留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体激励气动力学探索与展望

李应红 吴云 梁华 朱益飞 张海灯 郭善广

李应红, 吴云, 梁华, 朱益飞, 张海灯, 郭善广. 等离子体激励气动力学探索与展望. 力学进展, 2022, 52(1): 1-32 doi: 10.6052/1000-0992-21-044
引用本文: 李应红, 吴云, 梁华, 朱益飞, 张海灯, 郭善广. 等离子体激励气动力学探索与展望. 力学进展, 2022, 52(1): 1-32 doi: 10.6052/1000-0992-21-044
Li Y H, Wu Y, Liang H, Zhu Y F, Zhang H D, Guo S G. Exploration and outlook of plasma-actuated gas dynamics. Advances in Mechanics, 2022, 52(1): 1-32 doi: 10.6052/1000-0992-21-044
Citation: Li Y H, Wu Y, Liang H, Zhu Y F, Zhang H D, Guo S G. Exploration and outlook of plasma-actuated gas dynamics. Advances in Mechanics, 2022, 52(1): 1-32 doi: 10.6052/1000-0992-21-044

等离子体激励气动力学探索与展望

doi: 10.6052/1000-0992-21-044
基金项目: 感谢空军工程大学等离子体动力学重点实验室等离子体流动控制研究团队老师和研究生的辛勤工作, 感谢各合作单位给予的支持帮助. 感谢国家自然科学基金 (52025064, 51790511, 91941105, 91941301, 51522606, 51336011) 资助.
详细信息
    作者简介:

    李应红, 1963年1月出生, 重庆奉节人. 中国科学院院士, 空军工程大学教授, 航空推进理论与工程领域专家. 现任航空等离子体动力学国家级重点实验室和飞机推进系统军队重点实验室主任; 担任中国工程热物理学会副理事长, 中国航空学会等学会理事, 《航空学报》《推进技术》等期刊编委

    通讯作者:

    yinghong_li@126.com

  • 中图分类号: V211

Exploration and outlook of plasma-actuated gas dynamics

More Information
  • 摘要: 等离子体激励气动力学是研究等离子体激励与流动相互作用下, 绕流物体受力和流动特性以及管道内部流动规律的科学, 属于空气动力学、气体动力学与等离子体动力学交叉前沿领域. 等离子体激励是等离子体在电磁场力作用下运动或气体放电产生的压力、温度、物性变化, 对气流施加的一种可控扰动. 局域、非定常等离子体激励作用下, 气流运动状态会发生显著变化, 进而实现气动性能的提升. 国际上对介质阻挡放电等离子体激励、等离子体合成射流激励及其调控附面层、分离流动、含激波流动等开展了大量研究. 等离子体激励调控气流呈现显著的频率耦合效应, 等离子体冲击流动控制是提升调控效果的重要途径. 发展高效能等离子体激励方法, 通过等离子体激励与气流耦合, 激发和利用气流不稳定性, 揭示耦合机理、提升调控效果, 是等离子体激励气动力学未来的发展方向.

     

  • 图  1  等离子体激励气动力学的内涵(吴云和李应红 2015, 李应红和吴云 2020, Tang et al. 2020a)

    图  2  气体放电等离子体形成流体动力学宏观激励的微观原理

    图  3  (a) 表面介质阻挡放电等离子体激励器侧视图(吴云和李应红 2015), (b)时空分辨的放电等离子体形态俯视图(Starikovskii et al. 2009)

    图  4  高精度的表面介质阻挡放电等离子体激励诊断与计算结果. (a) 表面介质阻挡放电等离子体时空演化精细结构侧视图, 实验与数值模拟, (b) 等离子体激励下的气动响应高速拍摄图像侧视图, 实验与数值模拟(Zhu et al. 2017)

    图  5  (a) 表面放电等离子体激励相图, (b) 用于减阻激励的定制化快升缓降电压波形 (Zhu & Wu 2020)

    图  7  正弦交流SDBD等离子体激励推迟层流附面层转捩的效果和机理(Yadala & Srikar 2018, Duchmann et al. 2013, Schuele et al. 2013)

    图  8  等离子体激励促进层流附面层转捩的效果和机理(Correale et al. 2013, Zhang et al. 2020). (a)基准流场; (b)激励后流场. 自上而下, 高超声速和超声速附面层的结果为NPLS图像, 而亚声速附面层的为仿真结果

    图  9  等离子体激励减小湍流摩擦阻力的方法、规律和机理(Jukes et al. 2016, Choi et al. 2011, Thomas et al. 2019, Duong et al. 2021, 彭倩 2018, Cheng et al. 2021)

    图  10  等离子体合成射流激励与横流附面层相互作用. FVR为头部涡环, RVs为肋状涡, HVP为悬挂涡对, SVs为剪切层涡, CVP为对转涡对, BFR为回流区(Narayanaswamy et al. 2010, Zong & Kotsonis 2017b, 2019, 2020; Zhou et al. 2017, Yang et al. 2016)

    图  11  纳秒脉冲等离子体激励抑制翼型分离流动的演化过程(赵光银 2015)

    图  13  等离子体合成射流激励抑制流动分离的四大机理(Caruana et al. 2013, Zong &van Pelt et al. 2018, Liu et al. 2018, 苏志等 2018, 李洋等 2018)

    图  14  等离子体激励控制压气机内部流动典型激励布局(Zhang et al. 2017a). (a) 转子叶顶端壁等离子体激励, (b) 叶片吸力面等离子体激励, (c) 端壁等离子体激励

    图  15  分离区外纳秒脉冲等离子体激励与流体耦合作用机理. (a) 等离子体激励诱导的畸变团, (b) 激励触发流动失稳

    图  17  等离子体激励控制激波/附面层干扰的发展脉络(Leonov & Yarantsev 2008, Greene et al. 2015, Gan et al. 2018, Tang et al. 2020a)

    图  18  流向阵列式高频脉冲电弧等离子体激励的控制效果和经验公式

    表  1  几种典型等离子体激励特性

    介质阻挡放电
    等离子体激励
    火花放电
    等离子体激励
    电弧放电
    等离子体激励
    定义电极被绝缘介质阻挡形成的
    非平衡等离子体激励
    电极被等离子体通道连接后
    快速停止,使等离子
    体保持非平衡
    电极被持续导通, 导致等离子
    体区域趋向局域热平衡
    放电通道
    约化均值
    20 ~ 100 Td50 ~ 200 Td (取决于导通后的
    电压与气隙大小)
    <20 Td (取决于导通后的
    电压与气隙大小)
    最大比
    沉积能量
    0.5 eV/mol2 eV/mol10 eV/mol
    单次放电
    时间尺度
    10 ~ 50 ns纳秒至微秒微秒至毫秒
    主要特性化学活性高, 运行时间长,
    结构简单
    气体温度低, 电场驱动的等离子体
    反应剧烈, 化学活性高便于调控
    气体温度高 (>3000K) , 温度
    驱动的气体裂解反应
    剧烈, 近似燃烧
    激励机理快速气体加热 (纳秒) +振动转动
    弛豫气体加热 (微秒至毫秒) +
    离子风加速
    高能量快速气体加热高能量气体加热
    应用场景抑制分离流动、调控附面层、
    防除冰等
    等离子体合成射流调控激波与
    激波/附面层干扰
    下载: 导出CSV

    表  2  几种典型介质阻挡放电等离子体激励特性

     正弦交流
    介质阻挡放电激励
    微秒脉冲
    介质阻挡放电激励
    纳秒脉冲
    介质阻挡放电激励
    定义电压服从正弦交流变化规律电压上升时间小于两次微
    放电间隔时间
    电压上升时间与等离子体
    传播时间接近
    放电通道约化电场均值 (参考) 20 ~ 40 Td30 ~ 50 Td50 ~ 100 Td
    单次放电时间尺度
    (参考)
    10 ~ 30 ns10 ~ 50 ns10 ~ 50 ns
    最大比沉积能量
    /(eV/mol−1)
    0.010.10.5
    主要特性密集丝状微放电, 离子风和缓慢
    振动转动弛豫加热效果明显
    放电均匀性较好,
    能量效率较高
    可重复、可控、均匀, 快速气体
    加热明显, 化学活性高,
    能量效率高
    激励机理离子风+缓慢气体加热弱快速气体加热亚微秒时间尺度快速气体加热
    下载: 导出CSV
  • [1] 杜海. 2016. 纳秒脉冲介质阻挡放电等离子体激励器流动控制原理及应用研究. [博士论文]. 南京航空航天大学

    Du H. 2016. Research on principle and application of flow control of nanosecond pulse dielectric barrier discharge plasma actuator. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics
    [2] 洪延姬, 李倩, 王殿楷. 2016. 超声速飞行器的激光空气锥减阻方法. 北京: 科学出版社

    Hong Y J, Li Q, Wang Y K. 2016. Laser air cone drag reduction method for supersonic aircraft. Beijing: Science Press
    [3] 李洋, 梁华, 贾敏, 宋慧敏, 李军, 魏彪. 2018. 等离子体合成射流改善翼型气动性能实验研究. 推进技术, 9: 28-34 (Li Y, Liang H, Jia M, Song H M, Li J, Wei B. 2018. Experimental research on improving airfoil aerodynamic performance by plasma synthetic jet. Journal of Propulsion Technology, 9: 28-34).
    [4] 李应红, 吴云, 梁华, 等. 2010. 提高抑制流动分离能力的等离子体冲击流动控制原理. 科学通报, 55: 3060-3068 (Li Y H, Wu Y, Liang H, et al. 2010. The mechanism of plasma shock flow control for enhancing flow separation control capability. Chinese Science Bulletin (Chinese Ver), 55: 3060-3068).
    [5] 李应红, 吴云. 2020. 等离子体激励调控流动与燃烧的研究进展与展望. 中国科学:技术科学, 50: 1252-1273 (Li Y H, Wu Y. 2020. Research progress and outlook of flow control and combustion control using plasma actuation. Science China Technological Sciences, 50: 1252-1273).
    [6] 彭倩. 2018. 基于等离子体激励器控制湍流边界层减阻的参数优化研究. [硕士论文]. 深圳: 哈尔滨工业大学

    Peng Q. 2018. Parametric optimization of plasma actuators for drag reduction in a turbulent boundary layer. [Master Thesis]. Shenzhen: Harbin University of Technology
    [7] 苏志, 李军, 梁华, 魏彪, 陈杰. 2018. 多路等离子体合成射流改善翼型性能实验研究. 推进技术, 9: 1928-1937 (Su Z, Li J, Liang H, Wei B, Chen J. 2018. Experimental research on the improvement of airfoil performance by multi-path plasma synthetic jet. Journal of Propulsion Technology, 9: 1928-1937).
    [8] 吴云, 李应红, 朱俊强. 2007. 等离子体气动激励扩大低速轴流式压气机稳定性的实验. 航空动力学报, 22: 2025-2030 (Wu Y, Li Y H, Zhu J Q. 2007. Experiment on enlarging the stability of low-speed axial compressor by plasma aerodynamic actuation. Journal of Aerospace Power, 22: 2025-2030). doi: 10.3969/j.issn.1000-8055.2007.12.009
    [9] 吴云, 李应红, 朱俊强. 2009. 等离子体气动激励抑制压气机叶栅角区流动分离的仿真与实验. 航空动力学报, 24: 830-835 (Wu Y, Li Y H, Zhu J Q. 2009. Simulation and experiment of plasma aerodynamic actuation to suppress the flow separation in the corner of compressor cascade. Journal of Aerospace Power, 24: 830-835).
    [10] 吴云, 李应红. 2015. 等离子体流动控制研究进展与展望. 航空学报, 36: 381-405 (Wu Y, Li Y H. 2015. Progress and outlook of plasma flow control. Acta Aeronautica et Astronautica Sinica, 36: 381-405).
    [11] 吴云, 张海灯, 于贤君, 等. 2017. 轴流压气机等离子体流动控制. 工程热物理学报, 38: 1396-1414 (Wu Y, Zhang H D, Yu X J, et al. 2017. Plasma flow control of axial compressor. Journal of Engineering Thermophysics, 38: 1396-1414).
    [12] 张海灯, 李应红, 吴云, 等. 2014a. 高速压气机叶栅纳秒脉冲等离子体流动控制仿真研究. 航空学报, 35: 1560-1570 (Zhang H D, Li Y H, Wu Y, et al. 2014a. Simulation research on nanosecond pulsed plasma flow control of high-speed compressor cascade. Acta Aeronautica et Astronautica Sinica, 35: 1560-1570).
    [13] 张海灯, 吴云, 贾敏, 等. 2014b. 压气机叶栅内流环境中纳秒脉冲等离子体的气动激励特性. 高电压技术, 40: 2140-2149 (Zhang H D, Wu Y, Jia M, et al. 2014b. Aerodynamic actuation characteristics of nanosecond pulsed plasma in the internal flow environment of compressor cascade. High Voltage Engineering, 40: 2140-2149).
    [14] 张海灯, 吴云, 李应红, 等. 2014c. 叶栅等离子体流动控制布局优化和影响规律. 航空动力学报, 29: 2593-2605 (Zhang H D, Wu Y, Li Y H, et al. 2014c. Optimization and influence law of cascade plasma flow control layout. Journal of Aerospace Power, 29: 2593-2605).
    [15] 张海灯, 吴云, 李应红, 汪一舟, 王长凯. 2020. 纳秒脉冲等离子体激励调控压气机叶型附面层流动探索研究. 工程热物理学报, 41: 2147-2153 (Zhang H D, Wu Y, Li Y H, Wang Y Z, Wang C K. 2020. Research on nanosecond pulsed plasma actuation to regulate the flow of compressor blade surface layer. Journal of Engineering Thermophysics, 41: 2147-2153).
    [16] 张海灯, 吴云, 于贤君, 刘宝杰. 2019. 高负荷压气机失速及其等离子体流动控制. 工程热物理学报, 40: 289-299 (Zhang H D, Wu Y, Yu X J, Liu B J. 2019. High-load compressor stall and its plasma flow control. Journal of Engineering Thermophysics, 40: 289-299).
    [17] 张鑫, 黄勇, 阳鹏宇. 2018. 等离子体无人机失速分离控制飞行实验. 航空学报, 39: 121587 (Zhang X, Huang Y, Yang P Y. 2018. Stall separation control using plasma of UAV flight experiment. Acta Aeronautica et Astronautica Sinica, 39: 121587).
    [18] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 2015. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 64: 015101 (Zhao G Y, Li Y H, Liang H, Hua W Z, Han M H. 2015. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta. Phys. Sin-Ch. Ed., 64: 015101). doi: 10.7498/aps.64.015101
    [19] 赵光银. 2015. 翼型/三角翼等离子体冲击流动控制机理研究. [博士论文]. 西安: 空军工程大学

    Zhao G Y. 2015. Research on the mechanism of airfoil/delta wing plasma flow control. [PhD Thesis]. Xi'an: Air Force Engineering University
    [20] 赵勤, 吴云, 李应红, 等. 2013. 端壁等离子体气动激励抑制高负荷压气机叶栅角区流动分离实验. 航空动力学报, 28: 2129-2139 (Zhao Q, Wu Y, Li Y H, et al. 2013. Experimental study of end-wall plasma aerodynamic actuation to suppress flow separation in the corner region of a high-load compressor cascade. Journal of Aerospace Power, 28: 2129-2139).
    [21] 赵小虎, 李应红, 岳太鹏. 2011. 等离子体气动激励抑制高负荷压气机叶栅流动分离的实验研究. 高电压技术, 37: 1521-1528 (Zhao X H, Li Y H, Yue T P. 2011. Experimental research on plasma aerodynamic actuation to suppress flow separation in high-load compressor cascade. High Voltage Engineering, 37: 1521-1528).
    [22] 赵小虎, 吴云, 李应红, 等. 2012. 高负荷压气机叶栅分离结构及其等离子体流动控制. 航空学报, 33: 208-219 (Zhao X H, Wu Y, Li Y H, et al. 2012. Separation structure of high-load compressor cascade and its plasma flow control. Acta Aeronautica et Astronautica Sinica, 33: 208-219).
    [23] Adelgren R, Elliott G, Knight D, Zheltovodov A, Beutner A. 2001. Energy deposition in supersonic flows// 39th AIAA Aerospace Sciences Meeting and Exhibit, 2001-0885
    [24] Akcayoz E, Vo H D, Mahallati A. 2016. Controlling corner stall separation with plasma actuators in a compressor cascade. J. Turbomach., 138: 081008. doi: 10.1115/1.4032675
    [25] Alexandre V L, Mikhail N S, Dmitry F O, Richard B M and Sergey O M. 2010. Limitations of the DBD effects on the external flow// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010-470
    [26] Anderson K V, Knight D D. 2012. Plasma jet for flight control. AIAA J., 50: 1855-1872. doi: 10.2514/1.J051309
    [27] Ashrafi F, Michaud M, Vo H D. 2016. Delay of rotating stall in compressors using plasma actuators. J. Turbomach., 138: 091009. doi: 10.1115/1.4032840
    [28] Bedin A P, Mishin G I. 1995. Ballistic studies of the aerodynamics drag on a sphere in ionized air. Tech. Phys. Lett., 21: 5-7.
    [29] Belson B, Meidell K, Hanson R. 2012. Comparison of Plasma Actuators in Simulations and Experiments for Control of Bypass Transition// In: AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, 2012-1141
    [30] Bin W, Chao G, Feng L, Xue M, Wang Y and Zheng B. 2019. Reduction of turbulent boundary layer drag through DBD plasma actuation based on the Spalding formula. Plasma. Sci. Technol., 21: 045501. doi: 10.1088/2058-6272/aaf2e2
    [31] Caruana D, Rogier F, Dufour G, Gleyzes. 2013. The plasma synthetic jet actuator, physics, modeling and flow control application on separation. Aerospace Lab., 1-13.
    [32] Cheng X Q, Wong C W, Hussain F, W Schröder, Zhou Y. 2021. Flat plate drag reduction using plasma-generated streamwise vortices. J. Fluid. Mech., 918: A24. doi: 10.1017/jfm.2021.311
    [33] Chiatto M, de Luca L. 2017. Numerical and experimental frequency response of plasma synthetic jet actuators// 55th AIAA Aerospace Sciences Meeting, 2017-1884
    [34] Choi K S, Jukes T, Whalley R. 2011. Turbulent boundary-layer control with plasma actuators. Philos. T. R. Soc. A., 369: 1443-1458. doi: 10.1098/rsta.2010.0362
    [35] Correale G, Michelis T, Popov I. 2013. Disturbance introduced into a laminar Boundary Layer by a NS-DBD plasma actuator// AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, 2013-0752
    [36] Correale G, Michelis T, Ragni D, Kotsonis M, Scarano F. 2014. Nanosecond-pulsed plasma actuation in quiescent air and laminar boundary layer. J. Phys. D., 47: 264264.
    [37] Dong H, Geng X, Shi Z, Cheng K, Cui Y D, Khoo B C. 2019. On evolution of flow structures induced by nanosecond pulse discharge inside a plasma synthetic jet actuator. Jpn. J. Appl. Phys., 58: 028002. doi: 10.7567/1347-4065/aaf6e5
    [38] Du Y Q, Symeonidis V, George E K. 2002. Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid. Mech., 457: 1-34. doi: 10.1017/S0022112001007613
    [39] Duchmann A, Grundmann S, Tropea C. 2012. Delay of natural transition with dielectric barrier discharges. Exp. Fluids, 54: 1461.
    [40] Duchmann A, Simon B, Magin P. 2013. In-flight transition delay with DBD plasma actuators// AIAA Aerospace Sciences Meeting, 2013-0900
    [41] Duong A H, Corke T C, Thomas F O. 2021. Characteristics of drag-reduced turbulent Boundary layers with pulsed-direct-current plasma actuation. J. Fluid. Mech., 915: A113. doi: 10.1017/jfm.2021.167
    [42] Elias P Q, Severac N, Luyssen M, Tobeli O, Lambert F, Bur R, Houard A. 2018. Experimental investigation of linear energy deposition using femtosecond laser filamentation in a M=3 supersonic flow// 54th AIAA/SEA/ASEE Joint Propulsion Conference, 2018-4896
    [43] Fang Y, Hong Q, Li H. 2011. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions. Journal of Physics Conference: Series, 276: 012021. doi: 10.1088/1742-6596/276/1/012021
    [44] Gaitonde D V. 2013. Analysis of plasma-based flow control mechanisms through large-eddy simulations. Comput. Fluids, 85: 19-26. doi: 10.1016/j.compfluid.2012.09.004
    [45] Gan T, Wu Y, Sun Z Z, Jin D. 2018. Shock wave boundary layer interaction controlled by surface arc plasma actuators. Phys. Fluids, 30: 055107. doi: 10.1063/1.5013166
    [46] Ganiev Y C, Gordeev V P, Krasilnikov A V, et al. 2000. Aerodynamic drag reduction by plasma and hot-gas injection. J. Thermophys. Heat Transfer, 14: 10-17. doi: 10.2514/2.6504
    [47] Greenblatt D, Kastantin Y, Nayeriet C N. 2007. Delta wing flow control using dielectric barrier discharge actuators. AIAA J., 46: 1554-1660.
    [48] Greene B R, Clemens N T, Magari T, Micka D. 2015. Control of mean separation in shock boundary layer interaction using pulsed plasma jets. Shock Waves, 25: 495-505. doi: 10.1007/s00193-014-0524-5
    [49] Grossman K, Bohdan C, van Wie D. 2003. Spark jet actuators for flow control// 41st Aerospace Sciences Meeting and Exhibit, 2003-53
    [50] Grundmann S, Frey M, Tropea C. 2009. Unmanned aerial vehicle (UAV) with plasma actuators for separation control// 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009-698
    [51] Grundmann S, Tropea C. 2007. Experimental transition delay using glow-discharge plasma actuators. Exp. Fluids, 42: 653-657. doi: 10.1007/s00348-007-0256-8
    [52] Grundmann S, Tropea C. 2008. Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators. Exp. Fluids, 44: 795-806. doi: 10.1007/s00348-007-0436-6
    [53] Haack S, Taylor T, Emhoff, Cybyk B. 2010. Development of an analytical spark jet model// 5th Flow Control Conference, 2010-4979
    [54] Han M H, Li J, Niu Z G, Liang H, Zhao G Y, Hua W Z. 2015. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator. Chin. J. Aeronaut., 28: 377-384. doi: 10.1016/j.cja.2015.02.006
    [55] Hanson R, Lavoie P, Bade K. 2012. Steady-state closed-loop control of bypass boundary layer transition using plasma actuators// AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, 012-1140
    [56] Hardy P, Barricau P, Caruana D, Gleyzes C, Belinger A, Cambronne P. 2010. Plasma synthetic jet for flow control// 40th Fluid Dynamics Conference and Exhibit, 2010-5103
    [57] Huang B, Zhang C, Adamovich I, Akishev Y, Shao T. 2020. Surface ionization wave propagation in the nanosecond pulsed surface dielectric barrier discharge: the influence of dielectric material and pulse repetition rate. Plasma Sources Sci. Technol., 29: 044001. doi: 10.1088/1361-6595/ab7854
    [58] Jothiprasad G, Murray R C, Essenhigh K. 2011. Control of tip-clearance flow in a low-speed axial compressor rotor with plasma actuation. J. Turbomach., 134: 021019.
    [59] Jukes T N, Choi K S, Johnson G A. 2016. Turbulent drag reduction by surface plasma through spanwise flow oscillation// 3rd AIAA Flow Control Conference, 2016-3693
    [60] Kaparos P, Koltsakidis S, Panagiotou P. 2018. Experimental investigation of DBD plasma actuators on a BWB aerial vehicle model// 2018 Flow Control Conference, 2018-4028
    [61] Keisuke T, Yvette Z, Walter R L, Igor V A. 2011. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses. Plasma Sources Sci. T., 20: 055009. doi: 10.1088/0963-0252/20/5/055009
    [62] Kelley C L, Bowles P O, Cooney. 2014. Leading edge separation control using alternating-current and nanosecond pulse plasma actuator. AIAA J., 52: 1871-1884. doi: 10.2514/1.J052708
    [63] Khorunzhenko V, Roupassov D, Starikovskii A. 2002. Hypersonic flow and shock wave structure control by low temperature nonequilibrium plasma of gas discharge// 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002-3569
    [64] Kim H, Ahn S, Kim K H. 2018. Numerical analysis on jet formation process of spark jet actuator// 2018 AIAA Aerospace Sciences Meeting, 2018-1552
    [65] Klimov A I, Koblov A N, Mishin G I, et al. 1982. Shock wave propagation in a glow discharge. Tech. Phys. Lett., 8: 192-194.
    [66] Kolesnichenko Y F, Azarova O A, Brovkin V G. 2004. Basics in beamed MW energy deposition for flow/flight control// 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004-0669
    [67] Laurendeau F, Chedevergne F, Casalis G. 2014. Transient ejection phase modeling of a plasma synthetic jet actuator. Phys. Fluids, 26: 125101. doi: 10.1063/1.4902394
    [68] Leonov S B, Yarantsev D A. 2008. Near-surface electrical discharge in supersonic airflow: properties and flow control. J. Propul. Power, 24: 1168-1181. doi: 10.2514/1.24585
    [69] Leonov S, Opaits D, Miles R, Soloviev V. 2010. Time-resolved measurements of plasma-induced momentum in air and nitrogen under dielectric barrier discharge actuation. Phys. Plasmas., 17: 113505. doi: 10.1063/1.3494279
    [70] Li C, Zhang Y, Lee C. 2020. Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer: The effect of first mode. Phys. Fluids, 32: 051701. doi: 10.1063/5.0008457
    [71] Li Y H, Wu Y, Zhou M. 2010. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation. Exp. Fluids, 48: 1015-1023. doi: 10.1007/s00348-009-0787-2
    [72] Li Z, Shi Z W, Du H. 2018. Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing. Plasma Sci. Technol., 20: 115504. doi: 10.1088/2058-6272/aacaf0
    [73] Liu R, Niu Z, Wang M, Hao M, Lin Q. 2018. Aerodynamic control of NACA 0021 airfoil model with spark discharge plasma synthetic jets. Sci. China Technol. Sci., 58: 1949-1955.
    [74] Meyer R, Palm P, Plonjes E, Rich W, Adamovich I V. 2003. The effect of a nonequilibrium RF discharge plasma on a conical shock wave in a M=2.5 flow. AIAA J, 41: 465-469.
    [75] Miles R B, Macheret S O, Martinelli L, Murray R, Shneider M, Yu Z. 2001. Plasma control of shock waves in aerodynamics and sonic boom mitigation// 32nd AIAA Plasma Dynamics and Lasers Conference and 4th Weakly Ionized Gases Workshop, 2001-3062
    [76] Narayanaswamy V, Raja L L, Clemens N T. 2010. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control. AIAA J., 48: 297-305. doi: 10.2514/1.41352
    [77] Narayanaswamy V, Raja L L, Clemens N T. 2012a. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator. AIAA J., 50: 246-249. doi: 10.2514/1.J051246
    [78] Narayanaswamy V, Raja L L, Clemens N T. 2012b. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Phys. Fluids, 24: 076101. doi: 10.1063/1.4731292
    [79] Nishihara M, Takashima K, Rich W, Adamovich L V. 2011. Mach 5 bow shock control by a nanosecond pulse surface DBD// 49th Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011-1144
    [80] Opaits D F, Roupassov D V, Starikovskaia S M. 2004. Shock wave interaction with non-equilibrium plasma of gas discharge// 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004-1023
    [81] Patel M P, Ng T T, Vasudevan S. 2007. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. J. Aircr., 44: 1264-1274. doi: 10.2514/1.25368
    [82] Peter P, Rodney M. 2003. Nonequilibrium radio frequency discharge plasma effect on conical shock wave: M = 2.5 flow. AIAA J., 41: 465-469. doi: 10.2514/2.1968
    [83] Reedy T M, Kale N V, Dutton C, Elliott G S. 2013. Experimental characterization of a pulsed plasma jet. AIAA J., 51: 2027-2031. doi: 10.2514/1.J052022
    [84] Riherd M, Roy S. 2013. Damping Tollmien–Schlichting waves in a boundary layer using plasma actuators. J. Phys. D. :Appl. Phys., 46: 5203.
    [85] Roth J R, Sherman D M, Wilkinson S P. 2000. Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J, 38: 1166-1172. doi: 10.2514/2.1110
    [86] Roth J R, Sherman D M. 1998. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma// NASA Langley Technical Report Server, 1998-0328
    [87] Roth J R. 1995. Investigation of a uniform glow discharge. Plasma in Atmospheric Air, ADA296928.
    [88] Saddoughi S, Bennett G, Boespflug M. 2014. Experimental investigation of tip clearance flow in a transonic compressor with and without plasma actuators. J. Turbomach., 137: 041008.
    [89] Schuele C Y, Corke T C, Matlist. 2013. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness. J. Fluid Mech., 718: 5-38. doi: 10.1017/jfm.2012.579
    [90] Shang J S. 2002. Plasma injection for hypersonic blunt-body drag reduction. AIAA J., 40: 1178-1186. doi: 10.2514/2.1769
    [91] Shin Y J, Kim H J, Kim K H. 2021. Development of one-dimensional analytical model for a spark jet actuator. AIAA J., 59: 1055-1074. doi: 10.2514/1.J059619
    [92] Shneider M N, Macheret S O, Zaidi S H, Girgis I G, Miles R B. 2008. Virtual shapes in supersonic flow control with energy addition. J. Propul. Power, 24: 900-915. doi: 10.2514/1.34136
    [93] Sidorenko A, Budovsky A D, Pushkarev A V. 2008. Flight testing of DBD plasma separation control system// 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008-373
    [94] Soloviev V, Krivtsov V. 2015. Analytical and numerical estimation of the body force and heat sources generated by the surface dielectric barrier discharge powered by alternating voltage// 6th European Conf. for Aeronautics and Space Science, EUCA-SS2015.
    [95] Starikovskii A Y, Nikipelov A, Nudnova M, Roupassov D. 2009. SDBD plasma actuator with nanosecond pulse-periodic discharge. Plasma Sources Sci. T., 18: 034015. doi: 10.1088/0963-0252/18/3/034015
    [96] Su Z, Li J. 2018. UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge. Chin. Phys., 27: 105205. doi: 10.1088/1674-1056/27/10/105205
    [97] Sun Q, Cheng B Q, Li Y H, Kong W S, Zhu Y F, Jin D. 2013. Computation and experimental analysis of Mach 2 air flow over a blunt body with plasma aerodynamic actuation. Sci. China Technol. Sc., 56: 795-802. doi: 10.1007/s11431-013-5177-6
    [98] Tang M X, Wu Y, Guo S G, Liang H, Luo Y H. 2020a. Compression ramp shock wave/boundary layer interaction control with high-frequency streamwise pulsed spark discharge array. Phys. Fluids, 32: 121704. doi: 10.1063/5.0031839
    [99] Tang M X, Wu Y, Guo S G, Sun Z Z, Luo Z B. 2020b. Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control. Phys. Fluids, 32: 076104. doi: 10.1063/5.0011040
    [100] Thomas F O, Corke T C, Duong A, Midya S, Yates K. 2019. Turbulent drag reduction using pulsed-DC plasma actuation. J. Phys. D. Appl. Phys., 52: 434001. doi: 10.1088/1361-6463/ab3388
    [101] Ullmer D, Peschke P, Terzis A. 2015. Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements. J. Phys. D, 48: 365203. doi: 10.1088/0022-3727/48/36/365203
    [102] Unfer T, Boeuf P. 2009. Modelling of a nanosecond surface discharge actuator. J. Phys. D. Appl. Phys., 42: 194017. doi: 10.1088/0022-3727/42/19/194017
    [103] Unfer T, Boeuf P. 2010. Modeling and comparison of sinusoidal and nanosecond pulsed surface dielectric barrier discharges for flow control. Plasma Phys. Control. Fusion, 52: 124019. doi: 10.1088/0741-3335/52/12/124019
    [104] Vo H D. 2010. Rotating stall suppression in axial compressors with casing plasma actuation. J. Propul. Power, 26: 808-818. doi: 10.2514/1.36910
    [105] Wang L, Xia Z X, Luo Z B. 2014. Three-electrode plasma synthetic jet actuator for high-speed flow control. AIAA J., 52: 879-882. doi: 10.2514/1.J052686
    [106] Webb N, Clifford C, Samimy M. 2013. Control of oblique shock wave/boundary layer interactions using plasma actuators. Exp. Fluids, 54: 1545. doi: 10.1007/s00348-013-1545-z
    [107] Wei B, Wu Y, Liang H. 2020. Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator. Aerosp. Sci. Technol. , 96: 105584
    [108] White A R, Subramaniam V V. 2001. Shock propagation through a low-pressure glow discharge in argon. J. Thermophys. Heat Transfer, 15: 491-496. doi: 10.2514/2.6638
    [109] Wu Y, Li Y H, Jia M, Song H M, Guo Z G, Zhu X M, Pu Y K. 2008. Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics. Appl. Phys. Lett., 93: 031503. doi: 10.1063/1.2964193
    [110] Wu Y, Li Y H, Liang H. 2014. Nanosecond pulsed discharge plasma actuation: characteristics and flow control performance// 45th AIAA Plasma Dynamics and Lasers Conference, 2014-2118
    [111] Wu Y, Zhao X H, Li Y H. 2012. Corner separation control in a highly loaded compressor cascade using plasma aerodynamic actuation. R. ASME., GT2012-69196
    [112] Yadala S, Hehner M T, Serpieri J, et al. 2018. Experimental control of swept-wing transition through base-flow modification by plasma actuators. J. Fluid. Mech., 844: 268-279.
    [113] Yang G, Yao Y, Gan, T, Lu L. 2016. Large-eddy simulation of shock-induced flow separation control using Spark Jet concept// 54th AIAA Aerospace Sciences Meeting, 2016-0045
    [114] Zhang H D, Wu Y, Li Y H. 2019a. Control of compressor tip leakage flow using plasma actuation. Aerosp. Sci. Technol., 86: 244-255.
    [115] Zhang H D, Wu Y, Li Y H. 2019b. Mechanism of compressor airfoil boundary layer flow control using nanosecond plasma actuation. Int. J. Heat Fluid Flow, 80: 108502. doi: 10.1016/j.ijheatfluidflow.2019.108502
    [116] Zhang H D, Wu Y, Yu X, Li Y H, Liu B. 2019c. Experimental investigation on the plasma flow control of axial compressor rotating stall// ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, GT2019-90609
    [117] Zhang H D, Yu X J, Liu B J, Wu Y, Li Y H. 2017a. Control of corner separation with plasma actuation in a high-speed compressor cascade. Appl. Sci., 7: 465. doi: 10.3390/app7050465
    [118] Zhang Y, Li C, Lee C. 2020. Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer: The effect of second mode. Phys. Fluids, 32: 071702. doi: 10.1063/5.0011299
    [119] Zhang Z B, Wu Y, Jia M, Song H M. 2017b. The multichannel discharge plasma synthetic jet actuator. Sensor Actuat. A-Phys., 253: 112-117. doi: 10.1016/j.sna.2016.11.011
    [120] Zhang Z, Wu Y, Jia M, Zong H, Cui W, Liang H, Li Y. 2015. Influence of the discharge location on the performance of a three-electrode plasma synthetic jet actuator. Sens. Actuators A:Phys., 235: 71-79. doi: 10.1016/j.sna.2015.09.019
    [121] Zhao G, Li Y, Liang H. 2015. Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge. Exp. Fluids, 56: 1864. doi: 10.1007/s00348-014-1864-8
    [122] Zhao X H, Li Y H, Wu Y. 2012a. Investigation of end-wall flow behavior with plasma flow control on a highly loaded compressor cascade. J. Therm. Sci., 21: 295-301. doi: 10.1007/s11630-012-0547-0
    [123] Zhao X H, Li Y H, Wu Y. 2012b. Numerical investigation of flow separation control on a highly loaded compressor cascade by plasma aerodynamic actuation. Chin. J. Aeronaut., 25: 349-360. doi: 10.1016/S1000-9361(11)60396-8
    [124] Zhao X H, Wu Y, Li Y H. 2012c. Topological analysis of plasma flow control on corner separation in a highly loaded compressor cascade. Acta Mech. Sin., 28: 1277-1286. doi: 10.1007/s10409-012-0152-1
    [125] Zhao Z, Cui Y D. 2018. On the boundary flow using pulsed nanosecond DBD plasma actuators. Mod. Phys. Lett. B, 32: 1840035.
    [126] Zhou Y, Xia Z, Luo Z, Wang L. 2017. Effect of three-electrode plasma synthetic jet actuator on shock wave control. Science China Technological Sciences, 60: 146-152. doi: 10.1007/s11431-016-0248-4
    [127] Zhu Y, Wu Y. 2020. The secondary ionization wave and characteristic map of surface discharge plasma in a wide time scale. New. J. Phys., 22: 103060. doi: 10.1088/1367-2630/abc2e7
    [128] Zhu Y, Shcherbanev S, Baron B, Starikovskaia S. 2017. Nanosecond surface dielectric barrier discharge in atmospheric pressure air: I. measurements and 2D modeling of morphology, propagation and hydrodynamic perturbations. Plasma Sources Sci. Technol., 26: 125004. doi: 10.1088/1361-6595/aa9304
    [129] Zhu Y, Wu Y, Cui W, et al. 2013. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge. J. Phys. D. Appl. Phys., 46: 355205. doi: 10.1088/0022-3727/46/35/355205
    [130] Zong H H, Wu Y, Jia M, Song H M, Liang H, Li Y H, Zhang Z B. 2015a. Influence of geometrical parameters on performance of plasma synthetic jet actuator. J. Phys. D:Appl. Phys., 49: 0255041.
    [131] Zong H H, Wu Y, Li Y H, Song H M, Zhang Z B, Jia M. 2015b. Analytic model and frequency characteristics of plasma synthetic jet actuator. Phys. Fluids, 27: 027105. doi: 10.1063/1.4908071
    [132] Zong H, Kotsonis M. 2016. Characterisation of plasma synthetic jet actuators in quiescent flow. J. Phys. D:Appl. Phys., 49: 335202. doi: 10.1088/0022-3727/49/33/335202
    [133] Zong H, Kotsonis M. 2017a. Effect of slotted exit orifice on performance of plasma synthetic jet actuator. Exp. Fluids, 58: 17. doi: 10.1007/s00348-016-2299-1
    [134] Zong H, Kotsonis M. 2017b. Interaction between plasma synthetic jet and subsonic turbulent boundary layer. Phys. Fluids, 29: 045104. doi: 10.1063/1.4979527
    [135] Zong H, Kotsonis M. 2018. Formation, evolution and scaling of plasma synthetic jets. J. Fluid Mech., 837: 147-181. doi: 10.1017/jfm.2017.855
    [136] Zong H, van Pelt, Kotsonis. T. 2018. Airfoil Flow Separation control with plasma synthetic jets at moderate Reynolds number. Exp. Fluids, 59: 169. doi: 10.1007/s00348-018-2624-y
    [137] Zong H, Kotsonis M. 2019. Effect of velocity ratio on the interaction between plasma synthetic jets and turbulent cross-flow. J. Fluid Mech., 865: 928-962. doi: 10.1017/jfm.2019.93
    [138] Zong H, Kotsonis M. 2020. Three-dimensional vortical structures generated by plasma synthetic jets in crossflow. Phys. Fluids, 32: 061701. doi: 10.1063/5.0009530
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  3532
  • HTML全文浏览量:  1342
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 录用日期:  2021-11-12
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2022-03-21

目录

    /

    返回文章
    返回