Volume 42 Issue 5
Sep.  2012
Turn off MathJax
Article Contents
LI Qibing, XU Kun. PROGRESS IN GAS-KINETIC SCHEME[J]. Advances in Mechanics, 2012, 42(5): 522-537. doi: 10.6052/1000-0992-11-149
Citation: LI Qibing, XU Kun. PROGRESS IN GAS-KINETIC SCHEME[J]. Advances in Mechanics, 2012, 42(5): 522-537. doi: 10.6052/1000-0992-11-149

PROGRESS IN GAS-KINETIC SCHEME

doi: 10.6052/1000-0992-11-149
Funds:  The project was supported by the National Natural Science Foundation of China (10872112, 11172154) and Hong Kong Research Grant Council (621709, 621011).
More Information
  • Corresponding author: LI Qibing
  • Received Date: 2011-10-28
  • Rev Recd Date: 2012-06-08
  • Publish Date: 2012-09-25
  • Recent progress in the development of the gas-kinetic scheme is reviewed in this article, with emphasis laid on the construction of high-order-accurate gas-kinetic flux function for the Navier-Stokes equations and the unified gas-kinetic scheme for flow simulations in the entire Knudsen number regimes. A third-orderaccurate gas-kinetic scheme is presented through the high-order reconstruction of the initial data and the high-order gas evolution model of the gas distribution function. Different from traditional high-order schemes based on Riemann solution, the new scheme not only takes into account the high-order initial reconstruction at a cell interface, but also follows its time evolution, which ensures a high-order time accurate flux function. This study pioneers a new way to construct high accurate time-space coupling CFD method. The unified gaskinetic scheme for arbitrary Knudsen number is developed by direct solving the Boltzmann model equation in the discrete velocity space, where the update of both macroscopic conservative variables and microscopic gas distribution function takes place simultaneously within a time step. The newly developed method is more efficient than existing DVMs, where the continuum flow limit can be easily obtained in the unified scheme due to its hydrodynamic scale part of the flux function. The importance of using a valid physical evolution model in the construction of a numerical method is also discussed. The good performance of gas-kinetic scheme comes mainly from its capability of capturing a rational gas evolution process from an initial discontinuity using gas-kinetic model. The coupling of particle free transport and collision plays an important role here. Through the analysis of dissipative mechanism inside a numerical shock layer, it is realized that the adoption of exact Riemann solution of the Euler equations as a foundation of modern compressible CFD methods has fundamental flaws, and the shock instability at high Mach number simulation is unavoidable. The gas-kinetic scheme follows a valid physical process in the construction of numerical shock structure.

     

  • loading
  • 1 马延文, 傅德薰. 高精度有限差分法与复杂流动的数值模拟. 自然科学进展, 2002, 12(8): 785-793
    2 邓小刚, 刘昕, 毛枚良, 等. 高精度加权紧致非线性格式的研究进展. 力学进展, 2007, 37(3):417-427
    3 高智. 数值摄动算法及其CFD 格式. 力学进展, 2010,40(6):607-633
    4 阎超, 于剑, 徐晶磊, 等. CFD 模拟方法的发展成就与展望. 力学进展, 2011, 41(5):562-589
    5 Chen J, Shu C W. High order schemes for CFD: a review. 计算物理, 2009, 26(5):633-655
    6 张涵信, 沈孟育, 计算流体力学—差分方法的原理和应用. 北京:国防工业出版社, 2003
    7 Pereira J M C, Kobayashi M H, Pereira I C F. A fourthorder-accurate finite volume compact method for the incompressible Navier-Stokes solutions. J. Comput. Phys.,2001, 167:217-243  
    8 Popescu M, Vedder R, Shyy W. A finite volume-based high-order Cartesian cut-cell method for wave propagation. Int. J. Numer. Meth. Fluids, 2008, 56: 1787-1818  
    9 Ben-Artzi M, Falcovitz J. Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge University Press, 2003
    10 Xu K, Prendergast K H. Numerical Navier-Stokes solutions from gas-kinetic theory. J. Comput. Phys., 1994,114(1): 9-17  
    11 Xu K. Gas-Kinetic Schemes for unsteady compressible flow simulations. In: 29th CFD Lecture Series 1998-03 von Kárman Institute for Fluid Dynamics, Belgium, 1998
    12 Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys., 2001, 171: 289-335  
    13 Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 1954,94: 511-525  
    14 Chu C K. Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids, 1965, 8: 12  
    15 Yang J Y, Huang J C. Rarefied flow computations using nonlinear model Boltzmann equations. J. Comput. Phys.,1995, 120(2): 323-39  
    16 Li Z H, Zhang H X. Gas-kinetic numerical studies of threedimensional complex flows on spacecraft re-entry. J. Com-put. Phys., 2009, 228: 1116-1138  
    17 Chen S, Doolen G. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 2998, 30: 329-64
    18 Ohwada T, Kobayashi S. Management of discontinuous reconstruction in kinetic schemes. J. Comput. Phys., 2004,197: 116  
    19 K Xu. A slope-update scheme for compressible flow simulation. J. Comput. Phys., 2002, 178(1): 252-261  
    20 Torrilhon M, Xu K. Stability and consistency of kinetic upwinding for advection-diffusion equations. IMA J. Nu-mer. Anal., 2006, 26: 686-722  
    21 Liu S H, Xu K. Entropy analysis of kinetic flux vector splitting schemes for the compressible Euler equations. Z. Angew. Math. Phys., 2001, 52(1): 62-78  
    22 Xu K, Martinelli L, Jameson A. Gas-kinetic finite volume methods flux-vector splitting and artificial diffusion. J. Comput. Phys., 1995, 120: 48-65  
    23 Mandal J C, Deshpande S M. Kinetic flux vector splitting for Euler equations. Comput. Fluids, 1994, 23(2): 447-78  
    24 Chou S Y, Baganoff D. Kinetic flux-vector splitting for the Navier-Stokes equations. J. Comput. Phys., 1997,130(2): 217-230  
    25 Li Q B, Fu S, Xu K. Application of BGK scheme with kinetic boundary conditions in hypersonic flow. AIAA J.,2005, 43: 2170  
    26 Xu K, Li Z H. Microchannel flows in slip flow regime: BGK-Burnett solutions. J. Fluid Mech., 2004, 513: 87-110  
    27 Xu K, Mao M L, Tang L. A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. J. Comput. Phys., 2005, 203: 405  
    28 Xu K. BGK-based scheme for multicomponent flow calculations. J. Comput. Phys., 1997, 134(1): 122-133  
    29 Lian Y S, Xu K. A gas-kinetic scheme for multimaterial flows and its application in chemical reaction. J. Comput. Phys., 2000, 163: 349-375  
    30 Lian Y S, Xu K. A gas-kinetic scheme for reactive flows. Comput. Fluids, 2000, 29: 725-748  
    31 Li Q B, Fu S, Xu K. A compressible Navier-Stokes flow solver with scalar transport. J. Comput. Phys., 2005, 204:692-714  
    32 Xu K. A kinetic method for hyperbolic-elliptic equations and its application in two-phase flow. J. Comput. Phys.,2001, 166(2): 383-399  
    33 Li Q B, Fu S. A gas-kinetic BGK scheme for gas-water flow. Comput. Math. Appl., 2011, 61: 3639-3652  
    34 Que Y T, Xu K. The study of roll-waves in inclined open channels and solitary wave run-up. Int. J. Numer. Meth-ods Fluids, 2006, 50: 1003-1027  
    35 Ghidaoui M S, Kolyshkin A A, Liang J H, et al. Linear and nonlinear analysis of shallow wakes. J. Fluid Mech.,2006, 548: 309-340  
    36 Xu K. A well-balanced gas-kinteic scheme for the shallow water equations with source terms. J. Comput. Phys.,2002, 178: 533-562  
    37 Luo J, Xu K, Liu N. A well-balanced symplecticitypreserving gas-kinetic scheme for hydrodynamic equations under gravitational field. SIAM J. Sci. Comput., 2011,33(5): 2356-2381  
    38 Tian C L, Xu K, Chan K L, et al, A three-dimensional multidimensional gas kinetic scheme for the Navier-Stokes equations under gravitational fields. J. Comput. Phys.,2007, 226: 2003-2027  
    39 Tang H Z, Xu K, Cai C P. Gas-kinetic scheme for three dimensional magneto hydrodynamics. Numer. Math. Theor. Meth. Appl., 2010, 3(4): 387-404
    40 Xu K. Gas-kinetic theory based flux splitting method for ideal magneto hydrodynamics. J. Comput. Phys., 1999,153(2): 334-352  
    41 Tang H Z, Xu K, A high-order gas-kinetic method for multidimensional ideal magneto hydrodynamics. J. Comput. Phys., 2000, 165(1): 69-88  
    42 Yang J Y, Hsieh T Y, Shi Y H, et al. High order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics. J. Comput. Phys., 2007,227: 967-982  
    43 Liao W, Luo L S, Xu K. Gas-kinetic scheme for continuum and near-continuum hypersonic flows. J. Spacecraft and Rockets, 2007, 44(6): 1232-1240  
    44 Xu K, Liu H. Multiscale gas-kinetic simulation for continuum and near continuum flows. Phys. Rev. E, 2007, E75:016306  
    45 Li Q B, Fu S. Applications of implicit BGK scheme in near-continuum flow. Int. J. Comput. Fluid Dyn., 2006,20(6): 453-461  
    46 毛枚良, 徐昆, 邓小刚. 动能BGK算法在近连续流模拟中的应用. 空气动力学学报, 2005, 23(3): 317
    47 赵建兵, 李启兵, 章光华, 等. 应用BGK 格式数值模拟微槽道中的气体流动. 清华大学学(自然科学版), 2003, 43(8):1083-1087
    48 Xu K. Super-Burnett solutions for Poiseuille flow. Phys. Fluids, 2003, 15(7):2077-2080  
    49 Ohwada T, Xu K. The kinetic scheme for full Burnett equations. J. Comput. Phys., 2004, 201: 315-332  
    50 Xu K, Liu H, Jiang J. Multiple temperature kinetic model for continuum and near continuum flows. Phys. Fluids,2007, 19: 016101  
    51 Xu K. Regularization of the Chapman-Enskog expansion and its description of shock structure. Phys. Fluids, 2002,14(4): L17-20  
    52 Xu K, Tang L. Non-equilibrium BGK model for nitrogen shock structure. Phys. Fluids, 2004, 16: 3824  
    53 Xu K, Liu H W. A Multiple temperature kinetic model and its application to near continuum flows. Commun. Comput. Phys., 2008, 4(5): 1069-1085
    54 Liao W, Peng Y, Luo L S, et al. Modified gas-kinetic scheme for shock structures in argon. Prog. Comput. Fluid Dyn., 2008, 8: 97-108  
    55 Cai C P, Liu D, Xu K. A one-dimensional multipletemperature gas-kinetic BGK scheme for shock wave computation. AIAA J., 2008, 46(5): 1054-1062  
    56 Xu K. A generalized Bhatnagar-Gross-Krook model for nonequilibrium flows. Phys. Fluids, 2008, 20: 026101  
    57 Xu K, He X, Cai C. Multiple temperature kinetic model and gas-kinetic method for hypersonic nonequilibrium flow computations. J. Comput. Phys., 2008, 227: 6779-6794  
    58 Xu K, Guo Z. Generalized gas dynamic equations with multiple translational temperatures. Mod. Phys. Lett. B, 2009, 23: 237-240  
    59 Xu K, Josyula E. A multiple translational temperature model and its shock structure solution. Phys. Rev. E, 71,2005, 71: 056308  
    60 Xu K, Josyula E. Continuum formulation for nonequilibrium shock structure calculation. Commun. Com-put. Phys., 2006, 1(3): 425-450
    61 Li Q B, Fu S. On the internal energy relaxation model for nonequilibrium flow. In: The 2nd International ISCM Symposium and the 12th International EPMESC Conference, Hong Kong - Macao, 2009-11-29-12-03
    62 Ni G X, Jiang S, Xu K. Efficient kinetic schemes for steady and unsteady flow simulations on unstructured meshes. J. Comput. Phys., 2008, 227: 3015-3031  
    63 Kim C, Jameson A. A robust and accurate LED-BGK solver on unstructured adaptive meshes. J. Comput. Phys., 1998, 143(2): 598-627  
    64 Sun X M, He F. A high-order meshless Bhatnagar-Gross-Kross scheme based on point collocation. Chin. Phys. Lett., 2004, 21(2): 233-236  
    65 Jin C Q, Xu K. An adaptive grid method for two dimensional viscous flows. J. Comput. Phys., 2006, 218: 68-81  
    66 Jin C Q, Xu K. A unified moving grid gas-kinetic method in Eulerian space for viscous flow computation. J. Com-put. Phys., 2007, 222: 155-175  
    67 Jin C Q, Xu K. Numerical study of the unsteady aerodynamics of freely falling plates. Commun. Comput. Phys.,2008, 3: 834-851
    68 Ni G, Jiang S, Xu K. Remapping-free ALE-type kinetic method for flow computations. J. Comput. Phys., 2009,228: 3154-3171  
    69 Jing C Q, Xu K, Chen S Z. A three dimensional gas-kinetic scheme with moving mesh for low-speed viscous flow computation. Adv. Appl. Math. Mech., 2010, 2(6): 746-762
    70 Guo Z L, Liu H W, Luo L S, et al. A comparative study of the LBM and GKS methods for 2D near incompressible flows. J. Comput. Phys., 2008, 227: 4955-4976  
    71 Xu K, He X Y. Lattice Boltzmann method and gas-kinetic BGK scheme in the low Mach number viscous flow simulations. J. Comput. Phys., 2003, 190:100-117  
    72 Su M D, Xu K, Ghidaoui M S. Low-speed flow simulation by the gas-kinetic scheme. J. Comput. Phys., 1999,150(1):17-39  
    73 Xu K, Lui S H. Rayleigh-Benard simulation using the gaskinetic Bhatnagar-Gross-Krook scheme in the incompressible limit. Phys. Rev. E, 1999, 60(1): 464-470  
    74 Xu K. Discontinuous Galerkin BGK method for viscous flow equations: one-dimensional systems. SIAM J. Sci. Comput., 2004, 23(6): 1941-1963
    75 Liu H W, Xu K. A Runge-Kutta Discontinuous Galerkin Method for Viscous Flow Equations. J. Comput. Phys.,2007, 224: 1223-1242  
    76 Luo H, Luo L, Xu K. A Discontinuous Galerkin method based on BGK scheme for the Navier-Stokes equations on arbitrary grids. Adv. Appl. Math. Mech., 2009, 1:301-318
    77 Li Q B, Fu S. Application of gas-kinetic BGK scheme in three-dimensional flow. AIAA 2011-386, 49th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando Florida, 2009-01-04-07
    78 李启兵. 应用BGK格式对可压缩混合层的数值研究: [博士论文]. 北京: 清华大学, 2002
    79 Li Q B, Fu S. Numerical simulation of high-speed planar mixing layer. Comput. Fluids, 2003, 32: 1357-1377  
    80 Fu S, Li Q B. Numerical simulation of compressible mixing layers. Int. J. Heat Fluid Flow, 2006, 27: 895-901  
    81 Kerimo J, Girimaji S S. Boltzmann-BGK approach to simulating weakly compressible 2D turbulence: comparison between lattice Boltzmann and gas kinetic methods. J. Turbulence, 2007, 8: N 46  
    82 Liao W, Peng Y, Luo L S. Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence. Phys. Rev. E, 2009, 80: 046702  
    83 Chit O J, Omar A A, Asrar W. Reynolds averaged Navier- Stokes flow computation of RAE2822 airfoil using gaskinetic BGK scheme. IMECS, Hong Kong, 2009-03-18-20
    84 李启兵, 符松. BGK格式与可压缩湍流模拟. 见: 中国力学学会学术大会2009论文摘要集. 中国力学学会学术大会, 郑州, 2009
    85 Li Q B, Tan S, Fu S, et al. Numerical simulation of compressible turbulence with gas-kinetic BGK scheme. In: 13th Asian Congress of Fluid Mechanics, Dhaka, Bangladesh, 2010-12-17-21
    86 Xiong S W, Zhong C W, Zhou C S, et al. Numerical simulation of compressible turbulent flow via improved gaskinetic BGK scheme. Int. J. Numer. Meth. Fluids, 2011,67: 1833-1847  
    87 李素循. 典型外形高超声速流动特征. 长沙: 国防工业出版社, 2007
    88 李锦. 气体动理学BGK格式研究及其在近连续-滑移区域流动中的应用: [硕士论文]. 绵阳:中国空气动力研究与发展中心, 2012
    89 Su M D, Yu J D. A parallel large eddy simulation with unstructured meshes applied to turbulent flow around car side mirror. Comput. Fluids, 2011, 55: 24-28
    90 邓家泉, 谢宇峰, 王现方. 以玻尔兹曼方法模拟潮流. 人民珠江, 2006, 6: 25-28
    91 Kolobov V I, Arslanbekov R R. Towards adaptive kineticfluid simulations of weakly ionized plasmas. J. Comput. Phys.,2012, 231: 839-869  
    92 Li Q B, Xu K, Fu S. A high-order gas-kinetic Navier- Stokes solver. J. Comput. Phys., 2010, 229: 6715-6731  
    93 Yang M, Wang Z J. A parameter-free generalized moment limiter for high-order methods on unstructured grids, AIAA 2009-605, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando Florida, 2009-01-05-08
    94 Li Q B, Fu S. On the multidimensional gas-kinetic BGK scheme. J. Comput. Phys., 2006, 220(532):
    95 Ren Y X, Sun Y T. A multi-dimensional upwind scheme for solving Euler and Navier-Stokes equations. J. Com-put. Phys., 2006, 219: 391-403  
    96 Li Q B, Xu K, Fu S. A new high-order multidimensional scheme. In: 6th International Conference on Computational Fluid Dynamics, St. Petersburg, Russia, 2010-07-12-16
    97 Fan J, Shen C. Statistical simulation of low-speed rarefied gas flows. J. Comput. Phys., 2001, 167: 393-412  
    98 樊菁, 沈青. 微尺度气体流动. 力学进展, 2002, 32(3): 321-336
    99 李志辉, 张涵信. 稀薄流到连续流的气体运动论统一数值算法初步研究. 空气动力学学报, 2000, 18(3): 252-9
    100 李志辉. 从稀薄流到连续流的气体运动论统一数值算法研究: [博士论文]. 四川绵阳: 中国空气动力研究与发展中心,2001
    101 Xu K, Huang J C. A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys., 2010, 229:7747-7764  
    102 Kolobov V I, Arslanbekov R R, Aristov V V, et al. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. J. Comput. Phys., 2007,223: 589-608  
    103 Huang J C, Xu K, Yu P B. A unified gas-kinetic scheme for continuum and rarefied flows III: microflow simulations. Preprint, 2012, http://www.math.ust.hk/ makxu/PAPER/unified-microflow.pdf
    104 Huang J C, Xu K, Yu P B. A unified gas-kinetic scheme for continuum and rarefied flows II: Multi-dimensional cases. Commun. Comput. Phys., 2012, 3(3): 662-690
    105 Wang R J, Xu K. The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme. Acta Mech. Sin. 2012, 28(4): 1022-1029
    106 Chen S Z, Xu K, Li C B, et al. A unified gas kinetic scheme with moving mesh and velocity space adaptation. J. Comput. Phys. 2012, 231(20): 6643-6664
    107 Li J Q, Li Q B, Xu K. Comparison of generalized Riemann solvr and the gas-kinetic scheme for inviscid compressible flow simulations. J. Comput. Phys., 2011, 230: 5080-5099  
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2960) PDF downloads(1896) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return