Study of global bifurcations and chaotic dynamics for high-dimensional nonlinear systems
-
摘要:
综述了Melnikov方法的发展历史, 从1963年苏联学者Melnikov提出该方法开始, 一直到目前广义Melnikov方法的提出和发展. Melnikov方法的发展历程可以概括为3 个阶段, 分别综述了每一个阶段Melnikov方法的扩展和应用, 论述了国内外在该方向的研究现状和所获得的主要结果, 指出了各种Melnikov方法之间的联系、存在的问题和不足. 为了对比两种研究高维非线性系统多脉冲混沌动力学的理论, 本文综述了另外一种全局摄动理论, 即能量相位法, 总结了该方法十几年来的发展历史以及国内外的理论研究成果和工程应用实例, 阐述了能量相位法发展的根源以及与Melnikov方法的内在联系, 比较了能量相位法和广义Melnikov方法两种理论研究对象的差别, 以及各自所存在的不足和问题. 简要论述了能量相位法和广义Melnikov方法的理论体系, 并利用广义Melnikov方法分析了四边简支矩形薄板的多脉冲混沌动力学, 数值模拟进一步验证了理论研究的结果. 最后, 详细综述了两种理论的缺点和不足, 说明今后全局摄动理论的发展方向.
-
关键词:
- 高维非线性系统 /
- 全局分岔 /
- 混沌动力学 /
- 能量相位法 /
- 广义Melnikov方法
Abstract:In this paper, the history of the Melnikov theory is summarized. In 1963, the classical Melnikov method was presented by Melnikov, a Russian scientist. Until now, the Melnikov theory has been extended and developed. The development of the Melnikov method is divided into three historical periods. The extension and application of Melnikov theory are respectively summed up in each historical period, in which the situation of study and main domestic and abroad results in this research field are enumerated. The relationships, problems and deficiencies are pointed out for a variety of Melnikov theories. In addition, another global perturbation method, i.e., energy phase theory, is set forth in order to compare with two theories which are normally used to investigate multi-pulse chaotic motion in the high-dimensional nonlinear systems. The brief history, the theory and the research achievements and engineering applications of the energy phase theory are elucidated. The origin of the energy phase theory and its inherent relations with the Melnikov theory are illustrated. The subject investigated in the energy phase method is contrast with that in the extended Melnikov method to find the difference between them. Disadvantages and open problems are indicated for both the energy phase method and the extended Melnikov method. Furthermore, theoretical frames of these two methods are stated briefly. The multi-pulse chaotic dynamics for a rectangular thin plate, simply supported at the fore-edge, is analyzed by using both of them. Numerical simulation further verifies the analytical prediction. Finally, deficiencies of these two theories are described in detail. The future development direction of the global perturbation theory is demonstrated too.
-
1 Melnikov V K. On the stability of the center for time periodic perturbations. Transactions of the Moscow Mathematical Society, 1963, 12: 1-57 2 Arnold V I. Instability of dynamical systems with several degrees of freedom. Soviet Mathematics, 1964, 5: 581-585 3 Holmes P J. A nonlinear oscillation with a strange attractor. Philosophical Transactions of the Royal Society of London-Series A, Mathematical and Physical Sciences,1979, 292: 419-488 4 Holmes P J. Averaging and chaotic motions in forced oscillations. society for industrial and applied mathematics, Journal on Applied Mathematics, 1980, 38: 65-80 5 Holmes P J, Marsden J E. A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam. Archive for Rational Mechanics and Analysis, 1981, 76: 135-165 6 Holmes P J, Marsden J E. Melnikov's method and Arnold diffusion for perturbations of integrable Hamiltonian systems. Journal of Mathematical Physics, 1982, 23: 669-675 7 Holmes P J, Marsden J E. Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. Indiana University Mathematics Journal, 1983, 32: 273-309 8 Salam F M A. The Melnikov technique for highly dissipative systems. society for industrial and applied mathematics, Journal on Applied Mathematics, 1987, 47: 232-243 9 Robinson C. Horseshoes for autonomous Hamiltonian systems using the Melnikov integral. Ergodic Theory and Dynamical Systems, 1988, 8: 39-49 10 Wiggins S. Global Bifurcations and Chaos. New York: Springer-Verlag, 1988 11 Feng Z C, Sethna P R. Global bifurcation and chaos in parametrically forced systems with one-one resonance. Dynamics and Stability of Systems, 1990, 5: 201-225 12 Kovacic G, Wiggins S. Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation. Physica D, 1992, 57: 185-225 13 Kovacic G. Hamiltonian dynamics of orbits homoclinic to a resonance band. Physics Letters A, 1992, 167:137-142 14 Kovacic G. Dissipative dynamics of orbits homoclinic to a resonance band. Physics Letters A, 1992, 167:143-150 15 Kovacic G. Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems. Journal of Dynamics and Differential Equations, 1993, 5:559-597 16 Kovacic G. Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems. SIMA Journal of Mathematical Analysis, 1995, 26: 1611-1643 17 Camassa R. On the geometry of an atmospheric slow manifold. Physica D, 1995, 84: 357-397 18 Bountis T, Goriely A, Kollmann M. A Melnikov vector for N-dimensional mappings. Physics Letters A, 1995, 206:38-48 19 Vered R K, Yona D, Nathan P. Chaotic Hamiltonian dynamics of particle's horizontal motion in the atmosphere. Physica D, 1997, 106: 389-431 20 Kollmann M, Bountis T. A Melnikov approach to soliton-like solutions of systems of discretized nonlinear Schrodinger equations. Physica D, 1998, 113: 397-406 21 Yagasaki K. Chaotic motions near homoclinic manifolds and resonant tori in quasiperiodic perturbations of planar Hamiltonian systems. Physica D, 1993, 69: 232-269 22 Yagasaki K. Periodic and homoclinic motions in forced, coupled oscillators. Nonlinear Dynamics, 1999, 20: 319-359 23 Yagasaki K. The method of Melnikov for perturbations of multi-degree-of-degree Hamiltonian systems. Nonlinearity,1999, 12: 799-822 24 Yagasaki K. Horseshoe in two-degree-of-freedom Hamiltonian systems with saddle-centers. Archive for Rational Mechanics and Analysis, 2000, 154: 275-296 25 Yagasaki K. Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of freedom Hamiltonian systems with saddle centres. Nonlinearity,2003, 16: 2003-2012 26 Doelman A, Hek G. Homoclinic saddle-node bifurcations in singularly perturbed systems. Journal of Dynamics and Differential Equations, 2000, 12:169-216 27 Li Y G. Singularly perturbed vector and scalar nonlinear Schrodinger equations with persistent homoclinic orbits. Studies in Applied Mathematics, 2002, 109:19-38 28 Li Y G. Homoclinic tubes in discrete nonlinear Schrodinger equation under Hamiltonian perturbations. Nonlinear Dynamics, 2003, 31: 393-434 29 刘曾荣, 戴世强. 正交条件与Melnikov 函数. 应用数学与计 算数学学报, 1990, 4(1): 53-56 30 郭友中, 刘曾荣, 江霞妹, 等. 高阶Melnikov 方法. 应用数 学和力学, 1991, 12(1): 19-30 31 徐振源, 刘曾荣. Sine-Gordon 方程的截断系统的同宿轨道. 力学学报, 1998, 30(3): 292-299 32 赵晓华, 程耀, 陆启韶, 等. 广义Hamilton 系统的研究概况. 力学进展, 1994, 24(3): 289-300 33 赵晓华, 黄克累. 广义Hamilton 系统与高维微分动力系统 的定性研究. 应用数学学报, 1994, 17(2): 182-191 34 Li Y, Mclaughlin D W. Homoclinic orbits and chaos in discretized perturbed NLS systems: Part I. homoclinic orbits. Journal of Nonlinear Science, 1997, 7: 211-269 35 Li Y, Wiggins S. Homoclinic orbits and chaos in discretized perturbed NLS systems: Part II. Symbolic dynamics. Journal of Nonlinear Science, 1997, 7: 315-370 36 Calini A, Ercolani N M, Mclaughlin D W, et al. Melnikov analysis of numerically induced chaos in the nonlinear Schrodinger equation. Physica D, 1996, 89: 227-260 37 Shatah J, Zeng C C. Homoclinic orbits for the perturbed Sine-Gordon equation. Communications on Pure and Applied Mathematics, 2000, LIII: 283-299 38 Zeng C C. Homoclinic orbits for the perturbed nonlinear Schrodinger equation. Communications on Pure and Applied Mathematics, 2000, LIII: 1222-1283 39 Li Y C. Persistent homoclinic orbits for nonlinear Schrodinger equation under singular perturbation. Analysis of PDEs, 2001, 1:1-43 40 Li Y C. Melnikov analysis for a singularly perturbed DSII equation. Studies in Applied Mathematics, 2005, 114:285-306 41 Li Y C. Chaos and shadowing around a heteroclinically tubular cycle with an application to Sine-Gordon equation. Studies in Applied Mathematics, 2006, 116: 145-171 42 Feng Z C, Wiggins S. On the existence of chaos in a class of two-degree-of-freedom, damped, strongly parametrically forced mechanical systems with broken O(2) symmetry. Zeitschrift fur angewandte Mathematik und Physik (ZAMP), 1993, 44: 201-248 43 Feng Z C, Sethna P R. Global bifurcations in the motion of parametrically excited thin plates. Nonlinear Dynamics,1993, 4: 389-408 44 Tien W M, Sri Namachchivaya N, Bajaj A K. Nonlinear dynamics of a shallow arch under periodic excitation-I.1:2 internal resonance. International Journal of Non-Linear Mechanics, 1994, 29: 349-366 45 Tien W M, Sri Namachchivaya N, Malhotra N. Nonlinear dynamics of a shallow arch under periodic excitation-II.1:1 internal resonance. International Journal of Non-Linear Mechanics, 1994, 29: 367-386 46 Kovacic G, Wettergren T A. Homoclinic orbits in the dynamics of resonantly driven coupled pendula. Zeitschrift fur angewandte Mathematik und Physik (ZAMP), 1996,47: 221-264 47 Malhotra N, Sri Namachchivaya N. Global dynamics of parametrically excited nonlinear reversible systems with nonsemisimple 1:1 resonance. Physica D, 1995, 89: 43-70 48 Malhotra N, Sri Namachchivaya N. Chaotic dynamics of shallow arch structures under 1:2 resonance. Journal of Engineering Mechanics, 1997, 6: 612-619 49 Malhotra N, Sri Namachchivaya N. Chaotic motion of shallow arch structures under 1:1 internal resonance. Journal of Engineering Mechanics, 1997, 6: 620-627. 50 Feng Z C, Liew K M. Global bifurcations in parametrically excited systems with zero-to-one internal resonance. Nonlinear Dynamics, 2000, 21: 249-263 51 Yeo M H, Lee W K. Evidences of global bifurcations of imperfect circular plate. Journal of Sound and Vibration,2006, 293:138-155 52 Samoylenko S B, Lee W K. Global bifurcations and chaos in a harmonically excited and undamped circular plate. Nonlinear Dynamics, 2007, 47: 405-419 53 Vakakis A F. Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment. Nonlinear Dynamics,2010, 61: 443-463 54 Xu P C, Jing Z J. Silnikov's orbit in coupled Duffing's systems. Chaos, Solitons and Fractals, 2000, 11: 853-858 55 Zhang W. Global and chaotic dynamics for a parametrically excited thin plate. Journal of Sound and Vibration,2001, 239:1013-1036 56 Zhang W, Tang Y. Global dynamics of the cable under combined parametrical and external excitations. International Journal of Non-Linear Mechanics, 2002, 37: 505-526 57 Zhang W, Wang F X, Yao M H. Global bifurcations and chaotic dynamics in nonlinear non-planar oscillations of a parametrically excited cantilever beam. Nonlinear Dynamics,2005, 40: 251-279 58 Hu X B, Guo B L, Tam H W. Homoclinic orbits for the coupled Schrodinger-Boussinesq equation and coupled Higgs equation. Journal of the Physical Society of Japan,2003, 72: 189-190 59 Guo B L, Chen H L. Homoclinic orbit in a six-dimensional model of a perturbed higher-order nonlinear Schrodinger equation. Communications in Nonlinear Science and Numerical Simulation, 2004, 9: 431-441 60 Du Z D, Zhang W N. Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Computers and Mathematics with Applications, 2005, 50: 445-458 61 Cao D X, Zhang W. Global bifurcations and chaotic dynamics in a string-beam coupled system. Chaos, Solitons and Fractals, 2008, 37: 858-875 62 Zhang W, Zu J W, Wang F X. Global bifurcations and chaotic dynamics for a rotor-active magnetic bearing system with time-varying stiffness. Chaos, Solitons and Fractals, 2008, 35: 586-608 63 Chen H K, Xu Q Y. Bifurcations and chaos of an inclined cable. Nonlinear Dynamics, 2009, 57: 37-55 64 Zhang W, Li S B. Resonant chaotic motions of a buckled rectangular thin plate with parametrically and externally excitations. Nonlinear Dynamics, 2010, 62: 673-686 65 Yu W Q, Chen F Q. Global bifurcations of a simply supported rectangular metallic plate subjected to a transverse harmonic excitation. Nonlinear Dynamics, 2010, 59:129-141 66 Deng G F, Zhu D M. Homoclinic and heteroclinic orbits for near-integrable coupled nonlinear Schrodinger equations. Nonlinear Analysis, 2010, 73: 817-827 67 Kaper T J, Kovacic G. Multi-bump orbits homoclinic to resonance bands. Transactions of the American mathematical Society, 1996, 348: 3835-3887 68 Camassa R, Kovacic G, Tin S K. A Melnikov method for homoclinic orbits with many pulses. Archive for Rational Mechanics and Analysis, 1998, 143:105-193 69 Zhang W, Yao M H. Theories of multi-pulse global bifurcations for high- dimensional systems and applications to cantilever beam. International Journal of Modern Physics B, 2008, 22: 4089-4141 70 Zhang W, Yao M H, Zhang J H. Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam. Journal of Sound and Vibration, 2009, 319: 541-569 71 Zhang J H, Zhang W, Yao M H, et al. Multi-pulse Shilnikov chaotic dynamics for a non-autonomous buckled thin plate under parametric excitation. International Journal of Nonlinear Sciences and Numerical Simulation,2008, 9: 381-394 72 Zhang W, Zhang J H, Yao M H. The Extended Melnikov method for non-autonomous nonlinear dynamical systems and application to multi-pulse chaotic dynamics of a buckled thin plate. Nonlinear Analysis: Real World Applications,2010, 11:1442-1457 73 Zhang W, Zhang J H, Yao M H, et al. Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a laminated composite piezoelectric rectangular plate. Acta Mechanica,2010, 211: 23-47 74 Haller G, Wiggins S. Orbits homoclinic to resonances: the Hamiltonian case. Physics D, 1993, 66: 298-346 75 Haller G. Diffusion at intersecting resonances in Hamiltonian systems. Physics Letters A, 1995, 200: 34-42 76 Haller G, Wiggins S. N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems. Archive for Rational Mechanics and Analysis, 1995, 130: 25-101 77 Haller G, Wiggins S. Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schr¨odinger equation. Physica D, 1995, 85: 311-347 78 Haller G, Wiggins S. Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems. Physica D1996, 90: 319-365 79 Haller G. Universal homoclinic bifurcations and chaos near double resonances. Journal of Statistical Physics,1997, 86: 1011-1051 80 Haller G. Multi-dimensional homoclinic jumping and the discretized NLS equation. Communications in Mathematical Physics, 1998, 193: 1-46 81 Haller G. Homoclinic jumping in the perturbed nonlinear Schr¨odinger equation. Communications on Pure and Applied Mathematics, 1999, LII: 1-47 82 Haller G, Menon G, Rothos V M. Shilnikov manifolds in coupled nonlinear Schr¨odinger equations. Physics Letters A, 1999, 263: 175-185 83 Haller G. Chaos Near Resonance. New York, Springer- Verlag, 1999, 91-158 84 Malhotra N, Sri Namachchivaya N, McDonald R J. Multipulse orbits in the motion of flexible spinning discs. Journal of Nonlinear Science, 2002, 12: 1-26 85 McDonald R J, Sri Namachchivaya N. Pipes conveying pulsating fluid near a 0:1 resonance: Global bifurcations. Journal of Fluids and Structures, 2005, 21: 665-687 86 Yao M H, Zhang W. Multi-pulse shilnikov orbits and chaotic dynamics in nonlinear nonplanar motion of a cantilever beam. International Journal of Bifurcation and Chaos, 2005, 15: 3923-3952 87 Yao M H, Zhang W. Multi-pulse homoclinic orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt. International Journal of Nonlinear Sciences and Numerical Simulation, 2005, 6: 37-45 88 Zhang W, Yao M H. Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt. Chaos, Solitons and Fractals, 2006, 28: 42-66 89 Yao M H, Zhang W. Shilnikov type multi-pulse orbits and chaotic dynamics of a parametrically and externally excited rectangular thin plate. International Journal of Bifurcation and Chaos, 2007, 17: 851-875 90 Zhang W, Gao M J, Yao M H, et al. Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate. Science in China Series G: Physics, Mechanics & Astronomy, 2009, 52: 1989-2000 91 Li S B, Zhang W, Hao Y X. Multi-pulse chaotic dynamics of a functionally graded material rectangular plate with one-to-one internal resonance. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11:351-362 92 Yu W Q, Chen F Q. Global bifurcations and chaos in externally excited cyclic systems. Communications in Nonlinear Science and Numerical Simulation, 2010, 15: 4007-4019 93 Yu W Q, Chen F Q. Orbits homoclinic to resonances in a harmonically excited and undamped circular plate. Meccanica,2010, 45: 567-575 94 Feo O D. Qualitative resonance of Shilnikov-like strange attractors, part I: Experimental evidence. International Journal of Bifurcation and Chaos, 2004, 14: 873-891 95 Feo O D. Qualitative resonance of Shilnikov-like strange attractors, part II: Mathematical analysis. International Journal of Bifurcation and Chaos, 2004, 14: 893-912 96 Zhang W, Yao M H, Zhan X P. Multi-pulse chaotic motions of a rotor-active magnetic bearing system with timevarying stiffness. Chaos, Solitons and Fractals, 2006, 27:175-186 97 Holmes P J. Bifurcations to divergence and flutter in flowinduced oscillations: A finite-dimensional analysis. Journal of Sound and Vibration, 1977, 53: 161-174 98 Holmes P J, Marsden J E. Bifurcations to divergence and flutter in flow-induced oscillations: An infinitedimensional analysis. Automatic, 1978, 14: 367-384 99 Yang X L, Sethna P R. Local and global bifurcations in parametrically excited vibrations nearly square plates. International Journal of Non-linear Mechanics, 1990, 26:199-220 100 Abe A, Kobayashi Y, Yamada G. Two-mode response of simply supported, rectangular laminated plates. International Journal of Non-linear Mechanics, 1998, 33: 675-690 101 Popov A A, Thompson J M, Croll J G. Bifurcation analyses in the parametrically excited vibrations of cylindrical panels. Nonlinear Dynamics, 1998, 17: 205-225 102 Hadian J, Nayfeh A H. Modal interaction in circular plates. Journal of Sound and Vibration, 1990, 142: 279-292 103 Nayfeh T A, Vakakis A F. Subharmonic traveling waves in a geometrically non-linear circular plate. International Journal of Non-linear Mechanics, 1994, 29: 233-245 104 Chang S I, Bajaj A K, Krousgrill C M. Non-linear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance. Nonlinear Dynamics,1993, 4: 433-460 105 Zhang W, Liu Z M, Yu P. Global dynamics of a parametrically externally excited thin plate. Nonlinear Dynamics,2001, 24: 245-268 106 Yu P, Zhang W, Bi Q S. Vibration analysis on a thin plate with the aid of computation of normal forms. International Journal of Non-Linear Mechanics, 2001, 36:597-627 107 Ye M, Sun Y H, Zhang W, et al. Nonlinear oscillations and chaotic dynamics of an antisymmetric cross-ply laminated composite rectangular thin plate under parametric excitation. Journal of Sound and Vibration, 2005, 287:723-758 108 Zhang W, Yao Z G, YaoMH. Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance. Science in China Series E: Technological Sciences, 2009, 52: 731-742 109 Zhang W, Guo X Y, Lai S K. Research on periodic and chaotic oscillations of composite laminated plates with one-to-one internal resonance. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10:1567-1583 110 Guo X Y, Zhang W, Yao M H. Nonlinear dynamics of angle-ply composite laminated thin plate with third-order shear deformation. Science in China Series E: Technological Sciences, 2010, 53: 612-622 111 Hao Y X, Chen L H, Zhang W, et al. Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. Journal of Sound and Vibration, 2008, 312:862-892 112 Yang J, Hao Y X, Zhang W, et al. Nonlinear dynamic response of a functionally graded plate with a through-width surface crack. Nonlinear Dynamics, 2010, 59: 207-219 113 Zhang W, Yang J, Hao Y X. Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dynamics, 2010, 59:619-660 114 Hao Y X, Zhang W, Ji X L. Nonlinear dynamic response of functionally graded rectangular plates under different internal resonances. Mathematical Problems in Engineering,2010, Article ID 738648 115 Zhang W, Yang X L. Transverse nonlinear vibrations of a circular spinning disk with varying rotating speed. Science in China Series G: Physics, Mechanics & Astronomy,2010, 53: 1536-1553 116 Chia C Y. Non-linear Analysis of Plate. New York, McGraw-Hill, 1980, 110-145 117 Nayfeh A H, Mook D T. Nonlinear Oscillations, New York Wiley-Interscience, 1979, 59-79 118 Zhang W, Wang F X, Zu J W. Computation of normal forms for high dimensional nonlinear systems and application to nonplanar motions of a cantilever beam. Journal of Sound and Vibration, 2004, 278: 949-974.
计量
- 文章访问数: 2482
- HTML全文浏览量: 133
- PDF下载量: 2985
- 被引次数: 0