留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动载荷的识别方法

杨智春 贾有

杨智春, 贾有. 动载荷的识别方法[J]. 力学进展, 2015, 45(1): 201502. doi: 10.6052/1000-0992-14-049
引用本文: 杨智春, 贾有. 动载荷的识别方法[J]. 力学进展, 2015, 45(1): 201502. doi: 10.6052/1000-0992-14-049
Zhichun YANG, You JIA. The identification of dynamic loads[J]. Advances in Mechanics, 2015, 45(1): 201502. doi: 10.6052/1000-0992-14-049
Citation: Zhichun YANG, You JIA. The identification of dynamic loads[J]. Advances in Mechanics, 2015, 45(1): 201502. doi: 10.6052/1000-0992-14-049

动载荷的识别方法

doi: 10.6052/1000-0992-14-049
基金项目: 高等学校学科创新引智计划资助项目(B07050)
详细信息
    通讯作者:

    杨智春,男, 博士, 教授, 固体力学博士生导师, 1992 年在西北工业大学获得博士学位

  • 中图分类号: O327

The identification of dynamic loads

More Information
    Corresponding author: Zhichun YANG
  • 摘要: 大多数情况下, 作用在工程结构上的动载荷, 如高性能战斗机在大攻角机动飞行时作用在垂尾结构上的抖振载荷, 是无法直接测量的, 只能通过测试结构在动载荷作用下的动态响应来识别出结构的动载荷. 首先阐述了动载荷识别的基本原理, 然后根据结构模型的特点, 将动载荷识别方法分为确定性结构的动载荷识别方法和不确定性结构的动载荷识别两大类, 对近些年国内外学者在这两方面的研究进展进行述评, 最后针对目前动载荷识别方法研究中所存在的问题, 提出有待深入探讨的课题.

     

  • [1] 陈帅, 杨智春, 李斌, 党会学. 2012. 动载荷时域半解析识别方法. 振动与冲击, 31: 99-104 (Chen S, Yang Z C, Li B, Dang H X. 2012. Semi-analytical method to identify dynamic load in time domain. Journal of Vibration and Shock, 31: 99-104).
    [2] 党会学. 2010. 漩涡破裂及垂尾抖振载荷减缓. [博士论文]. 西安: 西北工业大学(Dang H X. 2010. Vortex breakdown and buffet load alleviation for vertical tail. [PhD Dissertation]. Xi'an: Northwestern Polytechnical University).
    [3] 董会丽. 2007. 基于RBF 神经网络和遗传算法的复合材料层合板、壳载荷识别. [硕士论文]. 南京: 南京航空航天大学(Dong H L. 2007. Load identification for a composite laminated shell using radial base function neural network and genetic algorithm. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics).
    [4] 窦春红, 林金山, 寇兴磊. 2007. 基于BP 神经网络的海洋平台振动载荷识别. 石油矿场机械, 36: 11-15 (Dou C H, Lin J S, Kou X L. 2007. Vibration load identification of offshore platform based on BP neural network. Oil Field Equipment, 36: 11-15).
    [5] 郭荣, 裘剡, 房怀庆, 于钦林. 2013. 频域传递路径分析方法(TPA) 的研究进展. 振动与冲击, 32: 49-55 (Guo R, Qiu S, Fang H Q, Yu Q L. 2013. Advance in studying on transfer path analysis methods in frequency domain. Journal of Vibration and Shock, 32: 49-55).
    [6] 韩旭, 刘杰, 姜潮. 2009. 不确定性结构的动态载荷识别. 见: 中国力学学会学术2009 年论文摘要集 (Han Xu, Liu J, Jiang C. 2009. Dynamic load identification for structures with uncertainty. In: Abstracts of Chinese Conference of Theoretical and Applied Mechanics 2009).
    [7] 贾有, 杨智春. 2013. 一种飞机垂尾抖振载荷识别的新方法. 航空学报, 34: 2333-2340 (Jia Y, Yang Z C. 2013. A new approach to identify Buffet loads for aircraft vertical tail. Acta Aeronautica ET Astronautica Sinica, 34: 2333-2340).
    [8] 姜金辉, 陈国平, 张方. 2009. 多点平稳随机载荷识别方法研究. 振动工程学,4: 162-167 (Jiang J H, Chen G P, Zhang F. 2009. Identification method of multi-point stationary random load. Journal of Vibration Engineering, 4: 162-167).
    [9] 姜金辉. 2010. 分布随机动载荷识别理论与方法. [博士论文]. 南京: 南京航空航天大学(Jiang J H. 2010. Reconstruction of distributed random dynamic loads|Theory and methodology. [PhD Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics).
    [10] 李东升, 张莹, 任亮. 2011. 结构健康监测中的传感器布置方法及评价准则. 力学进展, 41: 39-50 (Li D S, Zhang Y, Ren L. 2011. Sensor deployment for structural health monitoring and their evaluation. Advances in Mechanics, 41: 39-50).
    [11] 刘恒春, 朱德懋, 孙久厚. 1990. 振动载荷识别的奇异值分解法. 振动工程学报, 3: 24-33 (Liu H C, Zhu D M, Sun J H. 1990. A singular value decomposition method for the identification vibration loads. Journal of Vibration Engineering, 3: 24-33)
    [12] 毛玉明, 陈建, 刘靖华. 2012. 考虑模型误差的动载荷反演问题研究. 振动与冲击,31: 16-19 (Mao Y M, Chen J, Liu J H. 2012. Dynamic loading estimation problem with structural model errors. Journal of Vibration and Shock, 31: 16-19).
    [13] 毛玉明, 郭杏林, 吕红彬. 2009. 动载荷反演问题的正则化求解. 见: 第18 届全国结构工程学术会议 论文集. No. I: 378-381 (Mao Y M, Guo X L, Li H B. Regularization solution to inverse problem of dynamic force identification. In: Proceedings of the 18th National Conference on Structural Engineering, No. I: 378-381)
    [14] 梅立泉, 崔维庚. 2010. 面载荷识别的TSVD 正则化方法. 应用力学学报, 27: 140-144 (Mei L Q, Cui W G. 2010. TSVD regularization method for area load reconstruction. Chinese Journal of Applied Mechanics, 27: 140-144).
    [15] 瞿伟廉, 王锦文. 2004. 振动结构动态载荷识别综述. 华中科技大学学报(城市科学版), 4: 1-4 (Qu W L, Wang J W. 2004. Overview of dynamic loading identification for vibratory structure. Journal of Huazhong University of Science and Technology (Urban Science Edition), 4: 1-4).
    [16] 沙瑞华. 2005. 基于神经网络的水电机组动载荷识别研究. [硕士论文]. 大连: 大连理工大学(Sha R H. 2005. Dynamic load identification for turbine generator set based on neural network. [Master Thesis]. Dalian: Dalian University of Technology).
    [17] 田燕, 王菁, 郑海起. 2002. 多载荷识别频响函数矩阵求逆法的改进算法. 军械工程学院学报, 14: 13-17 (Tian Y, Wang J, Zheng H Q. 2002. Improved algorithm of inverse matrix of frequency response function in multi-load identification. Journal of Ordnance Engineering College, 14: 13-17).
    [18] 王济江, 盛美萍, 刘彦森, 陈萍. 2008. 基于统计能量分析理论的结构载荷识别研究. 噪声控制, 32: 77-80 (Wang J J, Sheng M P, Liu Y S, Chen P. 2008. application research on loading identification of structures by Statistical energy analysis method. Noise Control, 32: 77-80).
    [19] 王晓军, 杨海峰, 邱志平等. 2011. 基于Green 函数的动态载荷区间识别方法研究. 固体力学学报, 32: 95-101 (Wang X J, Yang H F, Qing Z P, et al. 2011. Research on interval identification method for dynamic loads based on Green's function. Chinese Journal of Solid Mechanics, 32: 95-101).
    [20] 吴天河, 罗兴隆. 2012. 超高层建筑的风载荷及风洞试验研究. 钢结构, 27: 41-44 (Wu T H, Luo X L. 2012. Study on wind load and wind tunnel test of high-rise building. Steel Construction, 27: 41-44).
    [21] 薛永刚, 谢石林, 张希农. 2010. 复杂结构耦合系统的高频载荷识别. 噪声与振动控制, 2: 96-98 (Xue Y G, Xie S L, Zhang X N. 2010. High-frequency load identification of complex structural coupling System. Noise and Vibration Control, 2: 96-98).
    [22] 杨智春, 陈帅, 金伟. 2012. 飞机垂尾抖振极限载荷预测方法. 振动与冲击, 31: 1-4 (Yang Z C, Chen S, Jin W. 2012. Prediction of ultimate load for aircraft vertical tail buffeting. Journal of Vibration and Shock, 31: 1-4).
    [23] 张磊, 曹跃云, 杨自春, 何元安. 2014. 总体最小二乘正则化算法的载荷识别. 振动与冲击, 33: 159-164 (Zhang L, Cao Y Y, Yang Z C, He Y A. 2014. Load identification using CG-TLS algorithm. Journal of Vibration and Shock, 33: 159-164).
    [24] 周盼, 张权, 率志君, 李玩幽. 2014. 动载荷识别时域方法的研究现状与发展趋势. 噪声与振动控制, 1: 6-11 (Zhou P, Zhang Q, Shuai Z J, Li W Y. 2014. Review of research and development status of dynamic load identification in time domain. Noise and Vibration Control, 1: 6-11).
    [25] Al-Hamadi H M, Soliman S A. 2004. Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electric Power Systems Research, 68: 47-59.
    [26] Bartlett F D, Flannelly W G. 1979. Model verification of force determination for measuring vibratory loads. Journal of the American Helicopter Society, 24: 10-18.
    [27] Batou A, Soize C. 2009a. Identification of stochastic loads applied to a non-linear dynamical system using an uncertain computational model and experimental responses. Computational Mechanics, 43: 559-571.
    [28] Batou A, Soize C. 2009b. Experimental identification of turbulent °uid forces applied to fuel assemblies using an uncertain model and fretting-wear estimation. Mechanical Systems and Signal Processing, 23: 2141-2153.
    [29] Cao X, Sugiyama Y, Mitsui Y. 1998. Application of artificial neural networks to load identification. Computers & Structures, 69: 63-78.
    [30] Chen T C, Lee M H. 2008. Determination of moving tank and missile impact forces on a bridge structure. Defense Science Journal, 58: 752-761.
    [31] Fergyanto E, Gunawan. 2012. Levenberg{Marquardt iterative regularization for the pulse type impact-force reconstruction. Journal of Sound and Vibration, 331: 5424-5434.
    [32] Granger S, Perotin L. 1999. An inverse method for the identification of distributed random excitation acting on a vibrating structure. Part 1: Theory. Mechanical Systems and Signal Processing, 13: 53-65.
    [33] Gupta D K, Dhingra A K. 2013. Input load identification from optimally placed strain gages using D-optimal design and model reduction. Mechanical Systems and Signal Processing, 40: 556-570. Hansen M, Starkey J M. 1990. On predicting and improving the condition of modal-model-based indirect force measurement algorithms. In: Proceedings of the 8th International Modal Analysis Conference, Kissimmee, FL, 115-120.
    [34] Hansen P C. 1998. Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion. Philadelphia: Society for Industrial and Applied Mathematics, 19-172.
    [35] Hansen P C. 1994. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed programs. Numerical Algorithms 6: 1-35.
    [36] Hosseini Fouladi M, Nor M, Jailani M, Kamal Ariffn A, Abdullah S. 2009. Inverse combustion force estimation based on response measurements outside the combustion chamber and signal processing. Mechanical Systems and Signal Processing, 23: 2519-2537.
    [37] Huang C H. 2001. A non-linear inverse vibration problem of estimating the external forces for a system with displacement-dependent parameters. Journal of Sound and Vibration, 248: 789-807.
    [38] Huang C H. 2005. A nonlinear inverse problem in estimating simultaneously the external forces for a vibration system with displacement-dependent parameters. Journal of the Franklin Institute, 342: 793813.
    [39] Huang C H, Shih C C, Kim S. 2009. An inverse vibration problem in estimating the spatial and temporaldependent external forces for cutting tools. Applied Mathematical Modelling, 33: 2683-2698.
    [40] Hwang J S, Kareem A, Kim W J. 2009. Estimation of modal loads using structural response. Journal of Sound and Vibration, 326: 522-539.
    [41] Jacquelin E, Bennani A, Hamelin P. 2003. Force reconstruction: Analysis and regularization of a deconvolution problem. Journal of Sound and Vibration, 265: 81-107.
    [42] Jia Y, Yang Z C, Song Q Z. 2015. Experimental study of random dynamic loads identification based on weighted regularization method. Journal of Sound and Vibration, 342: 113-123.
    [43] Jiang X Q, Hu H Y. 2008. Reconstruction of distributed dynamic loads on an Euler beam via mode-selection and consistent spatial expression. Journal of Sound and Vibration, 316: 122-136.
    [44] Karlsson S E S. 1996. Identification of external structural loads from measured harmonic responses, Journal of Sound and Vibration, 196: 59-74.
    [45] Law S S, Chan T H T, Zeng Q H. 1997. Moving force identification: A time domain method. Journal of Sound and Vibration, 201: 1-22.
    [46] Law S S, Wu S Q, Shi Z Y. 2008. Moving load and prestress identification using wavelet-based method. Journal of Applied Mechanics-Transactions of the ASME, 75: 1-7.
    [47] Leclere Q, Pezerat P, Laulagnet B, Polac L. 2005. Indirect measurement of main bearing loads in an operating diesel engine. Journal of Sound and Vibration, 286: 342-361.
    [48] Lee M H, Chen T C. 2010. Intelligent fuzzy weighted input estimation method for the input force on the plate structure. Structural Engineering and Mechanics, 34: 1-14.
    [49] Lee M H, Chen T C. 2011. Intelligent fuzzy weighted input estimation method for the forces generated by an operating rotating machine. Measurement, 44: 917-926.
    [50] Levenberg K. 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2: 164-168.
    [51] Li Z, Feng Z P, Chu F L. 2014. A load identification method based on wavelet multi-resolution analysis. Journal of Sound and Vibration, 333: 381-391.
    [52] Lifschitz L A, D'Attellis C E. 2005. Input force reconstruction using wavelets with applications to a pulsed plasma thruster. Mathematical and Computer Modeling, 41: 361-369.
    [53] Lin D C. 2012. Adaptive weighting input estimation for nonlinear systems. International Journal of Systems Science, 43: 31-40.
    [54] Lin D C. 2010. Input estimation for nonlinear systems. Inverse Problems in Science and Engineering, 18: 673-689.
    [55] Lin J H, HowsonWP, Williams F W. 2001. Computer simulation of structural random loading identification. Computers and Structures, 79: 375-387.
    [56] Liu Y, Shepard Jr W S. 2005. Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain. Journal of Sound and Vibration, 282: 37-60.
    [57] Liu Y, Shepard Jr W S. 2006. An improved method for the reconstruction of a distributed force acting on a vibrating structure. Journal of Sound and Vibration, 291: 369-387.
    [58] Lourens E, Reynders E, Roeck G D, et al. 2012. An augmented Kalman filter for force identification in structural dynamics. Mechanical Systems and Signal Processing, 27: 446-460.
    [59] Ma C K, Chang J M, Lin D C. 2003. Input forces estimation of beam structures by an inverse method. Journal of Sound and Vibration, 259: 387-407.
    [60] Ma C K, Ho C C. 2004. An inverse method for the estimation of input forces acting on non-linear structural systems. Journal of Sound and Vibration, 275: 953-971.
    [61] Marquardt D W. 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics, 11: 431-441.
    [62] Mao B Y, Xie S L, Xu M L, Zhang X N. 2014. Simulated and experimental studies on identification of impact load with the transient statistical energy analysis method. Mechanical Systems and Signal Processing, 35: 291-306.
    [63] Naets F, Cuadrado J, Desmet W. 2014. Stable force identification in structural dynamics using Kalman filtering and dummy-measurements. Mechanical Systems and Signal Processing, 42: 1-14.
    [64] Nordberg T P, Gustafson I. 2006. Using QR factorization and SVD to solve input estimation Problems in structural dynamics. Computer Methods in Applied Mechanics and Engineering, 195: 5891-5908.
    [65] O'Callahan J, Piergentili F. 1996. Force estimation using operational data. In: Proceedings of the 14th International Modal Analysis Conference (IMAC).
    [66] XIV, USA, 1586-1592.
    [67] Okubo N, Tanabe S, Tatsuno T. 1985. Identification of forces generated by a machine under operating condition. In: Proceedings of the 3rd International Modal Analysis Conference (IMAC).
    [68] Orlando, FL, 920-927.
    [69] Presezniak F, Zavala P A, Steenackers G, et al. 2012. Acoustic source identification using a generalized weighted inverse beamforming technique. Mechanical Systems and Signal Processing, 32: 349-358.
    [70] Ramon E, Moore R, Baker K, Michael J C. 2009. Introduction to interval analysis. Philadelphia: Society for Industrial and Applied Mathematics. Sanchez J, Benaroya H. 2014. Review of force reconstruction techniques, Journal of Sound and Vibration, 333: 2999-3018.
    [71] Schoefs F, Yáñez-Godoy H, Lanata F. 2011. Polynomial chaos representation for identification of mechanical characteristics of instrumented structures. Computer-Aided Civil and Infrastructure Engineering, 26: 173-189.
    [72] Sehlstedt N, Dalenbring M. 2005. Experimental force estimation in a constrained vibrating structure using modal-based methods. Journal of Sound and Vibration, 280: 41-61.
    [73] Sofyan E, Trivailo P M. 2000. Solving aerodynamic load inverse problems using a hybrid FEM-artificial intelligence. In: Proc. of Australasian Matlab Users Conference 2000.
    [74] Sun R J, Chen G P, He H, et al. 2014. The impact force identification of composite stiffened panels under material uncertainty. Finite Elements in Analysis and Design, 81: 38-47.
    [75] Thite A N, Thompson D J. 2006. Selection of response measurement locations to improve inverse force determination. Applied Acoustics, 67: 797-818.
    [76] Tikhonov A N, Arsenin V Y. 1977. Solutions of Ill-posed Problems. Winston and Sons, Washington.
    [77] Trivailo P M, Carn C L. 2006. The inverse determination of aerodynamic loading from structural response data using neural networks. Inverse Problem in Science and Engineering, 4: 379-395.
    [78] Uhl T. 2007. The inverse identification problem and its technical application. Archive of Applied Mechanics, 77: 325-337.
    [79] Wang B T. 2002. Prediction of impact and harmonic forces acting on arbitrary structures: theoretical formulation. Mechanical Systems and Signal Processing, 16: 935-953.
    [80] Wang J, Law S S, Yang Q S. 2013. Sensor placement methods for an improved force identification in state space. Mechanical Systems and Signal Processing, 41: 254-267.
    [81] Wang L J, Han X, Liu J. 2011. An improved iteration method and application to reconstruction of dynamic loads on a plate. Journal of Computational and Applied Mathematics, 235: 4083-4094.
    [82] Wu S Q, Law S S. 2012. Statistical moving load identification including uncertainty. Probabilistic Engineering Mechanics, 29: 70-78.
    [83] Xie S L, Zhang Y H, Xie Q. 2013. Identification of high frequency loads using statistical energy analysis method. Mechanical Systems and Signal Processing, 35: 291-306.
    [84] Yu L, Chan T H. 2007. Recent research on identification of moving loads on bridges. Journal of Sound and Vibration, 305: 3-27.
    [85] Yu L, Chan T H T. 2003. Moving force identification based on the frequency-time domain method. Journal of Sound and Vibration, 261: 329-349.
    [86] Zhang E, Antoni J, Feissel P. 2012. Bayesian force reconstruction with an uncertain model. Journal of Sound and Vibration, 331: 798-814.
    [87] Zheng S F, Zhou L, Lian X M, Li K Q. 2011. Technical note: Coherence analysis of the transfer functions for dynamic force identification. Mechanical Systems and Signal Processing, 25: 2229-2240.
  • 加载中
计量
  • 文章访问数:  3189
  • HTML全文浏览量:  325
  • PDF下载量:  4011
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-10
  • 刊出日期:  2015-08-30

目录

    /

    返回文章
    返回