Volume 43 Issue 6
Nov.  2013
Turn off MathJax
Article Contents
MA Zengsheng, ZHOU Yichun, LIU Jun, XUE Dongfeng, YANG Qingsheng, PAN Yong. Research progress in degradation mechanism of silicon anode materials for lithium-ion batteries[J]. Advances in Mechanics, 2013, 43(6): 581-599. doi: 10.6052/1000-0992-13-066
Citation: MA Zengsheng, ZHOU Yichun, LIU Jun, XUE Dongfeng, YANG Qingsheng, PAN Yong. Research progress in degradation mechanism of silicon anode materials for lithium-ion batteries[J]. Advances in Mechanics, 2013, 43(6): 581-599. doi: 10.6052/1000-0992-13-066

Research progress in degradation mechanism of silicon anode materials for lithium-ion batteries

doi: 10.6052/1000-0992-13-066
Funds:  The project was supported by the National Natural Science Foundation of China (11102176, 11372267), the National High Technology Research and Development Program of China (863 Program) (2013AA032502), and the Emerging Strategic Industries of Hunan Province (2012GK4075).
More Information
  • Corresponding author: ZHOU Yichun; PAN Yong
  • Received Date: 2013-09-01
  • Rev Recd Date: 2013-10-22
  • Publish Date: 2013-11-25
  • Silicon anode materials have very high theoretical specific capacity, hence become promising replacement for anode material of lithium-ion batteries. However, during charging and discharging, silicon anode materials suffer big volume deformation that may cause destruction and failure of the active material. This seriously affects the electrochemical cycle performance, and restricts wide applications in the field of lithium-ion batteries. In this paper, we introduce silicon anode materials of different structure form, and the degradation mechanism of the electrochemical properties during charging and discharging. We summarize the latest international research progress in mechanical properties evolution of charging and discharging process, the related theoretical analysis, numerical simulations, and prospects for research emphasis of the mechanical failure in silicon anode materials.

     

  • loading
  • [1]
    Beaulieu L Y, Eberman K W, Turner R L, Krause L, DahnJ. 2001. Colossal reversible volume changes in lithiumalloys. Electrochemical and Solid-State Letters, 4: A137-A140.
    [2]
    Bhandakkar T K, Johnson H T. 2012. Diffusion inducedstresses in buckling battery electrodes. Journal of theMechanics and Physics of Solids, 60: 1103-1121.
    [3]
    Bower A F, Guduru P R, Sethuraman V A. 2011. A finitestrain model of stress, diffusion, plastic flow, and elec-trochemical reactions in a lithium-ion half-cell. Journalof the Mechanics and Physics of Solids, 59: 804-828.
    [4]
    Brassart L, Suo Z. 2012. Reactive flow in large deformationelectrodes of lithium-ion batteries. International Jour-nal of Applied Mechanics, 4: 1250023.
    [5]
    Brassart L, Suo Z. 2013. Reactive flow in solids. Journalof the Mechanics and Physics of Solids, 61: 61-77.
    [6]
    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X, Hug-gins R, Cui Y. 2008. High-performance lithium batteryanodes using silicon nanowires. Nature Nanotechnology,3: 31-35.
    [7]
    Chan M K Y, Wolverton C, Greeley J P. 2012. First prin-ciples simulations of the electrochemical lithiation anddelithiation of faceted crystalline silicon. Journal of the American Chemical Society, 134: 14362-14374.
    [8]
    Chen J, Xu L, Li W, Gou X. 2005. ff-Fe2O3 nanotubesin gas sensor and lithium-ion battery applications. Ad-vanced Materials, 17: 582-586.
    [9]
    Cheng Y-T, Verbrugge M W. 2008. The influence of surfacemechanics on diffusion induced stresses within spher-ical nanoparticles. Journal of Applied Physics, 104:083521-6.
    [10]
    Cheng Y-T, Verbrugge M W. 2010. Diffusion-inducedstress, interfacial charge transfer, and criteria for avoid-ing crack initiation of electrode particles. Journal of the Electrochemical Society, 157: A508-A516.
    [11]
    Chevrier V L, Dahn J R. 2009. First principles modelof amorphous silicon lithiation. Journal of the Electro-chemical Society, 156: A454-A458.
    [12]
    Chevrier V L, Dahn J R. 2010. First principles studies ofdisordered lithiated silicon. Journal of the Electrochem-ical Society, 157: A392-A398.
    [13]
    Chevrier V L, Zwanziger J W, Dahn J R. 2009. First prin-ciples studies of silicon as a negative electrode materialfor lithium-ion batteries. Canadian Journal of Physics,87: 625-632.
    [14]
    Chon M J, Sethuraman V A, McCormick A, Srinivasan V,Guduru P. 2011. Real-time measurement of stress anddamage evolution during initial lithiation of crystallinedilicon. Physical Review Letters, 107: 045503.
    [15]
    Cui Z, Gao F, Qu J. 2012. A finite deformation stress-dependent chemical potential and its applications tolithium-ion batteries. Journal of the Mechanics and Physics of Solids, 60: 1280-1295.
    [16]
    Diao J, Gall K, L. Dunn M. 2004. Atomistic simulation ofthe structure and elastic properties of gold nanowires.Journal of the Mechanics and Physics of Solids, 52:1935-1962.
    [17]
    Ding N, Xu J, Yao Y X,Wegner G, Fang X, Chen C, Lieber-wirth I. 2009. Determination of the diffusion coefficientof lithium ions in nano-Si. Solid State Ionics, 180: 222-225.
    [18]
    Golmon S, Maute K, Lee S H, Dunn M. 2010. Stress genera-tion in silicon particles during lithium insertion. AppliedPhysics Letters, 97: 033111.
    [19]
    郭炳坤, 徐徽, 王先友, 肖立新. 2002. 锂离子电池. 长沙:中南大学出版社(Guo B K, Xu H,Wang X Y, Xiao L X.2002. Lithium-ion Batteries. Changsha: Central SouthUniversity Press (in Chinese))
    [20]
    Haftbaradaran H, Gao H. 2012. Ratcheting of silicon is-land electrodes on substrate due to cyclic intercalation.Applied Physics Letters, 100: 121907.
    [21]
    Hao F, Fang D. 2013. Diffusion-induced stresses of spher-ical core-shell electrodes in lithium-ion batteries: Theeffects of the shell and sturface/interface stress. Journalof the Electrochemical Society, 160: A595-A600.
    [22]
    Hertzberg B, Alexeev A, Yushin G. 2010. Deformationsin Si-Li anodes upon electrochemical alloying in nano-confined space. Journal of the American Chemical So-ciety, 132: 8548-8549.
    [23]
    Hertzberg B, Benson J, Yushin G. 2011. Ex-situ depth-sensing indentation measurements of electrochemicallyproduced Si-Li alloy films. Electrochemistry Communi-cations, 13: 818-821.
    [24]
    Hu Y, Zhao X, Suo Z. 2010. Averting cracks caused byinsertion reaction in lithium{ion batteries. Journal of Materials Research, 25: 1007-1010.
    [25]
    Huang S, Zhu T. 2011. Atomistic mechanisms of lithium in-sertion in amorphous silicon. Journal of Power Sources,196: 3664-3668.
    [26]
    Jung S C, Han Y-K. 2012. Ab initio molecular dynamicssimulation of lithiation-induced phase-transition of crys-talline silicon. Electrochimica Acta, 62: 73-76.
    [27]
    Lee S J, Lee J K, Chung S H, Lee H, Lee S, Baik H. 2001.Stress effect on cycle properties of the silicon thin-filmanode. Journal of Power Sources, 97-98: 191-193.
    [28]
    Lee J K, Smith K B, Hayner C M, Kung H. 2010. Siliconnanoparticles-graphene paper composites for Liion bat-tery anodes. Chemical Communications, 46: 2025-2027.Lei W, Pan Y, Zhou Y, Zhou W, Peng M, Ma Z. 2013.
    [29]
    CNTs-Cu composite layer enhanced Sn-Cu alloy as highperformance anode materials for lithium-ion batteries.RSC Advances, DOI: 10.1039/C3RA44431G.
    [30]
    Li F, Zou Q Q, Xia Y Y. 2008. Co O-loaded graphitablecarbon hollow spheres as anode materials for lithium-ionbattery. Journal of Power Sources, 177: 546-552.Li H, Huang X, Chen L, Wu Z, Liang Y. 1999. A highcapacity nano Si composite anode material for lithiumrechargeable batteries. Electrochemical and Solid-StateLetters, 2: 547-549.
    [31]
    Li H, Shi L, Lu W, Huang X, Chen L. 2001. Studies on ca-pacity loss and capacity fading of nanosized SnSb alloyanode for Li-ion batteries. Journal of the Electrochemi-cal Society, 148: A915-A922.
    [32]
    Li H, Wang Z, Chen L, Huang X. 2009. Research on ad-vanced materials for Li-ion batteries. Advanced Materi-als, 21: 4593-4607.
    [33]
    Li J, Dahn J R. 2007. An in situ X-ray diffraction studyof the reaction of Li with crystalline Si. Journal of the Electrochemical Society, 154: A156-A161.
    [34]
    Li K, Xie H, Liu J, Ma Z, Zhou Y, Xue D. 2013. Fromchemistry to mechanics: Bulk modulus evolution of Li-Si and Li-Sn alloys via metallic electronegativity scale.Physical Chemistry Chemical Physics, 15: 17658-17663.
    [35]
    Li X, Meduri P, Chen X, Qi W, Englehard M, Xu W, DingF, Xiao J, Wang W, Wang C, et al. 2012. Hollow core-shell structured porous Si-C nanocomposites for Li-ionbattery anodes. Journal of Materials Chemistry, 22:11014-11017.
    [36]
    Limthongkul P, Jang Y I, Dudney N J, Chiang Y. 2003.Electrochemically-driven solid-state amorphization inlithium-silicon alloys and implications for lithium stor-age. Acta Materialia, 51: 1103-1113.
    [37]
    Lindley D. 2010. The energy storage problem. Nature, 463:18-20.
    [38]
    Liu C, Li F, Ma L P, Cheng H M. 2010. Advanced materialsfor energy storage. Advanced Materials, 22: E28-E62.
    [39]
    Liu J, Wan Y, Liu W, Ma Z, Ji S, Wang J, Zhou Y, Hodg-son P, Li Y. 2013. Mild and cost-effective synthesis ofiron fluoride-graphene nanocomposites for high-rate Li-ion battery cathodes. Journal of Materials ChemistryA, 1: 1969-1975.
    [40]
    Liu J, Xia H, Xue D, Lu L. 2009. Double-shelled nanocap-sules of V2O5-based composites as high-performance an-ode and cathode materials for Li ion batteries. Journalof the American Chemical Society, 131: 12086-12087.
    [41]
    Liu J, Xue D. 2008. Thermal oxidation strategy towardsporous metal oxide hollow architectures. Advanced Ma-terials, 20: 2622-2627.
    [42]
    Liu X H, Zhong L, Huang S, Mao S, Zhu T, Huang J.2012a. Size-dependent fracture of silicon nanoparticlesduring lithiation. ACS Nano, 6: 1522-1531.
    [43]
    Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y.2012b. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Letters, 12: 3315-3321.
    [44]
    Liu X H, Zhang L Q, Zhong L, Liu Y, Zheng H, Wang J,Cho J, Dayeh S, Picraux S, Sullivan J, Mao S, Ye Z,Huang J. 2011. Ultrafast electrochemical lithiation ofindividual Si nanowire anodes. Nano Letters, 11: 2251-2258.
    [45]
    Lu B, Song Y, Guo Z, Zhang J. 2013. Modeling of pro-gressive delamination in a thin film driven by diffusion-induced stresses. International Journal of Solids andStructures, 50: 2495-2507.
    [46]
    Ma Z, Li T, Huang Y L, Liu J, Zhou Y, Xue D. 2013. Crit-ical silicon-anode size for averting lithiation-induced me-chanical failure of lithium-ion batteries. RSC Advances,3: 7398-7402.
    [47]
    Ma Z, Zhou Z, Huang Y, Zhou Y, Sun C. 2012. Meso-scopic superelasticity, superplasticity, and superrigidity.Science China Physics, Mechanics and Astronomy, 55:963-979.
    [48]
    Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J,Yushin G. 2010. High-performance lithium-ion anodesusing a hierarchical bottom-up approach. Nature Mate-rials, 9: 353-358.
    [49]
    Maranchi J P, Hepp A F, Evans A G, Nuhfer N, KumtaP. 2006. Interfacial properties of the a-Si/Cu: Active{inactive thin-film anode system for lithium-ion batter-ies. Journal of the Electrochemical Society, 153: A1246-A1253.
    [50]
    Maranchi J P, Hepp A F, Kumta P N. 2003. High capacity,reversible silicon thin-film anodes for lithium-ion batter-ies. Electrochemical and Solid-State Letters, 6: A198-A201.
    [51]
    Obrovac M N, Krause L J. 2007. Reversible cycling of crys-talline silicon powder. Journal of the ElectrochemicalSociety, 154: A103-A108.
    [52]
    潘勇, 周益春, 李玮, 王建兴, 周兆峰, 杜超, 堵艳艳. 2010.一种镀覆含纳米线的多层复合薄膜的钢带及其制备方法. 中国发明专利, 201010110129.X,(Pan Y, Zhou YC, Li W, Wang J X, Zhou Z F, Du Y Y. 2010. Onekind of plating multilayer containing nanowires compos-ite film strip and method. Chinese Invention Patent,201010110129.X. (in Chinese))
    [53]
    Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, CuiY, Cho J. 2009. Silicon nanotube battery anodes. NanoLetters, 9: 3844-3847.
    [54]
    Peng K, Xu Y, Wu Y, Pan Y, Lee S, Zhu J. 2005. Alignedsingle-crystalline Si nanowire arrays for photovoltaic ap-plications. Small, 1: 1062-1067.
    [55]
    Ryu I, Choi J W, Cui Y, Nix W D. 2011. Size-dependentfracture of Si nanowire battery anodes. Journal of theMechanics and Physics of Solids, 59: 1717-1730.
    [56]
    Sethuraman V A, Chon M J, Shimshak M, Srinivasan V,Guduru P. 2010a. In situ measurements of stress evolu-tion in silicon thin films during electrochemical lithiationand delithiation. Journal of Power Sources, 195: 5062-5066.
    [57]
    Sethuraman V A, Chon M J, Shimshak M, Winkle N,Guduru P. 2010b. In situ measurement of biaxial mod-ulus of Si anode for Li-ion batteries. ElectrochemistryCommunications, 12: 1614-1617.
    [58]
    Sethuraman V A, Srinivasan V, Bower A F, Guduru P.2010c. In situ measurements of stress-potential couplingin lithiated silicon. Journal of the Electrochemical Soci-ety, 157: A1253-A1261.
    [59]
    Shenoy V B, Johari P, Qi Y. 2010. Elastic softening ofamorphous and crystalline Li{Si phases with increasingLi concentration: A first-principles study. Journal ofPower Sources, 195: 6825-6830.
    [60]
    Stoney G G. 1909. The tension of metallic films depositedby electrolysis. Proceedings of the Royal Society of Lon-don. Series A, 82: 172-175.
    [61]
    Sun C Q. 2007. Size dependence of nanostructures: Im-pact of bond order deficiency. Progress in Solid StateChemistry, 35: 1-159.
    [62]
    Sun Q, Zhang B, Fu Z W. 2008. Lithium electrochemistryof SiO2 thin film electrode for lithium-ion batteries. Ap-plied Surface Science, 254: 3774-3779.
    [63]
    Whittingham M S. 2004. Lithium batteries and cathodematerials. Chemical Reviews, 104: 4271-4301.
    [64]
    Xiao X, Liu P, Verbrugge M W, Haftbaradaran H, Gao H.2011. Improved cycling stability of silicon thin film elec-trodes through patterning for high energy density lithiumbatteries. Journal of Power Sources, 196: 1409-1416.
    [65]
    Yang B, He Y P, Irsa J, Landgren C, Ratchford J, Zhao Y.2012. Effects of composition-dependent modulus, finiteconcentration and boundary constraint on Li-ion diffu-sion and stresses in a bilayer Cu-coated Si nano-anode.Journal of Power Sources, 204: 168-176.
    [66]
    Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W,Cui Y. 2011. Interconnected silicon hollow nanospheresfor lithium-ion battery anodes with long cycle life. Nano Letters, 11: 2949-2954.
    [67]
    Yin R Z, Kim Y S, Choi W, Kim S, Kim H. 2008. Chap-ter 3 structural analysis and first-principles calculationof lithium vanadium oxide for advanced Li-ion batteries,Advances in Quantum Chemistry, 54: 23-33.
    [68]
    Zeng S, Tang K, Li T, Liang Z, Wang D, Wang Y, ZhouW. 2007. Hematite hollow spindles and microspheres:Selective synthesis, growth mechanisms, and applicationin lithium ion battery and water treatment. The Journalof Physical Chemistry C, 111: 10217-10225.
    [69]
    Zhang X, Shyy W, Marie Sastry A. 2007. Numerical sim-ulation of intercalation-induced stress in Li-ion batteryelectrode particles. Journal of the Electrochemical Soci-ety, 154: A910-A916.
    [70]
    Zhang Z, Fouchard D, Rea J R. 1998. Differential scanningcalorimetry material studies: implications for the safetyof lithium-ion cells. Journal of Power Sources, 70: 16-20.
    [71]
    Zhao J, Buldum A, Han J, Lu J. 2000. First-principlesstudy of Li-intercalated carbon nanotube ropes. Physi-cal Review Letters, 85: 1706-1709.
    [72]
    Zhao K, Pharr M, Vlassak J J, Joost J, Suo Z. 2010. Frac-ture of electrodes in lithium-ion batteries caused by fastcharging. Journal of Applied Physics, 108: 073517-6.
    [73]
    Zhao K, Pharr M, Cai S, Vlassak J, Suo Z. 2011a. Largeplastic deformation in high-capacity lithium-ion batteriescaused by charge and discharge. Journal of the Ameri-can Ceramic Society, 94: s226-s235.
    [74]
    Zhao K, Wang W L, Gregoire J, Pharr M, Suo Z, Valas-sak J, Kaxiras E. 2011b. Lithium-assisted plastic de-formation of silicon electrodes in lithium-ion batteries:A first-principles theoretical study. Nano Letters, 11:2962-2967.
    [75]
    Zhao K, Pharr M, Hartle L, Valassak J, Suo Z. 2012a. Frac-ture and debonding in lithium-ion batteries with elec-trodes of hollow core{shell nanostructures. Journal ofPower Sources, 218: 6-14.
    [76]
    Zhao K, Pharr M, Wan Q, Wang W, Kaxiras E. VlassakJ, Suo Z. 2012b. Concurrent reaction and plasticity dur-ing initial lithiation of crystalline silicon in lithium-ionbatteries. Journal of the Electrochemical Society, 159:A238-A243.
    [77]
    Zhao K, Tritsaris G A, Pharr M, Wang W, Okeke O, SuoZ, Vlassak J, Kaxiras E. 2012c. Reactive flow in sili-con electrodes assisted by the insertion of lithium. NanoLetters, 12: 4397-4403.
    [78]
    周益春, 潘勇, 李玮, 王建兴, 赌艳艳, 杜超, 戴翠英. 2010. 一种镀覆微/纳米晶镍多层薄膜的钢带及其制备方法. 中国发明专利, 201010110128.5 (Zhou YC, Pan Y, Li W, Wang J X, Du Y Y, Du C, Dai CY. One kind of plating micronano-crystal multilayernickel films strip and method. Chinese Invention Patent,201010110128.X. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3382) PDF downloads(4788) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return