Volume 42 Issue 5
Sep.  2012
Turn off MathJax
Article Contents
ZHANG Shuai, ZHU Xi, SUN Haitao, XIONG Ying, HOU Hailiang. REVIEW OF RESEARCHES ON COMPOSITE MARINE ROPELLERS[J]. Advances in Mechanics, 2012, 42(5): 620-633. doi: 10.6052/1000-0992-11-147
Citation: ZHANG Shuai, ZHU Xi, SUN Haitao, XIONG Ying, HOU Hailiang. REVIEW OF RESEARCHES ON COMPOSITE MARINE ROPELLERS[J]. Advances in Mechanics, 2012, 42(5): 620-633. doi: 10.6052/1000-0992-11-147

REVIEW OF RESEARCHES ON COMPOSITE MARINE ROPELLERS

doi: 10.6052/1000-0992-11-147
Funds:  The project was supported by the 12th-Five Years Pre-research Foundation of China(4010405030101).
More Information
  • Corresponding author: ZHU Xi
  • Received Date: 2011-10-24
  • Rev Recd Date: 2012-05-01
  • Publish Date: 2012-09-25
  • Composite materials have high strength-to-weight ratios, improved material damping properties, and their fiber orientations can be exploited to tailor the structural deformation. Composites for marine propellers can be used to reduce fluttering and to improve the hydrodynamic efficiency. Researches at home and abroad on composite marine propellers are reviewed and summarized, which reveals that the conventional calculation algorithm of metal propellers is not suitable for the design and prediction of composite marine propellers. The design and calculation of composite marine propellers need the consideration of the wake flow change resulting from the deformation of propeller blades. The mechanism is analyzed with the help of the bending-twisting coupling characteristics of anisotropic composites. In these composites the fibers can be aligned and stacked and a high efficiency propeller can, with suitable blade configuration, thus be achieved. During the study of composite marine propellers, critical factors are identified. Finally the flowchart of design of composite marine propellers is suggested, and further research topics on composite marine propellers are proposed.

     

  • loading
  • 1 Young Y. Fluid-structure interaction analysis of flexible composite marine propellers. Journal of Fluids and Structures,2008, 24:799-818  
    2 王国强, 董世汤. 船舶螺旋桨理论与应用. 哈尔滨:哈尔滨工程大学出版社, 2007. 169
    3 Young Y L. Time-dependent hydroelastic analysis of cavitating propulsors. Journal of Fluids and Structures, 2007,23:269-295  
    4 Kerwin J, Lee C S. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. Transactions Society of Naval Architects and Marine Engineers, 1978, 86:218-253
    5 Kinnas S, Fine N. Theoretical prediction of the midchord and face unsteady propeller sheet cavitations. In:Proceedings of the Fifth International Conference on Numerical Ship Hydrodynamics, Hiroshima, Japan, 1989
    6 Hess J L, Valarezo W. Calculation of steady flow about propellers by means of a surface panel method. In:23rd Aerospace Sciences Meeting, AIAA, Reno, Nevada, 1985.1-8
    7 Lee J T. A potential based panel method for the analysis of marine propellers in steady flow:[PhD Thesis]. Boston:Massachusetts Institute of Technology, 1987, 3-50
    8 唐登海, 董世汤. 船舶螺旋桨周围黏性流场数值预报与流场分析. 水动力学研究与进展, 1997, 12(4):426-436
    9 Funeno I. Analysis of steady viscous flow around a highly skewed propeller. Kansai Society of Naval Architects,1999, 231:1-6
    10 Chen B, Stern F. Computational fluid dynamics of fourquadrant marine-propulsor flow. Journal of Ship Research, 1999, 43(4):218-228
    11 高富东, 潘存云, 蔡汶珊, 等. 基于 CFD 的螺旋桨敞水性能数值分析与验证. 机械工程学报, 2010, 46(8):133-139
    12 郭鹏程, 罗兴锜, 刘胜柱. 基于三维紊流数值计算的离心泵叶轮优化设计. 机械工程学报, 2004, 40(4):181-184
    13 高富东, 姜乐华, 潘存云. 基于计算流体动力学的两栖车辆水动力特性数值计算. 机械工程学报, 2009, 45(5):134-139
    14 Ji B, Luo X W, Wang X, et al. Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller. Journal of Fluids Engineering,2011, 133:0111021-0111028
    15 The Propulsion Committee. Final report and recommendations to the 23rd ITTC. In:Proceedings of 23rd International Towing Tank Conference, 2002. 134-136
    16 Atkinson P, Glover J. Propeller hydroelastic effects.Transactions of Society of Naval Architects and Marine Engineers, 1988, 21:11-21
    17 Kuo J, Vorus W. Propeller blade dynamic stress. In:Tenth Ship Technology and Research(STAR)Symposium.Norfolk, VA 1985. 39-69
    18 Kuo J. Analysis of propeller blade dynamic stresses:[PhD Thesis]. Michigan:The university of Michigan, 1984. 30-90
    19 Jiang C W, Huang T T, Ng R, et al. Propeller hydrodynamic loads and blade stresses and deflections during backing and crashback operations. In:SNAME Propellers/Shafting’91,Virginia Beach, VA, USA, 1991
    20 Lin H, Lin J. Nonlinear hydroelastic behavior of propellers using a finite element method and lifting surface theory.Journal of Marine Science and Technology, 1996, 1(2):114-124  
    21 Georgiev D J, Ikehata M. Hydroelastic effects on propeller blades in steady flow. Journal of SNAJ, 1998. 184.
    22 Young Y L. Hydroelastic modeling of surface-piercing propellers. In:Proceedings of 25th Symposium on Naval Hydrodynamics, St John’s, Canada, 2004
    23 Neugebauer J, Abdel-Maksoud M, Banfred-Braun M.Fluid-structure interaction of propeller. In:IUTAM Symposium on Fluid-structure Interaction in Ocean Engineering, 2008. 191-204
    24 Lin G. Comparative stress-deflection analyses of a thickshell composite propeller blade. Bethesda:David Taylor Research Center, 1991
    25 Searle T, Chudley J, Short D, et al. The composite advantage. In:SNAME Propellers/Shafting’94, Virginia Beach,VA, USA, 1994
    26 Dai C, Fraser J, Coffin P, et al. Hydrodynamic simulation of a passive blade control for tip vortex cavitation control. In:International Conference on Propeller Cavitation, Newcastle Upon Tyne, United Kingdom, 1995
    27 Lin H, Lin J. Strength evaluations of a composite marine propeller blade. Journal of Reinforced Plastics and Composites, 2005, 17:1791-1807
    28 Gowing S, Coffin P, Dai C. Hydrofoil cavitation improvements with elastically coupled composite material. In:25th American Towing Tank Conference, Iowa City, IA,USA, 1998
    29 Young Y L. Hydroelastic response of composite marine propellers. In:Proceedings of Propeller/Shafting 2006 Symposium, SNAME, 2006
    30 Young Y L, Michael T J, Seaver M, et al. Numerical and experimental investigations of composite marine propellers. In:Proceedings of 26th Symposium on Naval Hydrodynamics, Rome, Italy, 2006
    31 Young Y L, Savander B R. Transient hydroelastic analysis of surface-piercing propellers. In:Proceedings of the 7th International Symposium on Cavitation, Ann Arbor,Michigan, 2009
    32 Young Y L. Hydroelastic behavior of flexible composite propellers in wake inflow. In:16th International Conference on Composite Materials, Kyoto, Japan, 2007
    33 Young Y L, Liu Z. Hydroelastic tailoring of composite naval propulsors. In:Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, 2007
    34 Chen B, Neely S, Michael T, et al. Design, fabrication and testing of pitchadapting(flexible)composite propellers. In:the SNAME Propeller/Shafting Symposium, Williamsburg, VA, 2006
    35 Liu Z, Young Y L.Utilization of bend-twist coupling for performance enhancement of composite marine propellers. Journal of Fluids and Structures, 2009, 25:1102-1116  
    36 Motley M R, Liu Z, Young Y L. Utilizing fluid-structure interactions to improve energy efficiency of composite marine propellers in spatially varying wake. Composite Structures, 2009, 90:304-313  
    37 Jose P B, Christian B, Poul A. Hydro-elastic analysis and optimization of a composite marine propeller. Marine Structures, 2010, 23:22-38  
    38 洪毅, 赫晓东. 复合材料船用螺旋桨设计与CFD/FEM计算. 哈尔滨工业大学学报, 2010, 42(3):404-408
    39 Hong Y, He X D, Wang R G, et al. Dynamic responses of composite marine propeller in spatially wake. Polymers& Polymer Composites, 2011, 19(4-5):405-411
    40 Mulcahy N L. Structural design of shape-adaptive composite marine propellers:[Master Thesis]. Australia:University of New South Wales, 2010. 20-120
    41 Mulcahy N L, Prusty B G, Gardiner C P. Flexible composite hydrofoils and propeller blades. International Journal of Small Craft Technology, 2011, 153(B1):39-46
    42 Mulcahy N L, Prusty B G, Gardiner C P. Hydroelastic tailoring of flexible composite propellers. Ships and Offshore Structures, 2010, 5(4):359-370  
    43 Liu Z K. Transient analysis and design of composite structures in multiphase flows:[PhD Thesis]. Princeton:Princeton University, 2008. 15-120
    44 Peter A C, Michael E, Young Y L, et al. Propeller forces and structural response due to crashback. In:Proceedings of the 27th Symposium on Naval Hydrodynamics, Seoul, Korea, 2008
    45 张孝深, 陶守华, 许大五. 组合式增强尼龙船用螺旋桨结构.船舶工程, 1982,(01):51-52
    46 Marsh G. A new start for marine propellers? Reinforced Plastics, 2004, 48(11):34-37
    47 Lin C C, Lee Y J, Hung C S. Optimization and experiment of composite marine propellers. Composite Structures, 2009, 89:206-215  
    48 Stauble U. Advances in submarine propulsion. Naval Forces, 2007, 28
    49 Wozniak C D. Analysis, fabrication, and testing of a composite bladed propeller for a naval academy yard patrol(YP)craft. Annapolis:Naval Academy, 2005
    50 范永忠, 孙康, 吴人洁. 环氧树脂基复合材料的阻尼性能及在降噪上的应用. 研究材料工程, 2000(3):29-35
    51 Harshin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980, 47:329-334  
    52 Lin H J, Tsai J F. Analysis of underwater free vibrations of a composite propeller blade. Journal of Reinforced Plastics and Composites, 2008, 27(5):1-12
    53 Lin H J, Lin J J. Effects of stacking sequences on the hydroelastic behavior of composite propeller blades. In:Proceeding of ICCM-11, Volume I:Composites Applications and Design Gold Coast, Australia, 1997. 757-761
    54 Lee Y J, Lin C C. Optimized design of composite propeller. Mechanics of Advanced Materials and Structures, 2004, 11(1):17-30  
    55 Lin C C, Lee Y J. Stacking sequence optimization of composite laminates using genetic algorithm with local improvement. Composite Structure, 2004, 63:339-345  
    56 Lee Y J, Lin C C, Ji J C, et al. Optimization of a composite rotor blade using a genetic algorithm with local search. Journal of Reinforced Plastics and Composites,2005, 24(16):1759-1769  
    57 Lee Y J, Lin C C. Regression of the response surface of laminated composite structures. Composite Structures,2003, 62:91-105  
    58 Liu Z, Young Y L. Utilization of deformation coupling in self-twisting composite propellers. In:Proceedings of 16th International Conference on Composite Materials, Kyoto,Japan, 2007
    59 Plucinski M, Young Y, Liu Z. Optimization of a selftwisting composite marine propeller using a genetic algorithm. In:Proceedings of 16th international conference on composite materials, Kyoto, Japan, 2007
    60 Young Y L, Motley M R. Influence of material and loading uncertainties on the hydroelastic performance of advanced material propellers. In:Second International Symposium on Marine Propulsors, Hamburg, Germany, 2011
    61 Motley M R, Young Y L. Influence of uncertainties on the response and reliability of self-adaptive composite rotors.Composite Structures, 2011, 94:114-120  
    62 Young Y L, Liu Z, Motley M R. Influence of material anisotropy on the hydroelastic behaviors of composite marine propellers. In:27th Symposium on Naval Hydrodynamics, Seoul, Korea, 2008
    63 Motley M R, Young Y L, Baker J W. Reliability-based design and optimization of self-twisting composite marine rotors. In:Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering,Honolulu, Hawaii, 2009
    64 Young Y L, Baker J W, Motley M R. Reliability-based design and optimization of adaptive marine structures.Composite Structures, 2010, 92:244-253  
    65 Motley M R, Young Y L. Performance-based design and analysis of flexible composite propulsors. Journal of Fluids and Structures, 2011, 27:1310-1325  
    66 Motley M R, Young Y L. Performance-based design of adaptive composite marine propellers. In:28th Symposium on Naval Hydrodynamics Pasadena, California, 2010
    67 Mouritz A, Gellert E, Burchill P, et al. Review of advanced composite structures for naval ships and submarines. Composite Structures, 2001, 53:21-41  
    68 Zetterlind V E, Watkins S E, Spoltman M W. Feasibilitystudy of embedded fiber-optic strain sensing for compos-
    ite propeller blades. In:Proceedings of SPIE2001, 2001,4332:143-152
    69 Zetterlind V E, Watkins S E, Spoltman M W. Fatigue testing of a composite propeller blade using fiber-optic strain sensorsp. IEEE Sensors Journal, 2003, 3(4):393-399  
    70 Seaver M, Trickey S T, Nichols J M. Composite propeller performance monitoring with embedded FBGs. Optical Sciences, 2006, review:1-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3640) PDF downloads(1750) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return