Volume 42 Issue 6
Nov.  2012
Turn off MathJax
Article Contents
CAI Jianchao, YU Boming. Advances in studies of spontaneous imbibition in porous media[J]. Advances in Mechanics, 2012, 42(6): 735-754. doi: 10.6052/1000-0992-11-096
Citation: CAI Jianchao, YU Boming. Advances in studies of spontaneous imbibition in porous media[J]. Advances in Mechanics, 2012, 42(6): 735-754. doi: 10.6052/1000-0992-11-096

Advances in studies of spontaneous imbibition in porous media

doi: 10.6052/1000-0992-11-096
Funds:  The project was supported by the National Natural Science Foundation of China (10932010, 41102080), and the China Postdoctoral Science Foundation (2012T50683).
More Information
  • Corresponding author: YU Boming
  • Received Date: 2011-06-22
  • Rev Recd Date: 2012-11-05
  • Publish Date: 2012-11-25
  • Spontaneous imbibition is a natural phenomenon in porous media extensively occurring in many fields of engineering applications and natural sciences. Thus, the issues on the basic statistics and kinetics of spontaneous imbibition in porous media have become one of hot topics for many years. In this review, progresses in traditionally theoretical researches on Lucas-Washburn (LW) model, Terzaghi model, Handy model, Mattax and Kyte scaled model of dimensionless time, Aronofsky scaled model of normalized recovery and recent advances in the area especially over the last decade are reviewed, including criterion parameters for analyzing the mechanisms of spontaneous imbibition and recent studies on spontaneous imbibition in porous media based on the fractal theory. Brief reviews on numerical simulations and experiments about the influence of factors on the imbibition rate are also addressed. A few of comments are also made on the future research directions and subjects on spontaneous imbibition of Newtonian and non-Newtonian fluids in porous media and fractured porous media with dual-porosity based on the fractal theory and numerical simulations.

     

  • loading
  • 1 Lucas R. Rate of capillary ascension of liquids. Kolloid- Zeitschrift, 1918, 23: 15-22  
    2 Washburn E W. Dynamics of capillary flow. Phys. Rev.,1921, 17(3): 273-283  
    3 Zhmud B V, Tiberg F, Hallstensson K. Dynamics of capillary rise. J. Colloid Interface Sci., 2000, 228: 263-269  
    4 Popescu M N, Ralston J, Sedev R. Capillary rise with velocity-dependent dynamic contact angle. Langmuir,2008, 24(21): 12710-12716  
    5 Alava M, Dubé M, Rost M. Imbibition in disordered media. Adv. Phys., 2004, 53(2): 83-175  
    6 Aronofsky J S, Massé L, Natanson S G. A model for the mechanism of oil recovery from the porous matrix due to water invasion in fractured reservoirs. Trans. AIME,1958, 213: 17-19
    7 Kazemi H, Merrill L S, Porterfield K L, et al. Numerical simulation of water-oil flow in naturally fractured reservoirs. SPEJ., 1976, 16(6): 317-326
    8 Guo B, Schechter D S, Baker R O. An integrated study of imbibition waterflooding in the naturally fractured spraberry trend area reservoirs. SPE 39801, 1998
    9 Graham J W, Richardson J G. Theory and application of imbibition phenomena in recovery of oil. J. Pet. Technol.,1959, 11(2): 65-69
    10 Mattax C C, Kyte J R. Imbibition oil recovery from fractured water-drive reservoir. SPEJ., 1962, 2(2): 177-184
    11 张红玲. 裂缝性油藏中的渗吸作用及其影响因素研究. 油气 采收率技术, 1999, 6(2): 44-48
    12 Li K W, Horne R N. Characterization of spontaneous water imbibition into gas-saturated rocks. SPEJ., 2001, 6(4):375-384
    13 Meleán Y, Broseta D, Blossey R. Imbibition fronts in porous media: Effects of initial wetting fluid saturation and flow rate. J. Pet. Sci. Eng., 2003, 39(3-4): 327-336
    14 Blake T D, Coninck J D. The influence of pore wettability on the dynamics of imbibition and drainage. Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 250(1-3):395-402  
    15 Yildiz H O, Gokmen M, Cesur, Y. Effect of shape factor, characteristic length, and boundary conditions on spontaneous imbibition. J. Pet. Sci. Eng., 2006, 53(3-4):158-170
    16 刘卫东, 姚同玉, 刘先贵, 等. 表面活性剂体系渗吸. 北京: 石 油工业出版社, 2007
    17 Hatiboglu C U, Babadagli T. Oil recovery by countercurrent spontaneous imbibition: Effects of matrix shape factor, gravity, IFT, oil viscosity, wettability, and rock type. J. Pet. Sci. Eng., 2007, 59(1-2): 106-122
    18 Mason G, Fischer H, Morrow N R, et al. Effect of sample shape on counter-current spontaneous imbibition production vs time curves. J. Pet. Sci. Eng., 2009, 66(3-4):83-97
    19 姚同玉, 李继山, 王建, 等. 裂缝性低渗透油藏的渗吸机理及 有利条件. 吉林大学学报(工学版), 2009, 39(4): 937-940
    20 Standnes D C. Calculation of viscosity scaling groups for spontaneous imbibition of water using average diffusivity coefficients. Energy Fuels, 2009, 23(4): 2149-2156  
    21 彭昱强, 何顺利, 郭尚平, 等. 岩心渗透率对亲水砂岩渗吸的 影响. 大庆石油学院学报, 2010, 34(4): 51-56
    22 Hatiboglu C U, Babadagli T. Experimental and visual analysis of co- and counter-current spontaneous imbibition for different viscosity ratios, interfacial tensions, and wettabilities. J. Pet. Sci. Eng., 2010, 70(3-4): 214-228
    23 郁伯铭. 多孔介质输运性质的分形分析研究进展. 力学进展,2003, 33(3): 333-346
    24 Morrow N R, Mason G. Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci., 2001,6(4): 321-337  
    25 Fries N, Dreyer M. An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci., 2008,320(1): 259-263  
    26 Kim E, Whitesides G M. Imbibition and flow of wetting liquids in noncircular capillaries. J. Phys. Chem. B, 1997,101(6): 855-863  
    27 Mandelbrot B B. The Fractal Geometry of Nature. New York: W. H. Freeman, 1982
    28 Wheatcraft S W, Tyler S W. An explanation of scaledependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res., 1988,24(4): 566-578  
    29 Majumdar A. Role of fractal geometry in the study of thermal phenomena. Annu. Rev. Heat Transfer, 1992, 4:51-110
    30 Cai J C, Yu B M, Mei M F, et al. Capillary rise in a single tortuous capillary. Chin. Phys. Lett., 2010, 27(5):054701  
    31 Cai J C, Yu B M, Zou M Q, et al. Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels, 2010, 24(3): 1860-1867  
    32 Benavente D, Lock P, Ángeles García Del Cura M, et al. Predicting the capillary imbibition of porous rocks from microstructure. Transp. Porous Media, 2002, 49(1): 59-76  
    33 Lundblad A, Bergman B. Determination of contact-angle in porous molten-carbonate fuel-cell electrodes. J. Elec- trochem. Soc., 1997, 144(3): 984-987  
    34 Hammecker C, Jeannette D. Modelling the capillary imbibition kinetics in sedimentary rocks: Role of petrographical features. Transp. Porous Media, 1994, 17(3): 285-303  
    35 Leventis A, Verganelakis D A, Halse M R, et al. Capillary imbibition and pore characterisation in cement pastes. Transp. Porous Media, 2000, 39(2): 143-157  
    36 Kirkpatrick S. Percolation and conduction. Rev. Mod. Phys., 1973, 45(4): 574-588  
    37 Barrande M, Bouchet R, Denoyel R. Tortuosity of porous particles. Anal. Chem., 2007, 79(23): 9115-9121  
    38 Terzaghi K. Theoretical Soil Mechanics. New York: Wiley,1943
    39 Lane K S,Washburn S E. Capillary tests by capillarimeter and by soil filled tubes. Proc. Highway Research Board,1946, 26: 460-473
    40 Lu N, Likos W J. Rate of capillary rise in soil. J. Geotech. Geoenvir. Eng., 2004, 130(6): 646-650  
    41 Amico S C, Lekakou C. Axial impregnation of a fiber bundle Part 1: Capillary experiments. Polym. Compos.,2002, 23(2): 249-263  
    42 Amico S C, Lekakou C. Axial impregnation of a fiber bundle. Part 2: Theoretical analysis. Polym. Compos., 2002,23(2): 264-273
    43 Handy L L. Determination of effective capillary pressures for porous media from imbibition data. Pet. Trans. AIME, 1960, 219: 75-80
    44 Schembre J M, Akin S, Castanier L M, et al. Spontaneous water imbibition into diatomite. SPE 46211, 1998
    45 Akin S, Kovscek A R. Imbibition studies of lowpermeability porous media. SPE 54590, 1999
    46 Li K W, Horne R N. An analytical scaling method for spontaneous imbibition in gas-water-rock systems. SPE J., 2004, 9(3): 322-329
    47 Cai J C, You L J, Hu X Y, et al. Prediction of effective permeability in porous media based on spontaneous imbibition effect. Int. J. Mod. Phys. C, 2012, 23(7): 1250054  
    48 Mason G, Fischer H, Morrow N, et al. Correlation for the effect of fluid viscosities on counter-current spontaneous imbibition. J. Pet. Sci. Eng., 2010, 72(1): 195-205  
    49 Rapoport L A. Scaling laws for use in design and operation of water-oil flow models. Trans. AIME, 1955, 204:143-150
    50 Rapoport L A, Leas W J. Properties of linear waterflood. Trans. AIME, 1953, 5(5): 139-148
    51 Zhang X, Morrow N R, Ma S. Experimental verification of a modified scaling group for spontaneous imbibition. SPERE, 1996, 11(4): 280-285
    52 Hamon G, Vidal J V. Scaling-up the capillary imbibition process from laboratory experiments on homogeneous and heterogeneous samples. SPE 15852, 1986
    53 Cuiec L E, Bourbiaux B, Kalaydjian F. Oil recovery by imbibition in low-permeability chalk. SPEFE, 1994, 9(3):200-208
    54 Kazemi H, Gilman J R, El-Sharkaway A M. Analytical and numerical solution of oil recovery from fractured reservoirs with empirical transfer functions. SPERE, 1992, 7(2):219-227
    55 Ma S, Morrow N R, Zhang X. Generalized scaling of spontaneous imbibition data for strongly water-wet systems. Paper 95-138, in Proc. of the 6th Petroleum Conference of the South Saskatchewan Section, the Petroleum Society of CIM, Regina, Saskatchewan, 16-18, October, 1995
    56 Ma S, Morrow N R, Zhang X. Generalized scaling of spontaneous imbibition data for strongly water-wet systems. J. Pet. Sci. Eng., 1997, 18(3-4): 165-178
    57 Arabjamaloei R, Shadizadeh S R. A new approach for specifying imbibition face boundary condition in countercurrent spontaneous imbibition. Petrol. Sci. Tech., 2010,28(18): 1855-1862  
    58 Standnes D C. Scaling spontaneous imbibition of water data accounting for fluid viscosities. J. Pet. Sci. Eng.,2010, 73(1-2): 214-219  
    59 Ma S, Morrow N R, Zhang X, et al. Characterization of wettability from spontaneous imbibition measurements. J. Can. Petrol. Tech., 1999, 38(13): 1-8
    60 Fischer H, Morrow N R. Scaling of oil recovery by spontaneous imbibition for wide variation in aqueous phase viscosity with glycerol as the viscosifying agent. In: Proc. of the 8th International Symposium on Reservoir Wettability and Its Effect on Oil Recovery, Houston TX, 16-18 May, 2004
    61 Gupta A, Civan F. An improved model for laboratory measurement of matrix to fracture transfer function parameters in immiscible displacement. SPE 28929, 1994
    62 Zhou D, Jia L, Kamath J, et al. Scaling of counter-current imbibition processes in low-permeability porous media. J. Pet. Sci. Eng., 2002, 33(1-3): 61-74  
    63 Zhou K, Zhang W, Li Y, et al. Prediction of recovery by spontaneous imbibition in Gas/Liquid/Rock systems. SPE 107355, 2007
    64 Olafuyi O A, Cinar Y, Knackstedt M A, et al. Spontaneous imbibition in small cores. SPE 109724, 2007
    65 Li K W, Horne R N. Generalized scaling approach for spontaneous imbibition: An analytical model. SPEREE,2006, 9 (3): 251-258
    66 Li K W. Scaling of spontaneous imbibition data with wettability included. J. Contam. Hydrol., 2007, 89(3-4): 218-230
    67 Al-Attar H H. Experimental study of spontaneous capillary imbibition in selected carbonate core samples. J. Pet. Sci. Eng., 2010, 70(3-4): 320-326
    68 Reis J, Cil M. A model for oil expulsion by counter-current water imbibition in rocks: One-dimensional geometry. J. Pet. Sci. Eng., 1993, 10(2): 97-107  
    69 Wang R. Gas recovery from porous media by spontaneous imbibition of liquid. [MS Thesis]. Wyoming: University of Wyoming, 1999
    70 Ruth D W, Mason G, Morrow N, et al. The effect of fluid viscosities on counter-current spontaneous imbibition. paper SCA2004-11, 2004
    71 Fischer H, Wo S, Morrow N R. Modeling the effect of viscosity ratio on spontaneous imbibition. SPEREE, 2008,11(3): 577-589
    72 Gallego F, G′omez J P, Civan F. Matrix-to-fracture transfer functions derived from the data of oil recovery, and it’s derivative and integral. J. Pet. Sci. Eng., 2007, 59(3-4):183-194
    73 Matejka M C, Llanos E M, Civan F. Experimental determination of the matrix-to-fracture transfer functions for oil recovery by water imbibition. J. Pet. Sci. Eng., 2002,33(4): 253-264  
    74 Standnes D C. Experimental study of the impact of boundary conditions on oil recovery by co-current and counter-current spontaneous imbibition. Energy Fuels,2004, 18(1): 271-282  
    75 Standnes D C. A single-parameter fit correlation for estimation of oil recovery from fractured water-wet reservoirs. J. Pet. Sci. Eng., 2010, 71(1-2): 19-22  
    76 Chen J, Miller M A, Sepehrnoori K. Theoretical investigation of countercurrent imbibition in fractured reservoir matrix blocks. SPE 29141, 1995
    77 Iffly R, Rousselet D C, Vermeulen J L. Fundamental study of imbibition in fissured oil fields. SPE 4102, 1972
    78 Standnes D C. Scaling group for spontaneous imbibition including gravity. Energy Fuels, 2010, 24(5): 2980-2984  
    79 Babadagli T, Hatiboglu C U, Hamida T. Evaluation of matrix-fracture transfer functions for countercurrent capillary imbibition. SPE92111, 2005
    80 Tavassoli Z, Zimmerman R W, Blunt M J. Analytic analysis for oil recovery during counter-current imbibition in strongly water-wet systems. Transp. Porous Media, 2005,58(1): 173-189  
    81 Viksund B G, Morrow N R, Ma S, et al. Initial water saturation and oil recovery from chalk and sandstone by spontaneous imbibition. paper SCA-9814, 1998
    82 Civan F. Waterflooding of naturally fractured reservoirs: an efficient simulation approach. SPE 25449, 1993
    83 Civan F. A theoretically derived transfer function for oil recovery from fractured reservoirs by waterflooding. SPEREE, 1998, 1(2): 141-147
    84 杨正明, 朱维耀, 陈权, 等. 低渗透裂缝性砂岩油藏渗吸机理 及其数学模型. 江汉石油学院院报, 2001, 23(9): 25-27
    85 Civan F, Rasmussen M L. Asymptotic analytical solutions for imbibition waterfloods in fractured reservoirs. SPEJ.,2001, 6(2): 171-181
    86 Hammecker C, Mertz J D, Fischer C, et al. A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks. Transp. Porous Media, 1993, 12(2):125-141  
    87 Standnes D C. Spontaneous imbibition of water into cylindrical cores with high aspect ratio: numerical and experimental results. J. Pet. Sci. Eng., 2006, 50(2): 151-160  
    88 Høgnesen E J, Standnes D C, Austad T. Experimental and numerical investigation of high temperature imbibition into preferential oil-wet chalk. J. Pet. Sci. Eng.,2006, 53(1-2): 100-112  
    89 Yu L, Evje S, Kleppe H, et al. Spontaneous imbibition of seawater into preferentially oil-wet chalk coresexperiments and simulations. J. Pet. Sci. Eng., 2009,66(3-4): 171-179
    90 Arabjamaloei R, Shadizadeh S, Ekramzadeh M, et al. Numerical model of countercurrent spontaneous imbibition in underbalanced drilling: formation damage investigation. Petrol. Sci. Tech., 2011, 29(16): 1615-1624  
    91 El-Amin M F, Sun S Y. Effects of gravity and inlet/outlet location on a two-phase cocurrent imbibition in porous media. J. Appl. Math., 2011, 2011: 673523
    92 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两 相流驱替数值模拟. 物理学报, 2011, 60(9): 098103
    93 Hatiboglu C U, Babadagli T. Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Phys. Rev. E, 2008, 77: 066311  
    94 Ahrenholz B, Töke J, Lehmann P,et al. Prediction of capillary hysteresis in a porous material using Lattice- Boltzmann methods and comparison to experimental data and a morphological pore network model. Adv. Water Res., 2008, 31(9): 1151-1173  
    95 Kaul S P, Putra E, Schechter D S. Spontaneous imbibition simulation with Rayleigh-Ritz Finite Element method. SPE 90053, 2004
    96 Constantinides G N, Payatakes A C. Network simulation of steady-state two-phase flow in consolidated porous media. AIChE J., 1996, 42(2): 369-382  
    97 Knackstedt M A, Sheppard A P, Sahimi M. Pore network modelling of two-phase flow in porous rock: The effect of correlated heterogeneity. Adv. Water Res., 2001, 24(3-4):257-277
    98 Ghassemzadeh J, Hashemi M, Sartor L, et al. Pore network simulation of imbibition into paper during coating: I. Model development. AIChE J., 2001, 47(3): 519-535
    99 Ghassemzadeh J, Sahimi M. Pore network simulation of fluid imbibition into paper during coating: II. Characterization of paper’s morphology and computation of its effective permeability tensor. Chem. Eng. Sci., 2004,59(11): 2265-2280
    100 Martic G, Gentner F, Seveno D, et al. A molecular dynamics simulation of capillary imbibition. Langmuir,2002, 18(21): 7971-7976  
    101 Supple S, Quirke N. Rapid imbibition of fluids in carbon nanotubes. Phys. Rev. Lett., 2003, 90(21): 214501  
    102 Dimitrov D I, Milchev A, Binder K. Capillary rise in nanopores: Molecular dynamics evidence for the lucaswashburn equation. Phys. Rev. Lett., 2007, 99(5): 054501  
    103 Li K W, Firoozabadi A. Experimental study of wettability alteration to preferential gas-wetting in porous media and its effects. SPE Res. Eval. Eng., 2000, 3(2): 139-149
    104 Li K W, Chow K, Horne N. Influence of initial water saturation on recovery by spontaneous imbibition in gas/water/rock systems and the calculation of relative permeability. SPEREE, 2006, 9(4): 295-301
    105 朱维耀, 鞠岩, 赵明, 等. 低渗透裂缝性砂岩油藏多孔介质渗 吸机理研究. 石油学报, 2002, 23(6): 56-59.
    106 游利军, 康毅力, 陈一健. 致密砂岩含水饱和度建立新方法 —- 毛管自吸法. 西南石油学院学报, 2005, 27(1): 28-31
    107 Blair P M. Calculation of oil displacement by countercurrent water imbibition. SPEJ., 1964, 4(3): 195-202
    108 Zhou X, Morrow N R, Ma S. Interrelationship of wettability, initial water saturation, Aging time and oil recovery by spontaneous imbibition and waterflooding. SPEJ., 2000,5(2): 199-207
    109 Cil M, Reis J C, Miller M A, et al. An examination of countercurrent capillary imbibition recovery from single matrix blocks and recovery predictions by analytical matrix/ fracture transfer functions. SPE 49005, 1998
    110 Li K W, Chow K, Horne R N. Effect of initial water saturation on spontaneous water imbibition. SPE 76727, 2002
    111 游利军, 康毅力. 油气储层岩石毛细管自吸研究进展. 西南 石油大学学报, 2009, 31(4): 112-116
    112 Wang X H, Liu Z F, Wu Q S, et al. Statistical properties for two-dimensional fluid flow in percolation porous media. Physica A, 2002, 311(3-4): 320-326
    113 Schechter D S, Zhou D, Orr F M. Low IFT drainage and imbibition. J. Pet. Sci. Eng., 1994, 11(4): 283-300  
    114 Standnes D C, Austad T. Wettability alteration in carbonates: Low-cost ammonium surfactants based on bioderivatives from the coconut palm as active chemicals to change the wettability form oil-wet to water-wet conditions. Colloids Surf. A: Physicochem. Eng. Aspects,2003, 218(1-3): 161-173  
    115 Yu B M. Analysis of flow in fractal porous media. Appl. Mech. Rev., 2008, 61(5): 050801  
    116 Cai J C, Yu B M, Zou M Q, et al. Fractal analysis of invasion depth of extraneous fluids in porous media. Chem. Eng. Sci., 2010, 65(18): 5178-5186  
    117 杨建, 康毅力, 李前贵, 等. 致密砂岩气藏微观结构及渗流特 征. 力学进展, 2008, 28(2): 229-236
    118 谢和平. 岩土介质的分形孔隙和分形粒子. 力学进展, 1993,23(2): 145-164
    119 Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and formation. Phys. Rev. Lett.,1985, 54 (3): 1325-1328
    120 Krohn C E. Fractal measurements of sandstones, shales, and carbonates. J. Geophys. Res., 1988, 93(B4): 3297-3305
    121 Krohn C E. Sandstone fractal and Euclidean pore volume distributions. J. Geophys. Res., 1988, 93(B4): 3286-3296
    122 Yu B M, Li J H. Some fractal characters of porous media. Fractals, 2001, 9(3): 365-372  
    123 Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol., 1990, 112: 205-216  
    124 Yu B M, Cheng P. A fractal permeability model for bidispersed porous media. Int. J. Heat Mass Transfer,2002, 45(14): 2983-2993  
    125 Roy A, Perfect E, Dunne W M, et al. Fractal characterization of fracture networks: An improved box-counting technique. J. Geophys. Res., 2007, 112: B12201
    126 杨庆红, 谭吕, 蔡建超, 等. 储层微观非均质性定量表征的分 形模型. 地球物理学进展, 2012, 27(2): 603-609
    127 Pfeifer P, Avnir D. Chemistry in nointegral dimensions between two and three. J. Chem. Phys., 1983, 79(7):3369-3558
    128 Li K W. More general capillary pressure and relative permeability models from fractal geometry. J. Contam. Hy- drol., 2010, 111(1-4): 13-24  
    129 Li K W, Zhao H Y. Fractal prediction model of spontaneous imbibition rate. Transp. Porous Media, 2012,91(2): 363-376  
    130 Yu B M. Fractal character for tortuous streamtubes in porous media. Chin. Phys. Lett., 2005, 22(1): 158-160  
    131 Carman P C. Fluid flow through granular beds. Trans. Inst. Chem. Eng., 1937, 15: 150-167
    132 Xu P, Yu B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour., 2008,31(1): 74-81  
    133 Li K W, Horne R N. Fractal modeling of capillary pressure curves for the Geysers rocks. Geothermics, 2006, 35(2):198-207  
    134 Deinert M R, Dathe A, Parlange J Y, et al. Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions. Phys. Rev. E, 2008,77(2): 021203  
    135 Cai J C, Yu B M. Prediction of maximum pore size of porous media based on fractal geometry. Fractals, 2010,18(4): 417-423  
    136 Cai J C, Yu B M. A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media, 2011, 89(2): 251-263  
    137 Gruener S, Hofmann T, Wallacher D, et al. Capillary rise of water in hydrophilic nanopores. Phys. Rev. E, 2009,79(6): 067301  
    138 Laughlin R D, Davis J E. Some aspects of capillary absorption in fibrous textile wicking. Textile Res. J., 1961,31: 904-910  
    139 De Boer J J. The wettability of scoured and dried cotton fabrics. Textile Res. J., 1980, 50(10): 624-631  
    140 Zhuang Q, Harlock S C, Brook D B. Longitudinal wicking of weft knitted fabrics: Part II: Wicking mechanism of knitted fabrics used in undergarments for outdoor activities. J. Textile Inst., 2002, 93(1): 97-107  
    141 Horv′ath V K, Stanley H E. Temporal scaling of interfaces propagating in porous media. Phys. Rev. E, 1995, 52(5):5166-5169  
    142 Kwon T H, Hopkins A E, O’Donnell S E. Dynamic scaling behavior of a growing self-affine fractal interface in a paper-towel-wetting experiment. Phys. Rev. E, 1996,54(1): 685-690  
    143 Lam C H, Horv′ath V K. Pipe network model for scaling of dynamic interfaces in porous media. Phys. Rev. Lett.,2000, 85(6): 1238-1241  
    144 Balankin A S, Paredes R G, Susarrey O, et al. Kinetic roughening and pinning of two coupled interfaces in disordered media. Phys. Rev. Lett., 2006, 96(5): 056101  
    145 Delker T, Pengra D B, Wong P Z. Interface pinning and the dynamics of capillary rise in porous Media. Phys. Rev. Lett., 1996, 76(16): 2902-2905  
    146 Br′u A, Pastor, J.M. Experimental characterization of hydration and pinning in bentonite clay, a swelling, heterogeneous, porous medium. Geoderma, 2006, 134(3-4): 295-305
    147 Karoglou M, Moropoulou A, Giakoumaki A, et al. Capillary rise kinetics of some building materials. J. Colloid Interface Sci., 2005, 284(1): 260-264  
    148 Dub′e M, Rost M, Elder K R, et al. Liquid conservation and nonlocal interface dynamics in imbibition. Phys. Rev. Lett., 1999, 83(8): 1628-1631  
    149 Chen J D, Wilkinson D. Pore-scale viscous fingering in porous media. Phys. Rev. Lett., 1985, 55(18): 1892-1895  
    150 King P. The fractal nature of viscous fingering in porous media. J. Phys. A: Math. Gen., 1987, 20: L529  
    151 Liu Z F, Wang X H, Mao P, et al. Tracer dispersion between two lines in two-dimensional percolation porous media. Chin. Phys. Lett., 2003, 20(11): 1969-1972  
    152 Cai J C, Hu X Y, Standnes D C, et al. An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 414: 228-233  
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3842) PDF downloads(3506) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return