Volume 53 Issue 1
Mar.  2023
Turn off MathJax
Article Contents
Zhang D, Liu L W, Xu P F, Zhao Y Z, Li Q F, Lan X, Zhang F H, Wang L L, Wan X, Zou X, Zeng C J, Xin X Z, Dai W X, Li Y, He Y C, Liu Y J, Leng J S. Study on epoxy-based shape memory polymer composites for Mars explorations. Advances in Mechanics, 2023, 53(1): 239-255 doi: 10.6052/1000-0992-22-041
Citation: Zhang D, Liu L W, Xu P F, Zhao Y Z, Li Q F, Lan X, Zhang F H, Wang L L, Wan X, Zou X, Zeng C J, Xin X Z, Dai W X, Li Y, He Y C, Liu Y J, Leng J S. Study on epoxy-based shape memory polymer composites for Mars explorations. Advances in Mechanics, 2023, 53(1): 239-255 doi: 10.6052/1000-0992-22-041

Study on epoxy-based shape memory polymer composites for Mars explorations

doi: 10.6052/1000-0992-22-041
More Information
  • The Mars exploration mission is a major landmark project in building a powerful aerospace country and a milestone project for China's aerospace to move further into deep space. Advanced materials integrating structures with functions can do a favor. Shape memory polymers and their composites, as typical smart materials, can effectively reduce the payload while achieving autonomous deformation, and have been successfully applied to geosynchronous orbit. Therefore, we investigate the feasibility of applying these new materials to Mars explorations. Firstly, according to the requirements of the “Tianwen-1” mission, a self-deployable flag mechanism was proposed. Then from the perspectives of static tensile mechanical properties, dynamic mechanical analysis and shape memory performance, γ and UV irradiation and long-term storage (temperatures (−196 ℃, 25 ℃ and 85 ℃) for 30 days and −196 ℃ for 457 days) effects on shape memory polymer composites were investigated. Finally, according to the photos from the “Zhurong” rover, the National Flag of China was successfully released, and the flag pattern was clear and distinct. This shows that the shape memory polymer composites have been successfully applied to Mars explorations. In the future, it is expected to assist China’s Mars sample return program and other interstellar exploration missions in diverse structural architectures.

     

  • loading
  • 董聪, 夏人伟. 1996. 智能结构设计与控制中的若干核心技术问题. 力学进展, 026: 166-178 (Dong C, Xia R. 1996. Some key technologies in the design and control of intelligent structures. Advances in Mechanics, 026: 166-178). doi: 10.6052/1000-0992-1996-2-J1996-016
    国家航天局. 2021. 天问一号探测器着陆火星首批科学影像图揭幕. http://www.cnsa.gov.cn/n6758823/n6758838/c6812123/content.html
    欧阳自远, 李春来, 邹永廖. 2010. 嫦娥一号的初步科学成果. 自然杂志, 32: 249-266 (Ou-Yang Z, Li C, Zou Y. 2010. The primary science results from the Chang’e-1 probe. Chinese Journal of Nature, 32: 249-266).
    孙泽洲, 张廷新, 张熇等. 2014. 嫦娥三号探测器的技术设计与成就. 中国科学: 技术科学, 4: 331-343

    Sun Z, Zhang T, Zhang H, et al. The technical design and achievements of Chang’e-3 probe. Science China Technological Sciences, 4: 331-343).
    吴伟仁, 王琼, 唐玉华等. 2017. “嫦娥4号”月球背面软着陆任务设计. 深空探测学报, 4: 111-117 (Wu W, Wang Q, Tang Y, et al. 2017. Design of Chang’e-4 lunar farside soft-landing mission. Journal of Deep Space Exploration, 4: 111-117). doi: 10.15982/j.issn.2095-7777.2017.02.002
    杨庆生, 魏巍, 马连华. 2014. 智能软材料热-电-化-力学耦合问题的研究进展. 力学进展, 44: 201404 (Yang Q, Wei W and Ma L. 2014. Research advances in thermos-electro-chemo-mechanical coupling problem for intelligent soft materials. Advances in Mechanics, 44: 201404). doi: 10.6052/1000-0992-13-091
    张豆, 刘彦菊, 冷劲松. 2021. 纤维增强形状记忆聚合物复合材料及其航天应用. 复合材料学报, 38: 698-711 (Zhang D, Liu Y, Leng J. 2021. Fiber reinforced shape memory polymer composites and their applications in aerospace. Acta Compositae Sinica, 38: 698-711). doi: 10.13801/j.cnki.fhclxb.20201224.002
    Crisp J, Adler M, Matijevic J, et al. 2003. Mars exploration rover mission. Journal of Geophysical Research, 108: E12,8061.
    Erickson J. 2006. Living the dream-an overview of the Mars exploration project. IEEE Robotics & Automation Magazine, 13: 12-18.
    Farley K, Williford K, Stack K, et al. 2020. Mars 2020 mission overview. Space Science Reviews, 216: 1-41. doi: 10.1007/s11214-019-0619-5
    Gao H, Lan X, Liu L, et al. 2017. Study on performances of colorless and transparent shape memory polyimide film in space thermal cycling, atomic oxygen and ultraviolet irradiation environments. Smart Materials and Structures, 26: 095001. doi: 10.1088/1361-665X/aa7bd7
    Gierasch P, Sagan C. 1971. A preliminary assessment of Martian wind regimes. Icarus, 14: 312-318. doi: 10.1016/0019-1035(71)90003-0
    Hassler D, Zeitlin C, Wimmer-Schweingruber R, et al. 2014. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science, 343: 6169.
    Hoffman J, Chaney R, Chaney R, et al. 2008. Phoenix Mars mission—the thermal evolved gas analyzer. Journal of the American Society for Mass Spectrometry, 19: 1377-1383. doi: 10.1016/j.jasms.2008.07.015
    Lakdawalla E. 2018. The design and engineering of curiosity: How the Mars rover performs its job. New York: Springer.
    Lan X, Liu L, Zhang F, et al 2020. World's first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites. Science China Technological Sciences, 63: 1436-1451.
    Lan X, Liu Y, Lv H, et al. 2009. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Materials and Structures, 18: 024002. doi: 10.1088/0964-1726/18/2/024002
    Leng J, Lan X, Liu Y, et al. 2011. Shape-memory polymers and their composites: Stimulus methods and applications. Progress in Materials Science, 56: 1077-1135. doi: 10.1016/j.pmatsci.2011.03.001
    Leng J, Wu X, Liu Y. 2009. Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer. Smart Materials and Strucutres, 18: 095031. doi: 10.1088/0964-1726/18/9/095031
    Leng J, Xie F, Wu X, et al. 2013. Effect of the γ-radiation on the properties of epoxy-based shape memory polymers. Journal of Intelligent Material Systems and Structures, 25: 1256-1263.
    Li C, Liu J, Ren X, et al. 2015. The Chang’e 3 mission overview. Space Science Reviews, 190: 85-101.
    Li F, Liu L, Lan X, et al. 2019. Ground and geostationary orbital qualification of a sunlight-stimulated substrate based on shape memory polymer composite. Smart Materials and Structures, 28: 075023. doi: 10.1088/1361-665X/ab18b7
    Liu T, Liu L, Yu M, et al. 2018. Integrative hinge based on shape memory polymer composites: Material, design, properties and application. Composite Structures, 206: 164-176. doi: 10.1016/j.compstruct.2018.08.041
    Liu T, Zhou T, Yao Y, et al. 2017. Stimulus methods of multi-functional shape memory polymer nanocomposites: A review. Composites Part A:Applied Science and Manufacturing, 100: 20-30. doi: 10.1016/j.compositesa.2017.04.022
    Liu Y, Du H, Liu L, et al. 2014. Shape memory polymers and their composites in aerospace applications: a review. Smart Materials and Structures, 23: 023001. doi: 10.1088/0964-1726/23/2/023001
    Naderi F, McCleese D, Jordan J. 2006. Mars exploration. IEEE Robotics and Automation Magazine, 13: 72-82.
    NASA. 2015. Curiosity's Stars and Stripes. https://mars.nasa.gov/resources/4693/curiositys-stars-and-stripes/.
    NASA. 2020. Messages on Mars Perseverance Rover. https://mars.nasa.gov/mars2020/spacecraft/rover/markings/.
    Qian Y, Xiao L, Wang Q, et al. 2021. China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth and Planetary Science Letters, 561: 116855. doi: 10.1016/j.jpgl.2021.116855
    Taylor E, Jackson G. 2021. Perseverance rover lands on Mars. The Electrochemical Society Interface, 30: 79.
    Tey S, Huang W, Sokolowski W. 2001. Influence of long-term storage in cold hibernation on strain recovery stress of polyurethane shape memory polymer foam. Smart Materials and Structures, 10: 321-325. doi: 10.1088/0964-1726/10/2/318
    Wadhi M, Bonnici M, Handley W. 2021. Pointing and Alignment for the Emirates Mars Mission//IEEE Aerospace Conference (50100), Big Sky, MT, USA, IEEE.
    Wang C, Dai Y, Kou B, Huang W. 2019. Influence of long-term storage on shape memory performance and mechanical behavior of pre-stretched commercial poly (methyl methacrylate) (PMMA). Polymers (Basel), 11: 1978. doi: 10.3390/polym11121978
    Wikipedia. 2021. Climate of Mars. https://en.wikipedia.org/wiki/Climate_of_Mars.
    Zhang D, Liu L, Leng L, Liu Y. 2020. Ultra-light release device integrated with screen-printed heaters for CubeSat's deployable solar arrays. Composite Structures, 232: 111561. doi: 10.1016/j.compstruct.2019.111561
    Zhang D, Liu L, Xu P, et al. 2022. World's first application of a self-deployable mechanism based on shape memory polymer composites in Mars explorations: ground-based validation and on-Mars qualification. Smart Materials and Structures, 31(11): 115008.
    Zheng Y. 2020. Mars exploration in 2020. The Innovation, 1: 100036.
    Zou Y, Zhu Y, Bai Y, et al. 2021. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission. Advances in Space Research, 67: 812-823. doi: 10.1016/j.asr.2020.11.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1810) PDF downloads(268) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return