Volume 43 Issue 2
Mar.  2013
Turn off MathJax
Article Contents
FAN Jing. Rarefied gas dynamics: Advances and applications[J]. Advances in Mechanics, 2013, 43(2): 185-201. doi: 10.6052/1000-0992-13-018
Citation: FAN Jing. Rarefied gas dynamics: Advances and applications[J]. Advances in Mechanics, 2013, 43(2): 185-201. doi: 10.6052/1000-0992-13-018

Rarefied gas dynamics: Advances and applications

doi: 10.6052/1000-0992-13-018
More Information
  • Corresponding author: FAN Jing
  • Received Date: 2013-03-03
  • Rev Recd Date: 2013-03-19
  • Publish Date: 2013-03-25
  • In this review, we sketch the timeline on the development of rarefied gas dynamics. Major achievements over the past 20-30 years are treated intensively, particularly the great progress and appli-cation of molecular simulation approaches such as the direct simulation Monte Carlo (DSMC) method and the information preservation (IP) method. We summarize the rarefied gas flows in the context of aerospace engineering, vacuum industry, micro-electro-mechanical systems, as well as topics in recent International Symposia on Rarefied Gas Dynamics (2008, 2010 & 2012). Based on these discussions, the subject frontier and several grand challenges associated with applications are pointed out, including accu- rate prediction and experimental verification of hypersonic nonequilibrium three-dimensional flow fields in transition regime, spatially and temporally evolving pattern and measurement of the thermosphere, design and optimization of MEMS with gaseous medium, quantitative design at atomistic level of film deposition in vacuum.

     

  • loading
  • [1]
    Alder B J. 2000. Reflections on the Boltzmann equation. In: T. J. Bartel & M. A. Gallis, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 585, AIP Press, pp. 1-3
    [2]
    Alder B J. 2012. Computer experiments on the onset turbulence. In: M. Mareschal & A. Santos, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 1501, AIP Press, pp. 30-33
    [3]
    Alexander F J, Garcia A L , Alder B J. 1998. Cell size dependence of transport coefficients in stochastic particle algorithms Phys. Fluids, 10: 1540
    [4]
    Bird G A. 1963. Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids, 6: 1518-1519
    [5]
    Bird G A. 1981. Monte Carlo simulation in an engineering context. Progr. Astro. Aero., 74: 239-255
    [6]
    Bird G A. 1990. Application of the DSMC method to the full shuttle geometry. AIAA-Paper 90-1692
    [7]
    Bird G A. 1994. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press
    [8]
    Bird G A. 1997. The initiation of centrifugal instabilities in an axially symmetric flow. In: C. Shen, ed. Rarefied Gas Dynamics, Beijing: Peking Univ. Press, pp. 149-154
    [9]
    Bird G A. 1998. Recent advances and current challenges for DSMC. Computer Math. Applic., 35: 1-14
    [10]
    Bird R B, Stewart W E, Lightfoot E N. 2002 Transport Phenomena. Chemical Industry Press, New York.
    [11]
    Birkhoff G. 1960. Hydrodynamics. 2nd Edition. Princeton: Princeton University Press
    [12]
    Cai C P, Boyd I D, Fan J, et al. 2000. Direct simulation methods for low-speed microchannel flows. J. Thermophys. & Heat Trans., 14: 368-378
    [13]
    Cercignani C. 1998. Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford: Oxford University Press
    [14]
    Chapman S, Cowling T G. 1952. The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press,
    [15]
    Dufty J. 2012. Kinetic theory for active and granular gases. In: M. Mareschal & A. Santos, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 1501, AIP Press, p. 11-20
    [16]
    Fan J, Shen C. 1999. Statistical simulation of low-speed unidirectional flows in transition regime. In: R. Brun, ed. Rarefied Gas Dynamics, Toulouse: Cepadus-Editions, Vol. 2, p. 245-252
    [17]
    Fan J, Boyd I D, Shelton C. 2000. Monte carlo modeling of electron beam physical vapor deposition of yttrium. J. Vac. Sci. Technol. A, 18: 2937-2945
    [18]
    Fan J, Shen C. 2001. Statistical simulation of low-speed rarefied gas flows. J. Comput. Phys., 167: 393-412
    [19]
    Fan J. 2002. A generalized soft-sphere model for Monte Carlo simulation. Phys. Fluids, 14: 4399-4405
    [20]
    樊菁, 刘宏立, 蒋建政等. 2004. 火箭剩余推进剂排放过程的分析与模拟. 力学学报, 36(1): 129-139 (Fan J, Liu HL,Jiang JZ, et al. 2004. Analysis and simulation of discharging residual rocket propellants in orbit. Acta Mechanica Sinica, 36(1): 129-139 (in Chinese))
    [21]
    樊菁, 张羽淮, 蒋建政. 2012. 高超声速稀薄气流微量组分的计算方法. CSTAM 2012-B03-0174.
    [22]
    Fan L S, Tai Y C, Muller R S. 1988. Integrated movable micromechanical structures for sensors and actuators. IEEE Trans. Electron Devices, 35: 724-30
    [23]
    Fei F, Fan J. 2012. Molecular simulation of small Knudsen number flows. In: M. Mareschal & A. Santos, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 1501, AIP Press, pp. 864-871
    [24]
    Fei F, Fan J. 2013. A diffusive information preservation method for small Knudsen number flows. J. Comput. Phys. (accepted)
    [25]
    Gorji M H, Torrilhon M, Jenny P. 2011. Fokker-Planck model for computational studies of monatomic rarefied gas flows. J. Fluid Mech., 680: 574-601
    [26]
    Grantham W L. 1970. Flight results of a 25, 000 foot per second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance NASA TN D-6062.
    [27]
    Gu K, Watkins C B, Koplik J. 2010. Atomistic hybrid DSMC/NEMD method for nonequilibrium multiscale simulations. J. Comput. Phys, 229: 1381-1400
    [28]
    Hadjiconstantinou N G. 2000. Analysis of discretization in the direct simulation Monte Carlo method. Phys. Fluids, 12: 2634-2638
    [29]
    Hassan H A, Hash D B. 1993. A generalized hard-sphere model for Monte Carlo simulations. Phys. Fluids A, 5: 738-774
    [30]
    Hirschfelder J O, Curtiss C F, Bird R B. 1954. Molecular Theory of Gases and Liquids. New York: John Wiley & Sons
    [31]
    Ho C M, Tai Y C. 1998. Micro-electromechanical systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech., 30: 579-612
    [32]
    Kim J G, Kwon O J, Park C. 2008. Modified and expansion of the generalized soft-sphere model to high temperature based on collision integrals. Phys. Fluids, 20: 017105
    [33]
    Koura K, Matsumoto H. 1992. Variable soft sphere molecular model for inverse-power law or Lennard-Jones potential. Phys. Fluids A, 3: 2459-2464
    [34]
    Jenny P, Torrilhon M, Heinz S. 2010. A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion J. Comput. Phys., 229: 1077-1098
    [35]
    Li J, Shen C, Fan J. 2009. IP simulation of micro gas flows under 3-D head sliders. In: T. Abe, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 1084, AIP Press, pp. 1003-1008
    [36]
    李启兵, 徐昆. 2012. 气体动理学格式研究进展. 力学进展, 42(5): 522-537 (Li Q B, Xu K. 2102. Progress in gas-kinetic scheme. Advances in Mechanics, 42(5): 522-537 (in Chinese))
    [37]
    Li Z H, Zhang H X. 2009. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry. J. Comput. Phys., 228: 1116-1138
    [38]
    李帅辉, 舒勇华, 樊菁. 2008. 电子束物理气相沉积钇钛合金薄膜的组分和厚度分布. 中国科学E, 38: 1106-1117 (Li S H, Shu Y H, Fan J. Thickness and component distributions of yttrium-titanium alloy films in multi-electron-beam physical vapor deposition. Sci. China E, 51: 1470-1482 (in Chinese))
    [39]
    Millikan R A. 1923. The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev., 22: 1-23
    [40]
    Masters N D, Ye W. 2007 Octant flux splitting information preservation DSMC method for thermally driven flows. J. Comput. Phys., 226: 2044-2062
    [41]
    Moss J N. 1987. Nonequilibrium effects for hypersonic transitional flows. AIAA Paper 87-0404
    [42]
    Mott-Smith H M. 1951. The solution of the Boltzmann equation for a shock wave. Phys. Rev., 82: 885-892
    [43]
    Muntz E P. 1996. Rarefied gas dynamics. In: J. L. Lumley, A. Acrivos, L. G. Leal & S. Leibovich, ed. Research Trends in Fluid Dynamics, New York: AIP Press, pp. 209-219
    [44]
    Oran E S, Oh C K, Cybyk Z C. 1998. Direct Simulation Monte Carlo: Recent advances and applications, Annu. Rev. Fluid Mech., 30: 403-441
    [45]
    Park C. 1990. Nonequilibrium Hypersonic Aerothermodynamics. Wiley, NewYork.
    [46]
    Pham-Van-Diep G C, Erwin D A, Muntz E P. 1989. Nonequilibrium molecular motion in a hypersonic shock wave. Science, 245: 624-626
    [47]
    Rarefied Gas Dynamics, AIP Conference Proceedings 1084, edited by T. Abe, AIP Press, 2009.
    [48]
    Rarefied Gas Dynamics, AIP Conference Proceedings 1333, edited by D. A. Levin, I. J. Wysong, A, A. L. Garcia, AIP Press, 2011.
    [49]
    Rarefied Gas Dynamics, AIP Conference Proceedings 1501, edited by M. Mareschal & A. Santos, AIP Press, 2012.
    [50]
    沈青, 胡振华, 王岫云. 1970. 黏性薄激波层解59-90公里球头锥空气电离流场. 中国科学院力学研究所207所640分所报告7006.
    [51]
    沈青. 2002. 认识稀薄气体动力学. 力学与实践, 24(6): 1-14 (Shen Q. 2002. Get acquainted with rarefied gas dynamics. Mechanics and Engineering, 24(6): 1-14 (in Chinese))
    [52]
    沈青. 2003. 稀薄气体动力学. 国防工业出版社, 北京
    [53]
    Shen C, Fan J, Xie C. 2003. Statistical simulation of rarefied gas flows in microchannels. J. Comput. Phys. 189: 512-526
    [54]
    Shen C. 2005. Rarefied Gas Dynamics: Fundamentals, Simulations and Micro-flows. Springer, Berlin
    [55]
    Shih J C, Ho C M, Liu J Q, Tai Y C. 1996. Monatomic and polyatomic gas flow through uniform microchannels. ASME-DSC, 59: 197
    [56]
    Sun Q H, Boyd I D. 2004. Drag on a flat plate in low-Reynolds number gas flows. AIAA J., 42: 1066-1072
    [57]
    Tsien H S. 1946. Superaerodynamics, Mechanics of Rarefied Gases. J. Aeronaut. Sci., 13: 653-664
    [58]
    Wagner W. 1992. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys., 66: 1011-1044
    [59]
    Wang R J, Xu K. 2012. The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme. Acta Mech. Sin., 28: 1022-1029
    [60]
    Xu K, Huang J C. 2010. A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys., 229: 7747-7764
    [61]
    Zhang J, Fan J. 2009. Information preservation modelling of Rayleigh-Bénard transition from thermal conduction to convection Rarefied Gas Dynamics, AIP Conference Proceedings 1084, edited by T. Abe , AIP Press, pp. 359-364
    [62]
    Zhang J, Fan J. 2009. Monte Carlo simulation of thermal fluctuations below the onset of Rayleigh-Bénard convection Physical Review E, 79: 056302
    [63]
    Zhang J, Fan J. 2010. Effects of convection and solid wall on the diffusion in microscale convection flows. Phys Fluids, 22: 122005
    [64]
    Zhang J, Fan J, Jiang J Z. 2011. Multiple temperature model for the information preservation method and its application to nonequilibrium gas flows. J. Comput. Phys., 230: 7250-7265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3966) PDF downloads(4687) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return