Citation: | Mao SUN. Aerodynamics of insect flight[J]. Advances in Mechanics, 2015, 45(1): 201501. doi: 10.6052/1000-0992-14-065 |
[1] |
Altshuler D L, Dickson W B, Vance J T, Roberts S P, Dickinson M H. 2005. Short-amplitude high frequencywing strokes determine the aerodynamics of honeybee flight. PNAS., 102: 18213-18218.
|
[2] |
Ansari S A, Phillips N, Stabler G, Zbikowski R, Knowles K. 2009. Spanwise flow on an impulsively-startedrotating wing at low Reynolds numbers. In: Proceedings of 39th AIAA Fluid Dynamics Conference, SanAntonio, Texas, AIAA-2009-4032: 1–9.
|
[3] |
Ansari S A, Zbikowski R, Knowles K. 2006. Aerodynamic modeling of insect-like flapping flight for microair vehicles. Prog. Aerosp. Sci., 42: 129-172.
|
[4] |
Aono H, Liang F, Liu H. 2008. Near-and far-field aerodynamics in insect hovering flight: An integratedcomputational study. J. Exp. Biol., 211: 239-257.
|
[5] |
Ansari S A. 2004. A nonlinear, unsteady, aerodynamic model for insect-like flapping wings in the hover withmicro air vehicle applications. [PhD Thesis]. Shrivenham: Cranfield University.
|
[6] |
Berman G J, Wang Z J. 2007. Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech., 582:153-168.
|
[7] |
Bergou A J, Ristroph L, Guckenheimer J, Cohen I, Wang Z J. 2010. Fruit flies modulate passive wingpitching to generate in-flight turns. Phys. Rev. Lett., 104: 148101.
|
[8] |
Betts C R, Wootton R J. 1988. Wing shape and flight behaviour in butterflies (Lepidoptera: papilionoideaand hesperioidea): A preliminary analysis. J. Exp. Biol., 138: 271-288.
|
[9] |
Birch J M, Dickinson M H. 2001. Spanwise flow and the attachment of the leading-edge vortex on insectwings. Nature, 412: 729-733.
|
[10] |
Birch J M, Dickinson M H. 2003. The influence of wing-wake interactions on the production of aerodynamicforces in flapping flight. J. Exp. Biol., 206: 2257-2272.
|
[11] |
Birch J M, Dickson W B, Dickinson M H. 2004. Force production and flow structure of the leading edgevortex on flapping wings at high and low Reynolds numbers. J. Exp. Biol., 207: 1063–1072.
|
[12] |
Bomphrey R J, Taylor G K, Thomas A L R. 2009. Smoke visualization of free-flying bumblebees indicatesindependent leading-edge vortices on each wing pair. Exp Fluids, 46: 811–821.
|
[13] |
Brodsky A K. 1991. Vortex formation in the tethered flight of the peacock butterfly Inachis Io L. (Lepidoptera,Nymphalidae) and some aspects of insect flight evolution. J. Exp. Biol., 161: 77-95.
|
[14] |
Card G, Dickinson M H. 2008. Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol.211: 341-353.
|
[15] |
Carr Z R, Chen C, Ringuette M J. 2013. Finite-span rotating wings: three-dimensional vortex formationand variations with aspect ratio. Exp. Fluids, 54: 1–26.
|
[16] |
Chen M W, Zhang Y L, Sun M. 2013. Wing and body motion and aerodynamic and leg forces duringtake-off in droneflies: J. R. Soc. Interface, 10: 20130808.
|
[17] |
Chen M W, Sun M. 2014. Wing/body kinematics measurement and force and moment analyses of the takeoffflight of fruitflies. Acta Mechanica Sinica, 30: 495-506.
|
[18] |
Davis W R, Kosichi B B, Boroson D M, Kostishack D F. 1996. Micro air vehicle for optical surveillance.The Lincoln Laboratory J., 9: 197-217.
|
[19] |
Dickinson M H, G¨otz K G. 1993. Unsteady aerodynamic performance of model wings at low Reynoldsnumbers. J. Exp. Biol., 174: 45-64.
|
[20] |
Dickinson M H, Lehman F O, Sane S P. 1999. Wing rotation and the aerodynamic basis of insect flight.Science, 284: 1954-1960.
|
[21] |
Du G, Sun M. 2008. Effects of unsteady deformation of flapping wings on its aerodynamic forces. Appl.Math. Mech. Engl. Ed., 29: 731-741.
|
[22] |
Du G, Sun M. 2010. Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp. Biol.,213: 2273-2283.
|
[23] |
Du G, Sun M. 2012. Aerodynamic effects of corrugation and deformation in flapping wings of hoveringhoverflies. J. Theor. Biol., 300: 19-28.
|
[24] |
Dudley R. 1990. Biomechanics of flight in neotropical butterflies: Morphometrics and kinematics. J. Exp.Biol., 150: 37-53.
|
[25] |
Dudley R. 1991. Biomechanics of flight in neotropical butterflies: Aerodynamics and mechanical powerrequirements. J. Exp. Biol. 159: 335-357.
|
[26] |
Dudley R. 2000. The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton: PrincetonUniversity Press.
|
[27] |
Dudley R, Ellington C P. 1900a. Mechanics of forward flight in bumblebees: I. Kinematics and morphology.J. Exp. Biol., 148: 19-52.
|
[28] |
Dudley R, Ellington C P. 1990b. Mechanics of forward flight in bumblebees: II. Quasi-steady lift and powerrequirements. J. Exp. Biol., 148: 53-88.
|
[29] |
Eldredge J D, Toomey J, Medina A. 2010. On the roles of chord-wise flexibility in a flapping wing withhovering kinematics. J. Fluid Mech. 659: 94-115
|
[30] |
Ellington C P. 1984a. The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Phil. Trans.R. Soc. Lond. B, 305: 1-15.
|
[31] |
Ellington C P. 1984b. The aerodynamics of hovering insect flight. II. Morphological parameters. Phil.Trans. R. Soc. Lond. B, 305: 17-40.
|
[32] |
Ellington C P. 1984c. Aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond.B, 305: 41-78.
|
[33] |
Ellington C P 1984d The aerodynamics of hovering insect flight. V. A vortex theory. Phil. Trans. R. Soc.Lond. B, 305: 115–144.
|
[34] |
Ellington C P. 1991. Aerodynamics and the origin of insect flight. Adv. Insect Physiol., 23: 171-210.
|
[35] |
Ellington C P. 1995. Unsteady aerodynamics of insect flight. Symp. Soc. Exp. Biol., 49: 109-129.
|
[36] |
Ellington C P. 1999. The novel aerodynamics of insect flight: Applications to micro-air vehicles. J. Exp.Biol., 202: 3439-3448.
|
[37] |
Ellington C P, Machin K E, Casey T M. 1990. Oxygen consumption of bumblebees in forward flight. Nature,347: 472.
|
[38] |
Ellington C P, Van Den Berg C, Willmott A P, Thomas A L R. 1996. Leading-edge vortices in insect flight.Nature, 384: 626-630.
|
[39] |
Ennos A R. 1988. The importance of torsion in the design of insect wings. J. Exp. Biol., 140: 137-160.Ennos A R. 1989. The kinematics and aerodynamics of the free flight of some Diptera. J. Exp. Biol., 142:49-85.
|
[40] |
Fry S N, Sayaman R, Dickinson M H. 2003. The aerodynamics of free-flight maneuvers in Drosophila.Science, 300: 495-498.
|
[41] |
Fry S N, Sayaman R, Dickinson M H. 2005. The aerodynamics of hovering flight in Drosophila: J. Exp.Biol., 208: 2303-2318.
|
[42] |
Fung Y C. 1969. An Introduction to the Theory of Aeroelasticity. John Wiley & Sons, Inc., New York,Chapman & Hall, Ltd., London.
|
[43] |
Garmann D J, Visbal M R. 2014. Dynamics of revolving wings for various aspect ratios. J. Fluid Mech.,748: 932–956.
|
[44] |
Garmann D J, Visbal M R, Orkwis P. 2013. Three-dimensional flow structure and aerodynamic loading ona revolving wing. Phys. Fluids, 25: 034101-034127.
|
[45] |
Harbig R R, Sheridan J, Thompson M C. 2013. Reynolds number and aspect ratio effects on the leading-edgevortex for rotating insect wing planforms. J. Fluid Mech., 717: 166–192.
|
[46] |
Huang H, Sun M. 2012. Forward flight of a model butterfly: Simulation by equations of motion coupledwith the Navier–Stokes equations. Acta Mechanica Sinica, 28: 1–12.
|
[47] |
Ishihara D, Horie T, Denda M. 2009. A two-dimensional computational study on the fluid–structure interactioncause of wing pitch changes in dipteran flapping flight. J. Exp. Biol., 212: 1-10.
|
[48] |
Jardin T, Farcy A, David L. 2012. Three-dimensional effects in hovering fapping flight. J. Fluid Mech.,702: 102–125.
|
[49] |
Kim D, Gharib M. 2010. Experimental study of three-dimensional vortex structures in translating androtating plates. Exp. Fluids, 49: 329–339.
|
[50] |
Lan S L, Sun M. 2001. Aerodynamic properties of a wing performing unsteady motions at low Reynoldsnumber. Acta. Mechanica, 149: 135-147.
|
[51] |
Lentink D, Dickinson M H. 2009. Rotational accelerations stabilize leading edge vortices on revolving flywings. J. Expl Biol., 212: 2705–2719.
|
[52] |
Liang B, Sun M. 2013. Aerodynamic interactions between wing and body of a model insect at forward flightand in maneuvers. J. Bionic Eng., 10: 19-27.
|
[53] |
Lighthill M J. 1973. On the Weis-Fogh mechanism of lift generation. J. Fluid Mech., 60: 1-17.
|
[54] |
Liu H, Ellington C P, Kawachi K, Van Den Berg C, Willmott A P. 1998. A computational fluid dynamicstudy of hawkmoth hovering. J. Exp. Biol., 201: 461-477.
|
[55] |
Liu H, Aono H. 2009. Size effects on insect hovering aerodynamics: An integrated computation study.Bioinsp. Biomm. 4: 015002.
|
[56] |
Liu Y P, Sun M. 2008. Wing kinematics measurement and aerodynamics of hovering drone-flies. J. Exp.Biol., 211: 2014-2025.
|
[57] |
Lu Y, Shen G X. 2008. Three-dimensional flow structures and evolution of the leading-edge vortices on aflapping wing. J. Exp. Biol., 211: 1221–1230.
|
[58] |
Luo G Y, Sun M. 2005. The effects of corrugation and wing planform on the aerodynamic force productionof sweeping model insect wings. Acta Mechanica Sinica, 21: 531-541.
|
[59] |
Ma K Y, Chirarattananon P, Fuller S B, Wood R J. 2013. Controlled flight of a biologically inspired,insect-scale robot. Science, 340: 603-607.
|
[60] |
Maxworthy T. 1979. Experiments on the Weis-Fogh mechanism of lift generation by insects in hoveringflight. Part 1. Dynamics of the “fling”. J. Fluid Mech., 93: 47-63.
|
[61] |
Meng X G, Sun M. 2013. Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers.Physics of Fluids, 25 : 071905.
|
[62] |
Miller L A, Peskin C S. 2005. A computational fluid dynamics of “clap and fling” in the smallest flyinginsects. J. Exp. Biol., 208: 195-212.
|
[63] |
Miller L A, Peskin C S. 2009. Flexible clap and fling in tiny insect flight. J. Exp. Biol., 212: 3076-3090.
|
[64] |
Mou X L, Liu Y P, Sun M. 2011. Wing motion measurement and aerodynamics of hovering true hoverflies.J. Exp. Biol., 214: 2832-2844.
|
[65] |
Muijres F T, Elzinga M J, Melis J M, Dickinson M H. 2014. Flies evade looming targets by executing rapidvisually directed banked turns. Science, 344: 172-177.
|
[66] |
Nakata T, Liu H. 2012a. A fluid-structure interaction model of insect flight with flexible wings. J. Comput.Phys., 231: 1822-1847.
|
[67] |
Nakata T, Liu H. 2012b. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computationalapproach. Proc. R. Soc. B., 279: 722-731.
|
[68] |
Newman D J S, Wootton R J. 1986. An approach to the mechanics of pleating in dragonfly wings. J. Exp.Biol., 125: 361-372.
|
[69] |
Ozen C A, Rockwell D. 2012. Three-dimensional flow structure on a rotating wing. J. Fluid Mech., 707:541–550.
|
[70] |
Pesavento U, Wang Z J. 2004. Navier–Stokes solutions, model of fluid forces, and center of mass elevation.Phys. Rev. Lett., 93: 116-164.
|
[71] |
Rees C J C. 1975. Form and function in corrugated insect wings. Nature, 256: 200-203.
|
[72] |
Sane S P. 2003. The aerodynamics of insect flight. J. Exp. Biol., 206: 4191-4208.
|
[73] |
Sane S P, Dickinson M H. 2002. The aerodynamic effects of wing rotation and a revised quasi-steady modelof flapping flight. J. Exp. Biol., 205: 1087-1098.
|
[74] |
Shyy W, Liu H. 2007. Flapping wings and aerodynamic lift: The role of leading-edge vortices. AIAAJournal, 45: 2817–2819
|
[75] |
Shyy W, Trizilla P, Kang C K, Aono H. 2009. Can Tip Vortices enhance lift of a flapping wing? AIAAJournal, 2: 289–293.
|
[76] |
Shyy W, Aono H, Chimakurthi S K, Trizila P, Kang C K, Cesink C E S, Liu H. 2010. Recent progress inflapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci., 46: 284.
|
[77] |
Shyy W, Berg M, Ljungqvist D. 1999. Flapping and flexible wings for biological and micro air vehicles.Prog. Aerosp. Sci., 35: 455.
|
[78] |
Shyy W, Lian Y, Tang J, Viieru D, Liu H. 2008. Aerodynamics of Low Reynolds Number Fliers. New York:Cambridge University Press.
|
[79] |
Srygley R B, Thomas A L R. 2002. Unconventional lift-generating mechanisms in free-flying butterflies.Nature, 420: 660-664.
|
[80] |
Sun M. 2005. High-lift generation and power requirements of insect flight. Fluid Dynamics Research, 37:21-39
|
[81] |
Sun M, Du G. 2003. Lift and power requirements of hovering insect flight. Acta Mechanica Sinica, 19:458-469.
|
[82] |
Sun M, Lan S L. 2004. A computational study of the aerodynamic forces and power requirements of dragonfly(Aeschna juncea) hovering. J. Exp. Biol., 207: 1887-1901.
|
[83] |
Sun M, Tang J. 2002. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.J. Exp. Biol., 205: 55-70.
|
[84] |
Sun M, Wu J H. 2004. Large aerodynamic forces on a sweeping wing at low Reynolds number. ActaMechanica Sinica, 20: 24–31.
|
[85] |
Sun M, Yu X. 2003. Flow around two airfoils performing fling and subsequent translation and translationand subsequent flap. Acta Mechanica Sinica, 19: 103-117.
|
[86] |
Sun M, Yu X. 2006. Aerodynamic force generation in hovering flight in a tiny insect. AIAA Journal, 44:1532-1540.
|
[87] |
Sunada S, Kawachi K, Watanabe I. 1993. Performance of a butterfly in take-off flight. J. Exp. Biol., 183:249-227.
|
[88] |
Sunada S, Takashima H, Hattori T, Yasuda K, Kawachi K. 2002. Fluid-dynamic characteristics of a bristledwing. J. Exp. Biol., 205: 2737–2744.
|
[89] |
Tanaka S. 1995. Thrips’ flight. Part 1. In: Symposia 95 of Exploratory Research for Advanced Technology,Japan Science and Technology Corporation, Tokyo, 27–34.
|
[90] |
Usherwood J R, Ellington C P. 2002a. The aerodynamics of revolving wings. I. Model hawkmoth wings. J.Exp. Biol., 205: 1547-1564.
|
[91] |
Usherwood J R, Ellington C P. 2002b. The aerodynamics of revolving wings. II. Propeller force coefficientsfrom mayfly to quail. J. Exp. Biol., 205: 1565-1576.
|
[92] |
Usherwood J R, Lehmann F. 2008. Phasing of dragonfly wings can improve aerodynamic efficiency byremoving swirl. J. R. Soc. Interface, 5: 1303–1307.
|
[93] |
Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B. 2009. Influence of flexibility on theaerodynamic performance of a hovering wing. J. Exp. Biol., 212: 95-105.
|
[94] |
Vogel S. 1967a. Flight in Drosophila. II. Variations in stroke parameters and wing contour. J. Exp. Biol.,46: 383-392.
|
[95] |
Vogel S. 1967b. Flight in Drosophila. III. Aerodynamic characteristics of fly wings and wing models. J.Exp. Biol., 46: 431-443.
|
[96] |
Walker S M, Thomas A L R, Taylor G K. 2010. Deformable wing kinematics in free-flying hoverflies. J. R.Soc. Interface, 7: 131-142.
|
[97] |
Wang H, Zeng L J, Liu H, Yin C Y. 2003. Measuring wing kinematics, flight trajectory and body attitudeduring forward flight and turning maneuvers in dragonflies. J. Exp. Biol., 206: 745-757
|
[98] |
Wang H, Zeng L J, Yin C Y. 2002. Measuring the body position, attitude and wing deformation of a freeflightdragonfly by combining a comb fringe pattern with sign points on the wing. Measurement Scienceand Technology, 13: 903-908.
|
[99] |
Wang Z J. 2004. The role of drag in insect hovering. J. Exp. Biol., 207: 4147-4155.
|
[100] |
Wang Z J. 2005. Dissecting insect flight. Annu. Rev. Fluid Mech., 37: 183-210.
|
[101] |
Wang Z J, Russell D. 2007. Effect of forewing and hindwing interactions on aerodynamic forces and powerin hovering dragonfly flight. Phys. Rev. Lett., 99: 148101.
|
[102] |
Wang X X, Wu Z N. 2010. Stroke-averaged lift forces due to vortex rings and their mutual interactions fora flapping flight model. J. Fluid Mech., 654: 453-472.
|
[103] |
Wang X X, Wu Z N. 2012. Lift force reduction due to body image of vortex for a hovering flight model. J.Fluid Mech., 709: 648-658.
|
[104] |
Weis-Fogh T. 1972. Energetics of hovering flight in hummingbirds and in Drosophila. J. Exp. Biol., 56:79-104.
|
[105] |
Weis-Fogh T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanism for liftproduction. J. Exp. Biol., 59: 169-230.
|
[106] |
Weis-Fogh T, Jensen M. 1956. Biology and physics of locust flight. I. Basic principles of insect flight. Acritical review. Philos. Trans. R. Soc. B: Biol. Sci., 239: 415-458.
|
[107] |
Willmott A P, Ellington C P. 1997a. The mechanics of flight in the hawkmoth Manduca Sexta. I. Kinematicsof hovering and forward flight. J. Exp. Biol., 200: 2705-2722.
|
[108] |
Willmott A P, Ellington C P. 1997b. The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamicconsequences of kinematic and morphological variation. J. Exp. Biol., 200: 2723-2745.
|
[109] |
Wilson J. 2001. Micro warfare. Popular Mechanics, 2: 62.Wojcik C J, Buchholz J H J. 2014. Vorticity transport in the leading-edge vortex on a rotating blade. J.Fluid Mech., 743: 249-261.
|
[110] |
Wootton R J. 1981. Palaeozoic insects. Annu. Rev. Ent., 26: 319-344.
|
[111] |
Wu J H, Sun M. 2004. Unsteady aerodynamic forces of a flapping wing. J. Exp. Biol., 207: 1137-1150.Wu J H, Sun M. 2005. The influence of the wake of a flapping wing on the production of aerodynamic forces.Acta Mechanica Sinica, 21: 411-418.
|
[112] |
Wu T Y. 2011. Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech., 43: 25-48.
|
[113] |
Yamamoto M, Isogai K. 2005. Measurement of unsteady aerodynamic forces for a mechanical dragonflymodel. AIAA Journal, 43: 2475-2480.
|
[114] |
Yokoyama N, Senda K, Iima M, Hirai N. 2013. Aerodynamic forces and vortical structures in flappingbutterfly’s forward flight. Physics of Fluids, 25: 021902.
|
[115] |
Young J, Walker S M, Bomphrey R J, Taylor G K, Thomas L R. 2009. Details of insect wing design anddeformation enhance aerodynamic function and flight efficiency. Science, 325: 1549-1552.
|
[116] |
Yu X, Sun M. 2009. A computational study of the wing-wing and wing-body interactions of a model insect.Acta Mechanica Sinica, 25: 421-431.
|
[117] |
Yu Y L, Tong B G. 2005. A flow control mechanism in wing flapping with stroke asymmetry during insectforward flight. Acta Mechanica Sinica, 21: 218-227.
|
[118] |
Yu Y L, Tong B G, Ma H Y. 2003. An analytical approach to theoretical modeling of highly unsteadyviscous flow excited by wing flapping in small insects. Acta Mechanica Sinica, 19: 508-516.
|
[119] |
Yu Y L, Tong B G, Ma H Y. 2005. Unsteady flow mechanics revisited in insect flapping flight. ActaMechanica Sinica, 37: 257-265.
|
[120] |
Zhang J, Lu X Y. 2009. Aerodynamic performance due to forewing and hindwing interaction in glidingdragonfly flight. Physical Review E, 80: 017302-017305.
|
[121] |
Zhang Y L, Sun M. 2010. Wing kinematics measurement and aerodynamics of free-flight maneuvers indrone-flies. Acta Mechanica Sinica, 26: 371-382.
|
[122] |
Zanker J M. 1990. The wing beat of Drosophila melanogaster. I. Kinematics. Phil. Trans. R. Soc. Lond.B, 327: 1-18.
|
[123] |
Zhao L, Huang Q, Deng X Y, Sane S P. 2010. Aerodynamic effects of flexibility in flapping wings. J. R.Soc. Interface, 7: 485-497.
|
[124] |
Zhao L, Deng X Y, Sane S P. 2011. Modulation of leading edge vorticity and aerodynamic forces in flexibleflapping wings. Bioinsp. Biomim., 6: 036007.flapping wings. Bioinsp. Biomim., 6: 036007.
|