Volume 42 Issue 6
Nov.  2012
Turn off MathJax
Article Contents
SUN Qixia, YANG Ningning, CAI Xiaobing, HU Gengkai. ADVANCE IN LUNAR SURFACE DUST REMOVAL METHOD BY ELECTRODYNAMIC FIELD[J]. Advances in Mechanics, 2012, 42(6): 785-803. doi: 10.6052/1000-0992-12-054
Citation: SUN Qixia, YANG Ningning, CAI Xiaobing, HU Gengkai. ADVANCE IN LUNAR SURFACE DUST REMOVAL METHOD BY ELECTRODYNAMIC FIELD[J]. Advances in Mechanics, 2012, 42(6): 785-803. doi: 10.6052/1000-0992-12-054

ADVANCE IN LUNAR SURFACE DUST REMOVAL METHOD BY ELECTRODYNAMIC FIELD

doi: 10.6052/1000-0992-12-054
Funds:  The project was supported by the National Natural Science Foundation of China (11002023),the Doctoral Fund of Ministry of Education of China (20091101120004) and Beijing Institute of Technology Science Foundation (20090142011, 2010Y0101).
More Information
  • Corresponding author: CAI Xiaobing; HU Gengkai
  • Received Date: 2012-04-09
  • Rev Recd Date: 2012-06-29
  • Publish Date: 2012-11-25
  • The adhesive dust particles on lunar surface can easily deposit on surfaces of detecting devices, which poses serious problems for moon surface explorations. Dust removal by electrodynamic field is recently considered as an effective method to mitigate dust pollution for future lunar or Mars surface missions. However, lack of full understanding about the mechanism of dust removal limits practical applications of this technique. In this paper, the realization of electrodynamic field by electric curtain (EC) is firstly introduced, then electric field distribution and forces acting on the particles along the EC surface, tribo-charge distribution during particle flow movement, particle movement simulation methods, dust removal efficiency and energy consumption of EC have been discussed. Particle initial leaping processes, generation of tribo-charge within particle flows and factors influencing the dust removal efficiency have been explained and analyzed in detail. The emphasis is also placed on the contribution of static particle charge to its initial leaping process. At last, the future trend of this technique has also been discussed.

     

  • loading
  • 1 Rennilson J, Criswell D. Surveyor observations of lunar horizon glow. Earth, Moon and Planets, 1973, 10(2): 121-142
    2 McCoy J, Criswell D. Evidence for a high altitude distribution of lunar dust. In: Proc. 5th Lunar Science Conference, Houston, Tex, 1974
    3 Park J, Liu Y, Kihm K D, et al. Characterization of lunar dust for toxicological studies I: particle size distribution. Journal of Aerospace Engineering, 2008, 21(4): 266-271  
    4 Heiken G, Vaniman D, French B M, et al. Lunar Source Book: A User’s Guide to The Moon. Cambridge: Cambridge University Press, 1991
    5 Sickafoose A A, Colwell J E, Horányi M, et al. Experimental investigations on photoelectric and triboelectric charging of dust. Journal of Geophysical Research, 2011,106(45): 8343-8356
    6 Pelizzari M A, Criswell D R. Lunar dust transport by photo-electric charging at sunset. In: Proc. Lunar Planet. Sci. Conf. 9th, 1978, 3: 3225
    7 Walbridge E. Lunar photoelectron layer. Journal of Geo- physical Research, 1973, 78(??): 3668-3687  
    8 欧阳自远. 月球科学概论. 北京: 中国宇航出版社, 2005
    9 Walton O R. Adhesion of lunar dust. 2007 NASA/CR—2007-214685
    10 Gold T, Williams G J. Electrostatic transportation of dust on the moon, photon and particle interactions with surfaces in space. Astrophysics and Space Science Library,1973, 37: 557  
    11 Bates J R, Fang P H. Results of solar cell performance on lunar base derived from Apollo missions. Solar Energy Materials Solar Cells, 1992, 26(1-2): 79-84  
    12 Carroll W F, Blair P M. Spacecraft changes: Lunar dust and radiation darkening of surveyor 3 surfaces. Analysis of surveyor 3 Material and photographs, 1971, N72 26731:23
    13 Gaier J R. The effects of lunar dust on eva systems during the apollo missions. 2005, NASA/TM—2005-213610
    14 Wood K. Design of equipment for lunar dust removal.1991, NASA2CR-190014
    15 Tatom F B, Srepel V, Johnson R D, et al. Lunar dust degradation effects and removal/prevention concepts. Northrop/Huntsville Technical Report, 1967, 321
    16 Sims R A, Biris A S, Wilson J D, et al. Development of a transparent self-cleaning dust shield for solar panels. In: Proceedings of the First Joint Meeting IEEE-IAS and Electrostatics Society of America, Pasadena, California,2000: 814
    17 Calle C I, Buhler C R, Mantovani J G, et al. Electrodynamic shield to remove dust from solar panels on Mars. In: Proceedings of the 41st Space Congress, Cape Canaveral,2004
    18 Calle C I, McFall J L, Buhler C R, et al. Dust particle removal by electrostatic and dielectrophoretic forces with applications to NASA exploration missions. In: Proc. ESA Annual Meeting on Electrostatics, Minneapolis, USA, 2008
    19 Calle C I, Mazumder M K, Immer C D, et al. Controlled particle removal from surfaces by electrodynamic methods for terrestrial, lunar and martian environmental conditions. Journal of Physics: Conference Series, 2008,012073
    20 Masuda S. Advances in Static Electricity. Brussels: Auxilia,1970
    21 Kawamoto H. Electrostatic transport and manipulation of lunar soil and dust. AIP Conference Proceedings, 2008,969(1): 203-212
    22 Kawamoto H, Seki K, Kuromiya N. Mechanism of travelling-wave transport of particles. Journal of Physics D: Applied Physics, 2006, 39(6): 1249-1256  
    23 Kawamoto H. Electrostatic and electromagnetic cleaning of lunar dust adhered to spacesuits. In: Annual Meeting of LEAG, Houston, Texas, 2009
    24 Atten P, Pang H L, Reboud J. Study of dust removal by standing wave electric curtain for application to solar cells on Mars. IEEE Transactions on Industry Applications,2009, 45(1): 75-86  
    25 Mazumder M K, Sims R A, Wilson J D. Transparent selfcleaning dust shield. U.S. Pat. Appl. Publ. 20040055632,2004
    26 Moesner F M, Higuchi T. Traveling electric field conveyor for contactless manipulation of microparts, In: IEEE Industry Applications Society Annual Meeting, 1997, 3:2004-2011
    27 曹红杏, 阮萍, 李婷, 等. 光学系统的月尘防护方法综述. 科 学技术与工程, 2007, 20(7):5310-5315
    28 石晓波, 李运泽, 黄勇, 等. 月尘/月壤环境效应地面模拟方 法研究. 空间科学学报, 2007, 27(1): 66-71
    29 刘雪峰. 月尘防护原理研究: [学士论文]. 北京: 北京理工大 学, 2008
    30 袁亚飞, 刘民, 析向春. 电帘除尘技术的研究现状. 航天器工 程, 2010,19(5):89-94
    31 袁亚飞, 刘民, 杨亦强. 火星太阳电池翼除尘方法综述. 航天 器环境工程, 2010, (5): 604-607
    32 Hemstreet J M. Velocity distribution on the Masuda panel. Journal of Electrostatics, 1985, 17(3): 245-254  
    33 Liu G, Marshall J S. Particle transport by standing waves on an electric curtain. Journal of Electrostatics, 2010,68(4): 289-298  
    34 Mazumder M K, Sharma R, Biris A S, et al. Self-cleaning transparent dust shields for protecting solar panels and other devices. Particulate Science and Technology, 2007,25(1):5-20  
    35 Masuda S, Washizu M, Iwadare M. Separation of small particles suspended in liquid by nonuniform traveling field. IEEE Transactions on Industry Applications, 1987, 23(3):474-480  
    36 Masuda S, Tsutomu K. Approximate methods for calculating a non-uniform travelling field. Journal of Electro- statics, 1975, 1(4): 351-370  
    37 孙旗霞, 杨宁宁, 肖志坤, 等. 驻波电帘除尘效率的实验研究. 航天器工程, 2012, 21(3): 72-79
    38 Machowski W, Balachandran W. Electrodynamic control and separation of charged particles using travelling wave field technique. Journal of Electrostatics, 1997, 40-41:325-330
    39 Liu Y, Park J, Schnare D, et al. Characterization of lunar dust for toxicological studies. II: Texture and shape characteristics. Journal of Aerospace Engineering, 2008,21(4): 272-279
    40 Jones T B. Electromechanics of Particles. Cambridge: Cambridge University Press, 1995
    41 Landau L D, Lifshitz E M. Electrodynamics of Continuous Media. Oxford: Butterworth-Heinemann Ltd, 1984
    42 Lowell J, Truscott W S. Triboelectrification of identical insulators: II. Theory and further experiments. Journal of Physics D: Applied Physics,1986, 19(7): 1281-1298
    43 Kok J F, Lacks D J. Electrification of granular systems of identical insulators. Physical Review E, 2009, 79(5):051304  
    44 Lacks D J, Duff N. Nonequilibrium accumulation of surface species and triboelectric charging in single component particulate systems. Physical Review Letters, 2008,100(18): 188305  
    45 Lacks D J, Levandovsky A. Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. Journal of Electrostatics, 2007, 65(2):107-112  
    46 Duff N, Lacks D J. Particle dynamics simulations of triboelectric charging in granular insulator systems. Journal of Electrostatics, 2008, 66(1-2): 51-57  
    47 Forward K M, Lacks D J, Sankaran R M. Charge segregation depends on particle size in triboelectrically charged granular materials. Physical Review Letters, 2009, 102(2):028001  
    48 Zon R V, Cohen E G D. Theorem on the distribution of short-time particle displacements with physical applications. Journal of Statistical Physics, 2006, 123(1): 1-37  
    49 Forward K M, Lacks D J, Sankaran R M. Triboelectric charging of lunar regolith simulant. Journal of Geophysi- cal Research, 2009, 114: A10109-A10111
    50 Greason W D. Investigation of a test methodology for triboelectrification. Journal of Electrostatics, 2000, 49(3-4):245-256
    51 Dudzicz Z. The path of oscillation of dust particles in the field of the electric curtain of the plane type supplied with AC voltage. Journal of Electrostatics, 1989, 23: 207-214  
    52 Liu G Q, Marshall J S. Effect of particle adhesion and interactions on motion by traveling waves on an electric curtain. Journal of Electrostatics, 2010, 68(2): 179-189  
    53 Kawamoto H, Miwa T. Mitigation of lunar dust adhered to mechanical parts of equipment used for lunar exploration. Journal of Electrostatics, 2011, 69(4): 365-369  
    54 Kawamoto H, Uchiyama M, Cooper B L, et al. Mitigation of lunar dust on solar panels and optical elements utilizing electrostatic traveling-wave. Journal of Electrostatics,2011, 69(4): 370-379  
    55 Huang N, Yue G W, Zheng X J. Numerical simulations of a dust devil and the electric field in it. Journal of Geo- physical Research, 2008, 113:D20203  
    56 Sun Q, Yang N, Cai X B, et al. Mechanism of dust removal by a standing wave electric curtain. Science China Physics, Mechanics & Astronomy, 2012, 55(6): 1018-1025  
    57 Calle C I, Buthler C R. Electrodynamic dust shield for solar panels on Mars. In: Lunar and Planetary Science XXXV, League City, Texas, 2004
    58 Biris A S, Saini D. Electrodynamics removal of contaminant particles and its application. In: Conference Record of the 2004 IEEE, IAS, 2004
    59 Calle C I, McFall J M, Buhler C R, et al. Development of an active dust mitigation technology for lunar exploration. In: AIAA Space Conference & Exposition, California,2008
    60 Dudzicz Z. Recording of dust particle oscillation path inside electric curtain by laser diode apparatus. Optica Ap- plicata, 2005, 35(4): 907-912
    61 郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质. 矿物岩石, 2004, 24(4): 14-19
    62 郑永春. 模拟月壤研制与月壤的微波辐射特性研究: [博士论文]. 贵阳: 中国科学院地球化学研究所, 2005
    63 Zheng Y, Wang S, Ouyang Z, et al. CAS-1 lunar soil stimulant. Advances in Space Research, 2009, 43(3): 448-454  
    64 Watanabe H, Ghadiri M, Matsuyama T, et al. New instrument for tribocharge measurement due to single particle impacts. Review of Scientic Instruments, 2007, 78(2):024706-024710  
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2167) PDF downloads(2270) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return