Volume 43 Issue 5
Sep.  2013
Turn off MathJax
Article Contents
CUI Pingyuan, QIAO Dong. State-of-the-art and prospects for orbital dynamics and control near small celestial bodies[J]. Advances in Mechanics, 2013, 43(5): 526-539. doi: 10.6052/1000-0992-13-061
Citation: CUI Pingyuan, QIAO Dong. State-of-the-art and prospects for orbital dynamics and control near small celestial bodies[J]. Advances in Mechanics, 2013, 43(5): 526-539. doi: 10.6052/1000-0992-13-061

State-of-the-art and prospects for orbital dynamics and control near small celestial bodies

doi: 10.6052/1000-0992-13-061
Funds:  The project was supported by the National Basic Research Program of China (2012CB720000), National Natural Science Foundation of China (11102020) and Beijing Institute of Technology Innovation Team Project.
More Information
  • Corresponding author: QIAO Dong
  • Received Date: 2013-09-02
  • Rev Recd Date: 2013-09-19
  • Publish Date: 2013-09-25
  • Small celestial body exploration is one of the key areas of deep space exploration in the future. The orbital dynamics and control problem near small celestial bodies is crucial in such explorations, and urgent to be treated. This problem involves the modeling of dynamics environment around an irregularshaped small celestial body, and the orbital dynamics mechanism near the small celestial body. In this paper, we survey the gravitational field modeling of irregular-shaped small celestial body, natural orbital dynamics and control, and controlled orbital dynamics near small celestial body. We introduce state-ofthe-art and trends for the development of orbital dynamics and control near small celestial bodies. The challenges and difficulties encountered are analyzed. Finally, we discuss the prospects for the development direction and key issues of orbital dynamics and control for Chinese future mission for exploring small celestial bodies.

     

  • loading
  • [1]
    Bellerose J, Yano H, Scheeres D J. 2010. Solar radiation pressure perturbations at binary asteroid systems. Advances in the Astronautical Sciences, 135: 747-764.
    [2]
    Broschart S B, Scheeres D J. 2005. Control of hovering spacecraft near small bodies: Application to Asteroid 25143 Itokawa. Journal of Guidance Control and Dynamics, 28: 343-354.
    [3]
    Broschart S B, Scheeres D J, Villac B F. 2010. New families of multi-revolution terminator orbits near small orbits. Advances in the Astronautical Sciences, 135: 1685-1702.
    [4]
    Broschart S B, Scheeres D J. 2003. Numerical solution to the small-body hovering problem. Advances in the Astronautical Sciences, 114: 875-894.
    [5]
    Byram S M, Scheeres D J, Combi M R. 2007. Models for the comet dynamical environment. Journal of Guidance, Control, and Dynamics, 30: 1445-1454.
    [6]
    Cui P Y,Qiao D,Cui H T,Luan E J. 2010. Target selection and transfer trajectories design for exploring asteroid mission. Science China Technological Sciences, 53: 1150-1158.
    [7]
    崔祜涛, 史雪岩, 崔平远, 栾恩杰. 2004a. 绕飞慢自旋小天体的航天器运动分析. 航空学报, 25: 16-20 (Cui H T, Shi X Y, Cui P Y, Luan E J. 2004a. Spacecraft motion analysis about slowly rotating small body. Acta Aeronautica et Astronautica Sinica, 25: 16-20 (in Chinese)
    [8]
    崔祜涛, 史雪岩, 崔平远, 栾恩杰. 2004b. 航天器环绕小行星Ivar的运动分析. 宇航学报, 25: 251-255 (Cui H T, Shi X Y, Cui P Y, Luan E J. 2004b. Motion analysis of spacecraft around the asteroid Ivar. Journal of Astronautics, 25: 251-255 (in Chinese)
    [9]
    Dechambre D, Scheeres D J. 2002. Transformation of spherical harmonic coefficients to ellipsoidal harmonic coefficients. Astronomy & Astrophysics, 387: 1114-1122.
    [10]
    Garmier R, Barriot J P. 2001. Ellipsoidal harmonic expansions of the gravitational potential: Theory and application. Celestial Mechanics and Dynamical Astronomy, 79: 235-275.
    [11]
    Hobson E. 1955. The Theory of Spherical and Ellipsoidal Harmonics. New York: Chelsea Publishing Company.
    [12]
    黄江川, 王晓磊, 孟林智, 饶炜, 李克行, 乔栋, 黄昊, 周文艳. 2013. 嫦娥二号卫星飞越4179小行星逼近策略及成像技术. 中国科学(技术科学), 43: 478-486 (Huang J C, Wang X L, Meng L Z, Rao W, Li K X, Qiao D, Huang H, Zhou W Y. 2013. Approaching strategy and imaging technique for CE-2 flyby 4179 asteroid mission. Science China (Technological Sciences), 43: 478-486 (in Chinese)
    [13]
    胡寿村, 季江徽, 赵玉晖, 孟林智. 2013. 嫦娥二号飞越小行星试验中图塔蒂斯轨道确定与精度分析. 中国科学 技术科学, 43: 506-511 (Hu S C, Ji J H. Zhao Y H, Meng L Z. 2013. Orbit determination and precision analysis of Toutatis asteroid for CE-2 flyby asteroid mission. Science China Technological Sciences, 43: 506-511 (in Chinese)
    [14]
    Hu W D, Scheeres D J. 2004. Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields. Planetary and Space Science, 52: 685-692.
    [15]
    Hu W D, Scheeres D J. 2008. Periodic orbits in rotating second degree and order gravity fields. Chinese Journal of Astronomy and Astrophysics, 8: 108-118.
    [16]
    Hu W D, Scheeres D J. 2002. Spacecraft motion about slowly rotating asteroids. Journal of Guidance Control and Dynamics, 25: 765-775.
    [17]
    Hu W D, Scheeres D J, Xiang K H. 2009. The characteristics of near asteroid orbital dynamics and its implication to mission analysis. Progress in Astronomy, 27: 152-166 (in Chinese).
    [18]
    Kaula W M. 2000. Theory of Satellite Geodesy: Applications of Satellites to Geodesy. Mineola: Dover Publications. 4-8.
    [19]
    Lara M, Scheeres D J. 2002. Stability bounds for three dimensional motion close to asteroids. Journal of the Astronautical Sciences, 50: 389-409.
    [20]
    Li X Y, Qiao D, Cui P Y. 2013. The equilibria and periodic orbits around a dumbbell-shaped body. Astrophysics and Space Science, DOI 10.1007/s10509-013-1592-1.
    [21]
    Liu X D, Baoyin H X, Ma X R. 2011a. Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube. Astrophysics Space Science, 333: 409-418.
    [22]
    Liu X D, Baoyin H X, Ma X R. 2011b. Periodic orbits in the gravity field of a fixed homogeneous cube. Astrophysics Space Science, 334: 357-364.
    [23]
    Morrow E, Scheeres D J, Lubin D. 2011. Solar sail orbit operations at asteroids. Journal of Spacecraft and Rockets, 38: 279-286.
    [24]
    Pick M, Picha J, Vyskocil V. 1973. Theory of the Earth's Gravity Field. New York: Elsevier Scientific Publishing Company, 223-245.
    [25]
    乔栋, 黄江川, 崔平远, 饶炜, 姜晓军, 孟林智, 黄昊, 黄晓峰. 2013. 嫦娥二号卫星飞越探测小行星的目标选择. 中国科学 技术科学, 43: 602-608 (Qiao D, Huang J C, Cui P Y, Rao W, Jiang X J, Meng L Z, Huang H, Huang X F. 2013. Selection target for CE-2 flyby asteroid mission. Science China Technological Sciences, 43: 602-608 (in Chinese)
    [26]
    乔栋, 黄江川, 崔平远, 饶炜, 王晓磊, 黄昊, 孟林智, 周文艳. 2013. 嫦娥二号卫星飞越Toutatis小行星转移轨道设计. 中国科学 (技术科学), 43: 487-492 (Qiao D, Huang J C, Cui P Y, Wang X L, Huang H, Meng L Z, Zhou W Y. 2013. Trajectory design of CE-2 flyby Toutatis asteroid mission. Science China (Technological Sciences), 43: 487-492 (in Chinese)
    [27]
    Rossi A, Marzari F, Farinella P. 1999. Orbital evolution around irregular bodies. Earth Planets Space, 51: 1173-1180.
    [28]
    Sawai S, Scheeres D J, Broschart S B. 2002. Control of hovering spacecraft using altimetry. Journal of Guidance, Control and Dynamics, 25: 786-795.
    [29]
    Sawai S, Scheeres D J. 2001. Hovering and translational motions over small bodies. Advance in the Astronautical Sciences, 108: 781-796.
    [30]
    Scheers D J. 1999. The effect of C22 on orbit energy and angular momentum. Celestial Mechanics and Dynamical Astronomy, 73: 339-348.
    [31]
    Scheeres D J. 1994a. Dynamics about uniformly rotating tri-axial ellipsoids applications to asteroids. Icarus, 110: 225-238
    [32]
    Scheeres D J. 1994b. Satellite dynamics about asteroids. Advances in the Astronautical Sciences Series Spaceflight Mechanics, 87: 275-292.
    [33]
    Scheeres D J, Ostro S J, Hudson R S, Werner R A. 1996. Orbits close to asteroid 4769 Castalia. Icarus, 121: 67-87.
    [34]
    Scheeres D J, Ostro S J, Hudson R S, DeJong E M, Suzuki S. 1998. Dynamics of orbits close to asteroid 4179 Toutatis. Icarus, 132: 53-79.
    [35]
    Scheeres D J. 1994. Satellite dynamics about triaxial ellipsoids. in: Proceedings of Advances in Nonlinear Astrodynamics, Belbruno E. Ed., Geometry Center No.GCG65, 1-28.
    [36]
    Scheeres D J, Hu W D. 2001. Secular motion in a 2nd degree and order-gravity field with no rotation. Celestial Mechanics & Dynamical Astronomy, 79: 183-200.
    [37]
    Scheeres D J. 1999. Satellite dynamics about small bodies: averaged solar radiation pressure effects. Journal of the Astronautical Sciences, 47: 25-46.
    [38]
    Scheeres D J. 2012. Orbit Mechanics about asteroids and comets. Journal of Guidance Control and Dynamics, 35: 987-997.
    [39]
    Scheeres D J. 2012. Orbital mechanics about small bodies. Acta Astronautica, 72: 1-14.
    [40]
    Sharma A K, Narasaiah M L. 2007. Dynamics of Rigid Bodies. New Delhi: Discovery Publishing House, 89-97.
    [41]
    Walter H G. 1969. Dynamics of Satellites. Berlin: Springer Heidelberg, 28-35.
    [42]
    Werner R A. 1996. On the gravity field of irregularly shaped celestial bodies. [Ph.D. Thesis] Austin: University of Texas, 36-52.
    [43]
    Werner R A. 1994. The gravitational potential of a homogeneous polyhedron. Celestial Mechanics and Dynamical Astronomy, 59: 253-278.
    [44]
    Werner R A. Scheeres D J. 1997. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 castalia. Celestial Mechanics and Dynamical Astronomy, 65: 313-344.
    [45]
    William B. 1997. Comment on a formula for the gravitational harmonic coefficients of a triaxial ellipsoid. Celestial Mechanics and Dynamical Astronomy, 67: 107-110.
    [46]
    Winkler T M. 2013. Fuel-efficient feedback control of orbital motion around irregular-shaped asteroids. [Master Thesis] Iowa: Iowa State University, 36-37.
    [47]
    Yu Y, Baoyin H X. 2012a. Generating families of 3D periodic orbits about asteroids. Monthly Notices of the Royal Astronomical Society, 427: 872-881.
    [48]
    Yu Y, Baoyin H X. 2012b. Orbital dynamics in the vicinity of asteroid 216 Kleopatra. The Astronomical Journal, 143: 62-71.
    [49]
    Yu Y, Baoyin H X. 2012. Resonant orbits in the vicinity of asteroid 216 Kleopatra. Astrophysics Space Science, 343: 75-82.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1904) PDF downloads(2018) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return