留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于推进的三种爆轰波的结构特征

范宝春 张旭东 潘振华 归明月

范宝春, 张旭东, 潘振华, 归明月. 用于推进的三种爆轰波的结构特征[J]. 力学进展, 2012, 42(2): 162-169. doi: 10.6052/1000-0992-2012-2-20120204
引用本文: 范宝春, 张旭东, 潘振华, 归明月. 用于推进的三种爆轰波的结构特征[J]. 力学进展, 2012, 42(2): 162-169. doi: 10.6052/1000-0992-2012-2-20120204
FAN Baochun, ZHANG Xudong, PAN Zhenhua, GUI Mingyue. FUNDAMENTAL CHARACTERISTICS OF THREE TYPES OF DETONATION WAVES UTILIZED IN PROPULSION[J]. Advances in Mechanics, 2012, 42(2): 162-169. doi: 10.6052/1000-0992-2012-2-20120204
Citation: FAN Baochun, ZHANG Xudong, PAN Zhenhua, GUI Mingyue. FUNDAMENTAL CHARACTERISTICS OF THREE TYPES OF DETONATION WAVES UTILIZED IN PROPULSION[J]. Advances in Mechanics, 2012, 42(2): 162-169. doi: 10.6052/1000-0992-2012-2-20120204

用于推进的三种爆轰波的结构特征

doi: 10.6052/1000-0992-2012-2-20120204
基金项目: 国家自然科学基金项目(10872096)资助
详细信息
    通讯作者:

    范宝春

FUNDAMENTAL CHARACTERISTICS OF THREE TYPES OF DETONATION WAVES UTILIZED IN PROPULSION

Funds: The project was supported by the National Natural Science Foundation of China (10872096).
More Information
    Corresponding author: FAN Baochun
  • 摘要: 爆轰发动机研究的关键技术之一是如何将其控制在燃烧室内.根据控制手段的不同,爆轰发动机可大致分为:驻定爆轰发动机、脉冲爆轰发动机和旋转爆轰发动机.存在于燃烧室的爆轰,在宏观和精细结构以及自持机理等方面皆不同于CJ(Chapman Jouget)理论为基础的经典爆轰.本文将对此类无害爆轰的特征结构进行分析、比较与评述,这对了解爆轰理论和研制爆轰发动机是有益的.

     

  • 1 Humphrey H A. An internal-combustion pump and other applications of a new principle. Proceedings of the Institution of Mechanical Engineers, 1909, 77: 1075-1200
    2 Bussing T, Hiukey J B, Kaye L. Pulse detonation engine Preliminary design considerations. AIAA paper 1994-3220, 1994
    3 Roy G E, Frolov S M, Borisov A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci, 2004, 30(6): 545-72
    4 Nikitin V F, Dushin V R, Phylippov Y G, et al. Pulse detonation engines: technical approaches. Acta Astron,2009, 64(2-3): 281-287
    5 Brophy C M, Sinibaldi J O, Damphousse P. Initiator performance for liquid-fueled pulse detonation ngines. AIAA paper 2002-0472, 2002
    6 Ciccarelli G, Johansen C, Hickey M C. Flame acceleration enhancement by distributed ignition points. J Prop Power, 2005, 21(6): 1029-1034
    7 Jackson S I, Shepherd J E. Detonation initiation in a tube via imploding toroidal shock waves. AIAA J, 2008, 46(9):2357-2367
    8 Owens Z C, Hanson R K. Single-cycle unsteady nozzle phenomena in pulse detonation engines. J Prop Power,2006, 23(2): 325-337
    9 Zhu D, Fox D S, Miller R A, et al. Effect of surface impulsive loads on fatigue behavior of constant volume propulsion engine combustor materials. Surface Coatings Tech,2003, 188-189: 13-19
    10 Caldwell N, Glaser A, Gutmark E. Acoustic measurements of multiple pulse detonation engines firing out of phase. AIAA paper 2007-0445, 2007
    11 Ishii K, Kataoka H, Kojima T. Initiation and propagation of detonation waves in combustible high speed flows. Proceedings of the Combustion Institute, 2009, 32: 2323-2330
    12 Vasilev A A, Zvegintsev V I, Nalivaichenko D G. Detonation waves in a reactive supersonic flow. Combustion, Explosion and Shock Waves, 2006, 42(5): 568-581
    13 Yi T H, Wilson D R, Lu F K. Numerical study of unsteady detonation wave propagation in a supersonic combustion chamber. Paper No.10041, 25th International Symposium on Shock Waves, Bangalore, India, 2004. 17-22
    14 潘振华, 范宝春, 归明月, 等. 流动系统中爆轰波传播特性的 数值模拟. 爆炸与冲击, 2010, 30(6): 593-597
    15 Cambier J L, Adelman H, Menees G P. Numerical simulations of an oblique detonation wave engine. J Prop Power,1990, 6(3): 315-323
    16 Ashford S A, Emanuel G. Oblique detonation wave engine performance prediction. J Prop Power, 1996, 12(2):322-327
    17 Sislian J P, Schirmer H, Dudebout R, et al. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets. J Prop Power, 2001,17(3): 599-604
    18 Morris C I, Kamel M R, Hanson R K. Shock-induced combustion in high-speed wedge flows. In: Proc. 27th Symp on Combustion, 1998. 2157-2164
    19 Viguier C, Gourara A, Desbordes D. Three-dimensional structure of stabilization of oblique detonation wave in hypersonic flow. In: Proc. 27th Symp on Combustion1998. 2207-2214
    20 Berlyand A T, Vlasenko V V, Svishchev S V. Stationary and nonstationary wave structures that arise in stabilization of detonation over a compression surface. Combustion, Explosion and Shock Waves, 2001, 37(1): 82–98
    21 Kasahara J, Fujiwara T, Endo T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles. AIAA Journal, 2001, 39(8): 1553-1561
    22 Kamel M B, Morris C I, Stouklov I G, et al. PLIF Imaging of hypersonic reactive flow around blund bodies. In: Proc. 26th Symp on Combustion, 1996. 2909-2915
    23 Kasahara J, Arai T, Chiba S, et al. Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen/krypton mixtures. Proc Combust,2002, 29: 2817-2824
    24 Maeda S, Inada R, Kasahara J, et al. Visualization of the non-steady state oblique detonation wave phenomena around hypersonic spherical projectile. Proc Combust,2011, 33(2): 2343-2349
    25 Choi J Y, Kim D W, Jeung I S, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc Combust, 2007, 31: 2473-2480
    26 Choi J Y, Shin E, Jeung I S. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave. Proc Combust, 2009, 32:2387-2396
    27 Papalexandris M V. A numerical study of wedge-induced detonations. Combustion and Flame, 2002, 120: 526-538
    28 Kaneshige M J. Gaseous detonation initiation and stabilization by hypervelocity projectiles: [Ph D Theses]. California: California Institute of Technology, 1999
    29 Gui M Y, Fan B C, Dong G. Periodic oscillaon and fine structure of wedge-induced oblique detonation waves. Acta Mechanica Sinica, 2011, 27(6): 922-928
    30 Nicholls J A, Dabora E K, Gealler R A. Studies in connection with stabilized gaseous detonations waves. Proc Combust, 1959, 11: 766-772
    31 Voitsekhovskii B V. Stationary detonation. Doklady USSR Academy Sci, 1959, 129(6): 1254-1256
    32 Bykowski F A, Mitrofanov V V, Vedernikov E F. Continuous detonation combustion of fuel–air mixtures. Combustion. Explos. Shock Waves, 1997, 33: 344-353
    33 Bykovskii F A, Zhdan S A, Verdernikov E F. Continuous spin detonation in ducted annular combustors. In: Roy G, Frolov S. eds. Application of Detonation to Propulsion, Torus Press, Moscow, 2004. 174-179
    34 Bykovskii F A, Zhdam S A, Vedernikov E F. Realization and modeling of continuous spin detonation of a hydrogenoxygen mixture in flow-type combustors. Combustion, Explosion, and Shock Waves, 2009, 45(6): 716-728
    35 Lentsch A, Bec R, Serre L. Overview of current French activities on PDRE and continuous detonation wave rocket engines. AIAA 2005-3232, 2005
    36 Wolanski P, Kindracki J, Fujiwara T. An experimental study of small rotating detonation engine. In: Roy G, Frolov S, Sinibaldi J. eds. Pulsed and Continuous Detonations. Moscow: Torus Press, 2006. 332-338
    37 Daniau E, Falempin F, Getin N, et al. Design of a continuous detonation wave engine for space application. AIAA2006-4794, 2006
    38 Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations. Shock Waves, 2009, 19: 1-10
    39 Zhdan S A, Bykovskii F A, Vedernikov E F. Mathmatical modeling of a rotating detonation wave in a hydrogenoxygen mixture. Combustion, Explosion, Shock Waves,2007, 43: 449-459
    40 Pan Z H, Fan B C, Zhang X D, et al. Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combustion and Flame, 2011,158(11): 2220-2228
  • 加载中
计量
  • 文章访问数:  1836
  • HTML全文浏览量:  109
  • PDF下载量:  1391
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-30
  • 修回日期:  2011-07-12
  • 刊出日期:  2012-03-25

目录

    /

    返回文章
    返回