Citation: | WANG Qikun, SUN Ren. ADVANCES IN THE RESEARCH ON “INERTIAL FOCUS OF PARTICLES” AND ITS APPLICATION IN MICROFLUIDICS[J]. Advances in Mechanics, 2012, 42(6): 692-703. doi: 10.6052/1000-0992-12-052 |
1 Segre G, Silberberg A. Radial particle displacements in Poiseuille flow of suspension. Nature, 1961, 189: 209-210
|
2 Carlo D D. Inertial microfluidics. Lab Chip, 2009, 9: 3038-3046
|
3 Carlo D D, Edd J F, Humphry K J, et al. Particle segregation and dynamics in confined flow. Phys. Rev. Lett.,2009, 102: 094503-4
|
4 严宗毅. 低雷诺数流理论. 北京: 北京大学出版社, 2002. 40-48
|
5 Chwang A T, Wu Y T. Hydrodynamics of low-Reynoldsnumber flow, part2, singularity method for stokes flows. J Fluid Mech., 1975, 67: 787-815
|
6 刘大有. 两相流体动力学. 北京: 高等教育出版社, 1993. 25-33
|
7 车得福, 李会雄. 多相流及其应用. 西安: 西安交通大学出版 社, 2007. 80-83
|
8 李战华, 吴健康, 胡国庆, 等. 微流控芯片中的流体流动. 北 京: 科学出版社, 2012. 190-192
|
9 Lumma D, Best A, Gansen A, et al. Flow profile near a wall measured by double-focus fluorescence crosscorrelation. Phys. Rev. E, 2003, 67: 056313
|
10 Joseph P, Tabeling P. Direct measurement of the apparent slip length. Phys. Rev. E, 2005, 71: 035303
|
11 Lauga E. Apparent slip due to the motion of suspended particles in flows of electrolyte solutions. Langmuir, 2004,20: 8924-8930
|
12 Saffman P G. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 1965, 22: 385-400
|
13 Ho B P, Leal L G. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech.,1974, 65: 365-400
|
14 Schonberg J A, Hinch E J. Inertial migration of a sphere in Poiseuille flow. J. Mech. Fluid Mech., 1989, 203: 517-524
|
15 Asmolov E S. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech., 1999, 381: 63-87
|
16 Osiptsov A, Asmolov E S. Asymptotic model of the inertial migration of particles in a dilute suspension flow through the entry region of a channel. Phys. Fluids, 2008,20: 123301
|
17 Chan P C H, Leal L G. The motion of a deformable drop in a second-order fluid. J. Fluid Mech., 1979, 92: 131-170
|
18 Haper S, Hetsroni G. The dynamics of a deformable drop suspended in as unbounded stokes flow. J. Fluid Mech.,1971, 84: 241-257
|
19 Zhao Y, Sharp M K. Finite element analysis of the lift on a slightly deformable and freely rotating and translating cylinder in two-dimensional channel flow. J. Biomech. Eng., 1999, 121: 148-152
|
20 Matas J, Morris J F, Guazzelli E. Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech.,2004, 515: 171-195
|
21 Cho B R, Kim Y W. Lateral migration of neutrallybuoyant particles in a square microchannel at low Reynolds number. In: Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, Vail, Colorado USA, 2009
|
22 Chun B, Ladd A J C. Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys. Fluids., 2006, 18: 031704
|
23 Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Inertial microfluidics for continuous particle filtration and extraction. Micro uid Nano uid., 2009, 7: 217-226
|
24 Hur S C, Choi S E, Kwon S, et al. Inertial focusing of non-sperical microparticles. Phys. Rev. Lett., 2011, 99:044101-3
|
25 Cho S H, Choi H G, Yoo J Y. Direct numerical simulation of fluid flow laden with many particles. J. Multi. Flow,2005, 31: 435-451
|
26 Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Enhanced particle filtration in straight microchannels using shear modulated inertial migration. Phys. Fluids, 2008,20: 101702-4
|
27 Edd J F, Carlo D D, Humphry K J, et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip, 2008, 8: 1262-1264
|
28 Park J, Song S, Jung H. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab. Chip, 2009, 9: 939-948
|
29 Wu Z, Willing B, Bjerketorp J, et al. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip, 2009, 9: 1193-1199
|
30 Berger S A, Talbot L, Yao L S. Flow in curved pipes. Annu. Rev. Fluid Mech., 1983, 15: 461-512
|
31 Squires T M, Quake S R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys., 2005, 77: 977
|
32 Gossett D R, Carlo D D. Particle focusing mechanisms in curving confined flows. Anal. Chem., 2009, 81: 8459-8465
|
33 Seo J, Lean M H, Kole A. Membrane-free microfiltration by asymmetric inertial migration. Appl. Phys. Lett.,2007, 91: 033901-3
|
34 Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip, 2008,8: 1906-1914
|
35 Seo J, Lean M H, Kole A. Membraneless microseparation by asymmetry in curvilinear laminar flows. J. Chro- matogr., A, 2007, 1162: 126-131
|
36 Oozeki N, Ookawara S, Ogawa K, et al. Characterization of microseparator/classifier with a simple arc microchannel. AIChE J., 2009, 55: 24-34
|
37 Carlo D D, Irimia D, Tompkins R G, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U. S. A., 2007,104: 18892-18897
|
38 Carlo D D, Edd J F, Irimia D, et al. Equilibrium separation and filtration of particles using differential inertial focusing. Anal. Chem., 2008, 80: 2204-2211
|
39 Kuntaegowdanahalli S S, Bhagat A A S, Papautsky I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip, 2009, 9: 2973-2980
|
40 黄炜东, 张何, 徐涛, 等. 基于惯性微流原理的微流控芯片用 于血浆分离. 科学通报, 2011, 56(21): 1711-1719
|
41 项楠, 朱晓璐, 倪中华. 惯性效应在微流控芯片中的应用. 化 学进展, 2011, 23(9): 1945-1958
|