Citation:  ChiWang Shu. A brief survey on discontinuous Galerkin methods in computational fluid dynamics[J]. Advances in Mechanics, 2013, 43(6): 541554. doi: 10.6052/1000099213059 
[1] 
Arnold D N. 1982. An interior penalty finite elementmethod with discontinuous elements. SIAM Journal onNumerical Analysis, 39: 742760.

[2] 
Bassi F, Rebay S. 1997. A highorder accurate discontinuous finite element method for the numerical solutionof the compressible NavierStokes equations. Journal ofComputational Physics, 131: 267279.

[3] 
Baumann C E, Oden J T. 1999. A discontinuous hp finite element method for convectiondiffusion problems.Computer Methods in Applied Mechanics and Engineering, 175: 311341.

[4] 
Biswas R, Devine K D, Flaherty J. 1994. Parallel, adaptivefinite element methods for conservation laws. Applied Numerical Mathematics, 14: 255283.

[5] 
Bokanowski O, Cheng Y, Shu C W. 2011. A discontinuous Galerkin solver for front propagation. SIAM Journal onScientific Computing, 33: 923938.

[6] 
Bokanowski O, Cheng Y, Shu C W. A discontinuous Galerkin scheme for front propagation with obstacles. Numerische Mathematik, to appear. DOI: 10.1007/s0021101305553.

[7] 
Bokanowski O, Cheng Y, Shu C W. Convergence of discontinuous Galerkin schemes for front propagation withobstacles. submitted to Mathematics of Computation.Burbeau A, Sagaut P, Bruneau Ch H. 2001. A problemindependent limiter for highorder RungeKutta discontinuous Galerkin methods. Journal of Computational Physics, 169: 111150.

[8] 
Canuto C, Fagnani F, Tilli P. 2012. An Eulerian approachto the analysis of Krause's consensus models. SIAM Journal on Control and Optimization, 50: 243265.

[9] 
Chen G Q, Liu H. 2003. Formation of ffishocks and vacuumstates in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM Journal on Mathematical Analysis, 34: 925938.

[10] 
Cheng Y, Shu C W. 2007. A discontinuous Galerkin finiteelement method for directly solving the HamiltonJacobiequations. Journal of Computational Physics, 223: 398415.

[11] 
Cheng Y, Shu C W. 2008. A discontinuous Galerkin finiteelement method for time dependent partial differentialequations with higher order derivatives. Mathematics ofComputation, 77: 699730.

[12] 
Cockburn B. 1999. Discontinuous Galerkin Methods for ConvectionDominated Problems. Berlin, Heidelberg,Springer 69224.

[13] 
Cockburn B, Hou S, Shu C W. 1990. The RungeKuttalocal projection discontinuous Galerkin finite elementmethod for conservation laws Ⅳ: the multidimensionalcase. Mathematics of Computation, 54: 545581.

[14] 
Cockburn B, Karniadakis G, Shu C W. 2000. The Development of Discontinuous Galerkin Methods. Berlin,Heidelberg, Springer, 350.

[15] 
Cockburn B, Lin S Y, Shu C W. 1989. TVB RungeKuttalocal projection discontinuous Galerkin finite elementmethod for conservation laws Ⅲ: onedimensional systems. Journal of Computational Physics, 84: 90113.

[16] 
Cockburn B, Shu C W. 1989. TVB RungeKutta local projection discontinuous Galerkin finite element method forconservation laws Ⅱ: general framework. Mathematics of Computation, 52: 411435.

[17] 
Cockburn B, Shu C W. 1991. The RungeKutta local projection P1discontinuousGalerkin finite element methodfor scalar conservation laws. Mathematical Modellingand Numerical Analysis (M2AN), 25: 337361.

[18] 
Cockburn B, Shu C W. 1998. The RungeKutta discontinuous Galerkin method for conservation laws Ⅴ: multidimensional systems. Journal of Computational Physics,141: 199224.

[19] 
Cockburn B, Shu C W. 1998. The local discontinuous Galerkin method for timedependent convectiondiffusion systems. SIAM Journal on Numerical Analysis, 35: 24402463.

[20] 
Cockburn B, Shu C W. 2001. RungeKutta discontinuousGalerkin methods for convectiondominated problems.Journal of Scientific Computing, 16: 173261.

[21] 
Cockburn B, Shu C W. 2005. Foreword for the special issueon discontinuous Galerkin method. Journal of Scientific Computing, 2223: 13.

[22] 
Cockburn B, Shu C W. 2009. Foreword for the special issueon discontinuous Galerkin method. Journal of Scientific Computing, 40: 13.

[23] 
Dawson C. 2006. Foreword for the special issue on discontinuous Galerkin method. Computer Methods in Applied Mechanics and Engineering, 195: 3183.

[24] 
Du J, Shu C W, Zhang M. 2013. A simple weighted essentially nonoscillatory limiter for the correction procedurevia reconstruction (CPR) framework. submitted to Applied Numerical Mathematics.

[25] 
Einfeldt B, Munz C D, Roe P L, Sjöogreen B. 1991. On GodunovType methods near low densities. Journal of Computational Physics, 92: 273295.

[26] 
Gottlieb S, Ketcheson D, Shu C W. 2011. Strong Stability Preserving RungeKutta and Multistep Time Discretizations, Singapore: World Scientific.

[27] 
Harten A. 1983. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics,49: 357393.

[28] 
Harten A, Lax P D, van Leer B. 1983. On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Review, 25: 3561.

[29] 
Hesthaven J, Warburton T. 2008. Nodal Discontinuous Galerkin Methods, New York: Springer.

[30] 
Hou S, Liu X D. 2007. Solutions of multidimensional hyperbolic systems of conservation laws by square entropycondition satisfying discontinuous Galerkin method.Journal of Scientific Computing, 31: 127151.

[31] 
Hu C, Shu C W. 1999. Weighted essentially nonoscillatorys chemes on triangular meshes. Journal of ComputationalPhysics, 150: 97127.

[32] 
Hu C, Shu C W. 1999. A discontinuous Galerkin finiteelement method for HamiltonJacobi equations. SIAMJournal on Scientific Computing, 21: 666690.

[33] 
Jiang G S, Shu C W. 1994. On cell entropy inequality fordiscontinuous Galerkin methods. Mathematics of Computation, 62: 531538.

[34] 
Jiang G S, Shu C W. 1996. Efficient implementationof weighted ENO schemes. Journal of ComputationalPhysics, 126: 202228.

[35] 
Kanschat G. 2007. Discontinuous Galerkin Methods for Viscous Flow, Wiesbaden Deutscher Universitätsverlag.Klockner A, Warburton T, Bridge J, Hesthaven J. 2010.Nodal discontinuous Galerkin methods on graphics processors. Journal of Computational Physics, 228: 78637882.

[36] 
Krivodonova L, Xin J, Remacle J F, Chevaugeon N, Flaherty J E. 2004. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservationlaws. Applied Numerical Mathematics, 48: 323338.

[37] 
LeVeque R J. 1990. Numerical Methods for Conservation Laws, Basel: Birkhauser Verlag.

[38] 
Li B. 2006. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Basel Birkhauser.

[39] 
Li F, Shu C W. 2005. Reinterpretation and simplifiedimplementation of a discontinuous Galerkin method for HamiltonJacobi equations. Applied Mathematics Letters, 18: 12041209.

[40] 
Liu H, Yan J. 2009. The direct discontinuous Galerkin(DDG) methods for diffusion problems. SIAM Journalon Numerical Analysis, 47: 675698.

[41] 
Liu H, Yan J. 2010. The direct discontinuous Galerkin(DDG) methods for diffusion with interface corrections.Communications in Computational Physics, 8: 541564.

[42] 
Liu X, Osher S, Chan T. 1994. Weighted essentially nonoscillatory schemes. Journal of Computational Physics,115: 200212.

[43] 
Oden J T, Babuvska I, Baumann C E. 1998. A discontinuous hp finite element method for diffusion problems.Journal of Computational Physics, 146: 491519.

[44] 
Perthame B. 1992. Secondorder Boltzmann schemes forcompressible Euler equations in one and two space dimensions. SIAM Journal on Numerical Analysis, 29:119.

[45] 
Perthame B, Shu C W. 1996. On positivity preserving finite volume schemes for Euler equations. NumerischeMathematik, 73: 119130.

[46] 
Qiu J M, Shu C W. 2011. Positivity preserving semiLagrangian discontinuous Galerkin formulation: theoretical analysis and application to the VlasovPoisson system. Journal of Computational Physics, 230: 83868409.

[47] 
Qiu J X, Shu C W. 2003. Hermite WENO schemes andtheir application as limiters for RungeKutta discontinuous Galerkin method: onedimensional case. Journal ofComputational Physics, 193: 115135.

[48] 
Qiu J X, Shu C W. 2005. Hermite WENO schemes andtheir application as limiters for RungeKutta discontinuous Galerkin method Ⅱ: two dimensional case. Computers and Fluids, 34: 642663.

[49] 
Qiu J X, Shu C W. 2005. RungeKutta discontinuousGalerkin method using WENO limiters. SIAM Journalon Scientific Computing, 26: 907929.

[50] 
Qiu J X, Shu C W. 2005. A comparison of troubledcell indicators for RungeKutta discontinuous Galerkinmethods using weighted essentially nonoscillatory limiters. SIAM Journal on Scientific Computing, 27: 9951013.

[51] 
Reed W H, Hill T R. 1973. Triangular mesh methods forthe neutron transport equation, Los Alamos ScientificLaboratory Report LAUR73479, Los Alamos, NMRemacle J F, Flaherty J, Shephard M. 2003. An adaptivediscontinuous Galerkin technique with an orthogonal basis applied to RayleighTaylor flow instabilities. SIAM Review, 45: 5372.

[52] 
Riviére B. 2008. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Philadelphia: SIAM

[53] 
Rossmanith J A, Seal D C. 2011. A positivitypreserving highorder semiLagrangian discontinuousGalerkin scheme for the VlasovPoisson equations. Journal of Computational Physics, 230: 62036232.

[54] 
Shi J, Hu C, Shu C W. 2002. A technique of treating negative weights in WENO schemes. Journal of Computational Physics, 175: 108127.

[55] 
Shu C W. 1987. TVB uniformly highorder schemes for conservation laws. Mathematics of Computation, 49: 105121.

[56] 
Shu C W. 2009. Discontinuous Galerkin methods: Generalapproach and stability. Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathematics CRM Barcelona, 149201.

[57] 
Shu C W, Osher S. 1988. Efficient implementation of essentially nonoscillatory shockcapturing schemes. Journalof Computational Physics, 77: 439471.

[58] 
Toro E F. 1999. Riemann Solvers and Numerical Methodsfor Fluid Dynamics, Berlin: SpringerVerlag.

[59] 
Wang Z J, Gao H. 2009. A unifying lifting collocation penalty formulation including the discontinuousGalerkin, spectral volume/difference methods for conservation laws on mixed grids. Journal of Computational Physics, 228: 81618186.

[60] 
Wheeler M F. 1978. An elliptic collocationfinite elementmethod with interior penalties. SIAM Journal on Numerical Analysis, 15: 152161.

[61] 
Xing Y, Zhang X, Shu C W. 2010. Positivity preservinghigh order well balanced discontinuous Galerkin methods for the shallow water equations. Advances in Water Resources, 33: 14761493.

[62] 
Xu Y, Shu C W. 2010. Local discontinuous Galerkin methods for highorder timedependent partial differentialequations. Communications in Computational Physics,7: 146.

[63] 
Yan J, Osher S. 2011. A local discontinuous Galerkinmethod for directly solving Hamilton Jacobi equations.Journal of Computational Physics, 230: 232244.

[64] 
Yang Y, Shu C W. 2013. Discontinuous Galerkin method for hyperbolic equations involving ffisingularities:negativeorder norm error estimates and applications.Numerische Mathematik, 124: 753781.

[65] 
Yang Y, Wei D, Shu C W. 2013. Discontinuous Galerkinmethod for Krause's consensus models and pressureless Euler equations. Journal of Computational Physics, 252:109127.

[66] 
Zhang Q, Shu C W. 2010. Stability analysis and a priorierror estimates to the third order explicit RungeKuttadiscontinuous Galerkin method for scalar conservationlaws. SIAM Journal on Numerical Analysis, 48: 10381063.

[67] 
Zhang X, Shu C W. 2010. On maximumprinciplesatisfying high order schemes for scalar conservationlaws. Journal of Computational Physics, 229: 30913120.

[68] 
Zhang X, Shu C W. 2010. On positivity preserving highorder discontinuous Galerkin schemes for compressibleEuler equations on rectangular meshes. Journal of Computational Physics, 229: 89188934.

[69] 
Zhang X, Shu C W. 2011a. Positivitypreserving high orderdiscontinuous Galerkin schemes for compressible Eulerequations with source terms. Journal of ComputationalPhysics, 230: 12381248.

[70] 
Zhang X, Shu C W. 2011b. Maximumprinciplesatisfyingand positivitypreserving high order schemes for conservation laws: Survey and new developments, in: Proceedings of the Royal Society A, 467: 27522776.

[71] 
Zhang X, Shu C W. 2012. A minimum entropy principleof high order schemes for gas dynamics equations. Numerische Mathematik, 121: 545563.

[72] 
Zhang X, Xia Y, Shu C W. 2012. Maximumprinciplesatisfying and positivitypreserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. Journal of Scientific Computing, 50: 2962.

[73] 
Zhang Y, Zhang X, Shu C W. 2013. Maximumprinciplesatisfying second order discontinuous Galerkin schemesfor convectiondiffusion equations on triangular meshes.Journal of Computational Physics, 234: 295316.

[74] 
Zhang Y T, Shu C W. 2009. Third order WENO scheme onthree dimensional tetrahedral meshes. Communicationsin Computational Physics, 5: 836848.

[75] 
Zhong X, Shu C W. 2012. A simple weighted essentially nonoscillatory limiter for RungeKutta discontinuousGalerkin methods. Journal of Computational Physics,232: 397415.

[76] 
Zhu J, Qiu J X, Shu C W, Dumbser M. 2008. RungeKutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes. Journal of ComputationalPhysics, 227: 43304353.

[77] 
Zhu J, Zhong X, Shu C W, Qiu J X. 2013. RungeKutta discontinuous Galerkin method using a new type of WENOlimiters on unstructured meshes. Journal of Computational Physics, 248: 200220.
