly sensitive fiexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 9: 859-864.
|
[124] |
Maugin G A. 1988. Continuum Mechanics of Electromagnetic Solids. Amsterdam: North-Holland.
|
[125] |
McCarty L S, Whitesides G M. 2008. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angewandte Chemie International Edition, 47: 2188-2207.
|
[126] |
McMeeking R M, Landis C M. 2005. Electrostatic forces and stored energy for deformable dielectric mate-rials. Journal of Applied Mechanics, 72: 581-590.
|
[127] |
Mironov M A, Pyatakov P A, Konopatskaya I I, Clement G T, Vykhodtseva N I. 2009. Parametric excitation of shear waves in soft solids. Acoustical Physics, 55: 567-574.
|
[128] |
Mooney M. 1940. A theory of large elastic deformation. Journal of Applied Physics, 11:582-592.
|
[129] |
Narayanaswamy O S. 1978. Stress and structural relaxation in tempering glass. Journal of the American Ceramic Society, 61: 146-152.
|
[130] |
Nelson D F. 1978. Theory of nonlinear electroacoustics of dielectric, piezoelectric, and pyroelectric crystals. Journal of the Acoustical Society of America, 63: 1738-1748.
|
[131] |
Nelson D F. 1979. Electric, Optic, and Acoustic Interactions in Dielectrics. New York: Wiley.
|
[132] |
Nelson D F, Lax M. 1976. Linear elasticity and piezoelectricity in pyroelectrics. Physical Review B, 13: 1785-1796.
|
[133] |
Norris A N, Amirkulova F A, ParnellWJ. 2014. Active elastodynamic cloaking. Mathematics and Mechanics of Solids, 19: 603-625.
|
[134] |
Norris A N, Parnell W J. 2012 Hyperelastic cloaking theory: Transformation elasticity with pre-stressed solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 468: 2881-2903.
|
[135] |
Norris A N, Shuvalov A L. 2011. Elastic cloaking theory. Wave Motion, 48: 525-538.
|
[136] |
O'Brien W D. 2007. Ultrasound-biophysics mechanisms. Progress in Biophysics and Molecular Biology, 93: 212-255.
|
[137] |
O'Halloran A, O'Malley F, McHugh P. 2008. A review on dielectric elastomer actuators, technology, appli-cations, and challenges. Journal of Applied Physics, 104: 071101.
|
[138] |
Ogden R W. 1997. Nonlinear Elastic Deformations. New York: Dover.
|
[139] |
Ogden R W. 2009. Incremental elastic motions superimposed on a finite deformation in the presence of an electromagnetic field. International Journal of Non-Linear Mechanics, 44: 570-580.
|
[140] |
Ophir J, Alam S K, Garra B, Kallel F, Konofagou E, Krouskop T, Varghese T. 1999. Elastography: Ul-trasonic estimation and imaging of the elastic properties of tissues. Proceedings of the Institution of
|
[141] |
Mechanical Engineers, Part H: Journal of Engineering in Medicine, 213: 203-233.
|
[142] |
Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. 1991. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging, 13: 111-134.
|
[143] |
Palma A, Palmieri L, Socino G, Verona E. 1985a. Acoustic Lamb wave-electric field nonlinear interaction in YZ LiNbO3 plates. Applied Physics Letters, 46: 25-27.
|
[144] |
Palma A, Palmieri L, Socino G, Verona E. 1985b. Lamb-wave electroacoustic voltage sensor. Journal of Applied Physics, 58: 3265-3267.
|
[145] |
Palmieri L, Socino G, Verona E. 1986. Electroelastic effect in layer acoustic mode propagation along ZnO films on Si substrates. Applied Physics Letters, 49: 1581-1583.
|
[146] |
Palmieri L, Socino G, Verona E, Tran H T, Marini A. 1988. Nonlinear electroacoustic interaction between a bias electric field and acoustic Lamb modes in LiNbO3 plates. Journal of Applied Physics, 64: 1033-1039.
|
[147] |
Pan X H, Yu S W, Feng X Q. 2011. A continuum theory of surface piezoelectricity for nanodielectrics. Science China Physics, Mechanics and Astronomy, 54: 564-573.
|
[148] |
Pao Y H. 1978. Electromagnetic forces in deformable continua. In: Nemat-Nasser S, ed. Mechanics Today, Vol. 4, Pergamon Press, Oxford, 209-306.
|
[149] |
Pao Y H, Sachse W, Fukuoka H. 1984. Acoustoelasticity and ultrasonic measurements of residual stresses. In: Mason W P, Thurston R N, ed. Physical Acoustics, Vol. XVII, Academic Press, New York, 61-143.
|
[150] |
Parnell W J. 2012. Nonlinear pre-stress for cloaking from antiplane elastic waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 468: 563-580.
|
[151] |
Parnell W J, Norris A N, Shearer T. 2012. Employing pre-stress to generate finite cloaks for antiplane elastic waves. Applied Physics Letters, 100: 171907.
|
[152] |
Parnell W J, Shearer T. 2013. Antiplane elastic wave cloaking using metamaterials, homogenization and hyperelasticity. Wave Motion, 50: 1140-1152.
|
[153] |
Pelrine R, Kornbluh R, Pei Q B, Joseph J. 2000. High-speed electrically actuated elastomers with strain greater than 100%. Science, 287: 836-839.
|
[154] |
Qian Z, Jin F, Kishimoto K, Wang Z. 2004a. Effect of initial stress on the propagation behavior of SH-waves in multilayered piezoelectric composite structures. Sensors and Actuators A: Physical, 112: 368-375.
|
[155] |
Qian Z, Jin F, Wang Z, Kishimoto K. 2004b. Love waves propagation in a piezoelectric layered structure with initial stresses. Acta Mechanica, 171: 41-57.
|
[156] |
Rao S S, Sunar M. 1994. Piezoelectricity and its use in disturbance sensing and control of fiexible structures: A survey. Applied Mechanics Reviews, 47: 113-123.
|
[157] |
Rénier M, Gennisson J L, Barrire C, Royer D, Fink M. 2008. Fourth-order shear elastic constant assessment in quasi-incompressible soft solids. Applied Physics Letters, 93: 101912.
|
[158] |
Rinaldi C, Brenner H. 2002. Body versus surface forces in continuum mechanics: Is the Maxwell stress tensor a physically objective Cauchy stress? Physical Review E, 65: 036615.
|
[159] |
Rivlin R S. 1948. Large elastic deformations of isotropic materials. IV. further developments of the gen-eral theory. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 241: 379-397.
|
[160] |
Rodriguez E K, Hoger A, McCulloch A D. 1994. Stress-dependent finite growth in soft elastic tissues. Journal of Biomechanics, 27: 455-467.
|
[161] |
Rosset S, Shea H R. 2013. Flexible and stretchable electrodes for dielectric elastomer actuators. Applied Physics A, 110: 281-307.
|
[162] |
Rudykh S, Boyce M C. 2014. Transforming wave propagation in layered media via instability-induced interfacial wrinkling.Physical Review Letters, 112: 034301.
|
[163] |
Sandrin L, Tanter M, Catheline S, Fink M. 2002a. Shear modulus imaging with 2-D transient elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49: 426-435.
|
[164] |
Sandrin L, Tanter M, Gennisson J L, Catheline S, Fink M. 2002b. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49: 436-446.
|
[165] |
Saravanan U. 2008. Representation for stress from a stressed reference configuration. International Journal of Engineering Science, 46: 1063-1076.
|
[166] |
Sarvazyan A, Hall T J, Urban M W, Fatemi M, Aglyamov S R, Garra B S. 2011. An overview of elastography-An emerging branch of medical imaging. Current Medical Imaging Reviews, 7: 255-282.
|
[167] |
Shams M, Destrade M, Ogden R W. 2011. Initial stresses in elastic solids: Constitutive laws and acoustoe-lasticity. Wave Motion, 48: 552-567.
|
[168] |
Shams M, Ogden R W. 2014. On Rayleigh-type surface waves in an initially stressed incompressible elastic solid. IMA Journal of Applied Mathematics, 79: 360-376.
|
[169] |
Shan S, Kang S H, Wang P, Qu C, Shian S, Chen E R, Bertoldi K. 2014. Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. Advanced Functional Materials, 24: 4935-4942.
|
[170] |
Shmuel G. 2013a. Axisymmetric wave propagation in finitely deformed dielectric elastomer tubes. Proceed-ings of the Royal Society A: Mathematical, Physical and Engineering Science, 469: 20130071.
|
[171] |
Shmuel G. 2013b. Electrostatically tunable band gaps in finitely extensible dielectric elastomer fiber com-posites. International Journal of Solids and Structures, 50: 680-686.
|
[172] |
Shmuel G, deBotton G. 2012. Band-gaps in electrostatically controlled dielectric laminates subjected to incremental shear motions. Journal of the Mechanics and Physics of Solids, 60: 1970-1981.
|
[173] |
Shmuel G, Gei M, deBotton G. 2012. The Rayleigh-Lamb wave propagation in dielectric elastomer layers subjected to large deformations. International Journal of Non-Linear Mechanics, 47: 307-316.
|
[174] |
Simionescu P O. 2000. The infiuence of initial fields on wave propagation in piezoelectric crystals. Interna-tional Journal of Applied Electromagnetics and Mechanics, 12: 241-251.
|
[175] |
Simionescu P O. 2001. Progressive wave propagation in the meridian plane of a 6 mm-type piezoelectric crystal subject to initial fields. Mathematics and Mechanics of Solids, 6: 661-670.
|
[176] |
Simionescu P O. 2002. Wave propagation in cubic crystals subject to initial mechanical and electric fields. Zeitschrift fÄur angewandte Mathematik und Physik, 53: 1038-1051.
|
[177] |
Simionescu P O. 2005. Attenuated wave propagation on a face of a cubic crystal subject to initial electro-mechanical fields. International Journal of Applied Electromagnetics and Mechanics, 22: 111-120.
|
[178] |
Simionescu P O. 2007. Propagation of attenuated waves along an edge of a cubic crystal subject to initial electro-mechanical fields. Mathematics and Mechanics of Solids, 12: 107-118.
|
[179] |
Simionescu P O, Ana I. 2009. On the coupling of guided waves propagation in piezoelectric crystals subject to initial fields. Mathematics and Mechanics of Solids, 14: 502-513.
|
[180] |
Simionescu P O, Sos E. 2001. Wave propagation in piezoelectric crystals subjected to initial deformations and electric fields. Mathematics and Mechanics of Solids, 6: 437-445.
|
[181] |
Singh B. 2010. Wave propagation in a prestressed piezoelectric half-space. Acta Mechanica, 211: 337-344.
|
[182] |
Sinha B K, Tiersten H F. 1979. On the infiuence of a fiexural biasing state on the velocity of piezoelectric surface waves. Wave Motion, 1: 37-51.
|
[183] |
Smith G F, Smith M M, Rivlin R S. 1963. Integrity bases for a symmetric tensor and a vector | The crystal classes. Archive for Rational Mechanics and Analysis, 12: 93-133.
|
[184] |
Son M S, Kang Y J. 2011. The effect of initial stress on the propagation behavior of SH waves in piezoelectric coupled plates. Ultrasonics, 51: 489-495.
|
[185] |
Sos E. 1996. Stability, resonance and stress concentration in prestressed piezoelectric crystals containing a crack. International Journal of Engineering Science, 34: 1647-1673.
|
[186] |
Spencer A J M. 1971. Theory of invariants. In: Eringen A C, ed. Continuum Physics, Vol. 1, Academic Press, New York, 292-307.
|
[187] |
Su J, Kuang Z B, Liu H. 2005. Love wave in ZnO/SiO2/Si structure with initial stresses. Journal of Sound and Vibration, 286: 981-999.
|
[188] |
Sunar M, Rao S S. 1999. Recent advances in sensing and control of fiexible structures via piezoelectric materials technology. Applied Mechanics Reviews, 52: 1-16.
|
[189] |
Suo Z, Zhao X, Greene W H. 2008. A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 56: 467-486.
|
[190] |
Tagarielli V L, Hildick-Smith R, Huber J E. 2012. Electro-mechanical properties and electrostriction response of a rubbery polymer for EAP applications. International Journal of Solids and Structures, 49: 3409-3415.
|
[191] |
Thomsen D L, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna B R. 2001. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules, 34: 5868-5875.
|
[192] |
Thurston R, Brugger K. 1964. Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Physical Review, 133: A1604.
|
[193] |
Tiersten H F. 1969. Linear Piezoelectric Plate Vibrations. New York: Plenum.
|
[194] |
Tiersten H F. 1971. On the nonlinear equations of thermo-electroelasticity. International Journal of Engi-neering Science, 9: 587-604.
|
[195] |
Tiersten H F. 1975. Nonlinear electroelastic equations cubic in the small field variables. Journal of the Acoustical Society of America, 57: 660-666.
|
[196] |
Tiersten H F. 1981. Electroelastic interactions and the piezoelectric equations. Journal of the Acoustical Society of America, 70: 1567-1576.
|
[197] |
Tiersten H F. 1995. On the accurate description of piezoelectric resonators subject to biasing deformations.International Journal of Engineering Science, 33: 2239-2259.
|
[198] |
Tiersten H F, Sinha B K, Meeker T R. 1981. Intrinsic stress in thin films deposited on anisotropic substrates and its infiuence on the natural frequencies of piezoelectric resonators. Journal of Applied Physics, 52: 5614-5624.
|
[199] |
Toupin R A. 1956. The elastic dielectric. Journal of Rational Mechanics and Analysis, 5: 849-915.
|
[200] |
Toupin R A. 1963. A dynamical theory of elastic dielectrics. International Journal of Engineering Science, 1: 101-126.
|
[201] |
Treloar L R G. 1975. The Physics of Rubber Elasticity. Oxford: Oxford University Press.
|
[202] |
Trimarco C. 2009. On the Lagrangian electrostatics of elastic solids. Acta Mechanica, 204: 193-201.
|
[203] |
Uchino K. 1997. Piezoelectric Actuators and Ultrasonic Motors. Boston: Kluwer Academic Publishers.
|
[204] |
Vertechy R, Frisoli A, Bergamasco M, Carpi F, Frediani G, De Rossi, D. 2012. Modeling and experimental validation of buckling dielectric elastomer actuators. Smart Materials and Structures, 21: 094005.
|
[205] |
Voltairas P, Fotiadis D, Massalas C. 2003. A theoretical study of the hyperelasticity of electro-gels. Pro-ceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459: 2121-2130.
|
[206] |
Wang J S, Evans A G. 1998. Measurement and analysis of buckling and buckle propagation in compressed oxide layers on superalloy substrates. Acta Materialia, 46: 4993-5005.
|
[207] |
Wang P, Casadei F, Shan S, Weaver J C, Bertoldi K. 2014. Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113: 014301.
|
[208] |
Wang P, Shim J, Bertoldi K. 2013. Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 88: 014304.
|
[209] |
Wang S D, Xiao J L, Song J Z, Ko H C, Hwang K C, Huang Y G, Rogers J A. 2010. Mechanics of curvilinear electronics. Soft Matter, 6: 5757-5763.
|
[210] |
Wang X Q, Gu Y S, Sun X, Wang H, Zhang Y. 2014. Third-order elastic constants of ZnO and size effect in ZnO nanowires. Journal of Applied Physics, 115: 213516.
|
[211] |
Wang Y Z, Zhang C L, Dai H H, Chen W Q. 2015. Adjustable solitary waves in electroactive rods. Journal of Sound and Vibration, DOI: 10.1016/j.jsv.2015.04.023.
|
[212] |
Wang Z J, Liu C, Li Z G, Zhang T Y. 2010. Size-dependent elastic properties of Au nanowires under bending and tension-surfaces versus core nonlinearity. Journal of Applied Physics, 108: 083506.
|
[213] |
Xu Y, Shen S P. 2012. Surface electric Gibbs free energy and its effect on the electromechanical behavior of nano-dielectrics. Computers Materials and Continua, 28: 81-95.
|
[214] |
Yang J S. 2001. Bleustein-Gulyaev waves in strained piezoelectric ceramics. Mechanics Research Commu-nications, 28: 679-683.
|
[215] |
Yang J S. 2003. Equations for small fields superposed on finite biasing fields in a thermoelectroelastic body.
|
[216] |
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50: 187-192.
|
[217] |
Yang J S. 2004. Variational formulation of the equations for small fields superposed on finite biasing fields in an electroelastic body. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51: 1030-1034.
|
[218] |
Yang J S. 2005a. An Introduction to the Theory of Piezoelectricity. New York: Springer.
|
[219] |
Yang J S. 2005b. Free vibrations of an electroelastic body under biasing fields. IEEE Transactions on Ultrasonics Ferroelectrics, and Frequency Control, 52: 358-364.
|
[220] |
Yang J S. 2009. Special Topics in the Theory of Piezoelectricity. New York: Springer.
|
[221] |
Yang J S, Hu Y T. 2004. Mechanics of electroelastic bodies under biasing fields. Applied Mechanics Reviews, 57: 173-189.
|
[222] |
Yang W, Suo Z. 1994. Cracking in ceramic actuators caused by electrostriction. Journal of the Mechanics and Physics of Solids, 42: 649-664.
|
[223] |
Yeoh O H. 1990. Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chemistry and Technology, 63: 792-805.
|
[224] |
Yong H D, He X Z, Zhou Y H. 2012. Electromechanical instability in anisotropic dielectric elastomers. International Journal of Engineering Science, 50: 144-150.
|
[225] |
Zhang Q, Bharti V, Zhao X. 1998. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fiuoride-trifiuoroethylene) copolymer. Science, 280: 2101-2104.
|
[226] |
Zhang S H, Huang C, Klein R J, Xia F, Zhang Q M, Cheng Z Y. 2007. High performance electroactive poly-mers and nano-composites for artificial muscles. Journal of Intelligent Material Systems and Structures, 18: 133-145.
|
[227] |
Zhang T Y, Luo M, Chan W K. 2008. Size-dependent surface stress, surface stiffness, and Young's modulus of hexagonal prism [111] fi-SiC nanowires. Journal of Applied Physics, 103: 104308.
|
[228] |
Zhang T Y, Wang Z J, Chan W K. 2010. Eigenstress model for surface stress of solids. Physical Review B, 81: 195427.
|
[229] |
Zhao X, Hong W, Suo Z. 2007. Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B, 76: 134113.
|
[230] |
Zhao X, Suo Z. 2008. Electrostriction in elastic dielectrics undergoing large deformation. Journal of Applied Physics, 104: 123530.
|
[231] |
Zhao X, Suo Z. 2010. Theory of dielectric elastomers capable of giant deformation of actuation. Physical Review Letters, 104: 178302.
|
[232] |
Zhao X, Wang Q M. 2014. Harnessing large deformation and instabilities of soft dielectrics: Theory, exper-iment, and application. Applied Physics Reviews, 1: 021304.
|
[233] |
Zheng Q S. 1994. Theory of representations for tensor functions. A unified invariant approach to constitutive equations. Applied Mechanics Reviews, 47: 545-587.
|
[234] |
Zhou Y Y, Chen W Q, Yang J S. 2011. Thickness-shear vibration of a quartz plate connected to piezoelectric plates and electric field sensing. Ultrasonics, 51: 131-135.
|
[235] |
Zhou Y Y, LÄu C F, Chen W Q. 2012. Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections. Composite Structures, 94: 2736-2745.
|