留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向EUV光源的实验流体力学研究进展

邓巍巍 翟天琪 高立豪 许晟昊 赵新彦 刘艳初

邓巍巍, 翟天琪, 高立豪, 许晟昊, 赵新彦, 刘艳初. 面向EUV光源的实验流体力学研究进展. 力学进展, 2024, 54(1): 138-172 doi: 10.6052/1000-0992-23-044
引用本文: 邓巍巍, 翟天琪, 高立豪, 许晟昊, 赵新彦, 刘艳初. 面向EUV光源的实验流体力学研究进展. 力学进展, 2024, 54(1): 138-172 doi: 10.6052/1000-0992-23-044
Deng W W, Zhai T Q, Gao L H, Xu C H, Zhao X Y, Liu Y C. Recent progress of experimental fluid mechanics for EUV sources. Advances in Mechanics, 2024, 54(1): 138-172 doi: 10.6052/1000-0992-23-044
Citation: Deng W W, Zhai T Q, Gao L H, Xu C H, Zhao X Y, Liu Y C. Recent progress of experimental fluid mechanics for EUV sources. Advances in Mechanics, 2024, 54(1): 138-172 doi: 10.6052/1000-0992-23-044

面向EUV光源的实验流体力学研究进展

doi: 10.6052/1000-0992-23-044
基金项目: 国家自然科学基金 (12327803, 11932009) 和广东省基础与应用基础研究基金 (2022A1515110355) 资助项目.
详细信息
    作者简介:

    邓巍巍, 南方科技大学教授, 长江学者特岗教授. 曾任美国弗吉尼亚理工大学长聘副教授, 获得美国NSF CAREER Award. 研究领域微尺度实验流体力学. 主持国家自然科学基金重点项目和专项项目, 发表SCI论文70余篇

    刘艳初, 南方科技大学研究助理教授. 2011—2019在华南理工大学分别获得学士和博士学位, 2019—2021年在南方科技大学博士后流动站工作. 研究方向是激光与流体靶的相互作用和流体靶的产生与调控. 主持省部级基金和博士后基金各一项. 研究成果发表在《Journal of Fluid Mechanics》和《Physical Review Fluids》等期刊上

    通讯作者:

    liuyc@sustech.edu.cn

  • 中图分类号: O35

Recent progress of experimental fluid mechanics for EUV sources

More Information
  • 摘要: EUV (极紫外)光源是EUV光刻机的核心部件, 其原理是基于纳秒脉冲激光轰击锡液滴靶产生的等离子体辐射发光. EUV光源本质是一种流体光源, 涉及丰富而复杂的流体力学基本问题, 跨越从皮秒到毫秒的四个特征时间尺度. 本文综述了面向EUV光源的实验流体力学研究进展. 首先根据靶的类型, 分别介绍了射流、液滴和液膜靶的生成与调控基本原理和技术路线. 之后对三种靶与激光相互作用过程的特征时刻与典型现象进行了梳理, 重点放在各个特征时间尺度内激光轰击液滴靶的研究进展, 总结了不同参数激光脉冲轰击后靶的推进、变形和破碎规律. 最后对EUV光源中值得重点关注的实验流体力学关键问题进行了总结和展望, 提出改善激光等离子体EUV光源稳定性、亮度和寿命需要从以下三方面持续开展研究: 高频率、小直径、长间距液滴靶串的精准生成和调控, 激光辐照产生等离子体的膨胀和辐射规律, 以及液滴靶变形破碎机理和碎屑抑制、收集及清洁技术.

     

  • 图  1  基于激光产生等离子体(LPP)的EUV光源的工作原理

    图  2  锡离子分布与电子温度的关系(Attwood & Sakdinawat 2017)

    图  3  (a) 射流长度(Hansson & Hertz 2004b), (b) 三种不同外加扰动频率下射流失稳时长度对比, 由上到下无量纲波数依次为: χ1=0.075, χ2=0.25, χ3=0.683. 其中χ3=0.683时最接近瑞利失稳 (Eggers & 2008)

    图  4  锥形喷嘴和小收敛角喷嘴外观(a)和对液滴稳定性的提升对比(b) (Vinokhodov et al. 2016c),(c)锡液滴产生装置, (d)多液滴融合过程(Fomenkov 2017b)

    图  5  模态n =3、4和5时液滴合并的动力学过程(Driessen et al. 2014)

    图  6  (a)射流对冲形成的等厚液膜轮廓和(b)两射流对冲区域, (c)液膜厚度实验测量值与理论值的对比(Hasson & Peck 1964)

    图  7  收束狭缝喷嘴. (a)喷嘴组成部件, (b)平面设计及连接端口示意图(未显示紧固件), (c)组装完成后的装置照片, (d)装置顶部和笛卡尔坐标, (e)描述内部液体流向和微通道几何参数的示意图, (f)抛光喷嘴出口的光学显微照片(Ha et al. 2018)

    图  8  单色光干涉法测液膜厚度(Galinis et al. 2017)

    图  9  (a)微流控气动喷嘴装置, (b)气液喷嘴出口, 其中蓝色为液体通道, (c)液膜大小随气压增大的演化过程, (d)流体链形式的液膜交替正交结构(Koralek et al. 2018)

    图  10  (a)喷嘴表面微观形貌, (b)薄膜干涉仪测量液膜厚度, (c)沿液膜中心线的厚度变化, (d)无量纲化液膜厚度计算值和测量值对比, (e)白光干涉法测液膜厚度中不同波长光的强度分布(Crissman et al. 2022)

    图  11  激光轰击锡液滴靶示意图和几个特征时刻的现象(Klein et al. 2015)

    图  12  染料液滴与纳秒脉冲激光作用后的现象. (a) 脉冲能量24 mJ 时轰击早期空气中的激波和雾云发展, (b) 脉冲能量自下而上递增时液滴现象变化(Klein et al. 2015)

    图  13  镓铟合金液滴与不同脉宽激光脉冲作用后的现象. (a)纳秒脉冲(Vinokhodov et al. 2016c), (b)皮秒 ~ 飞秒脉冲(Vinokhodov et al. 2016d)

    图  14  (a) 激光轰击水滴后得到的四种不同的液滴破碎模态 (时间单位为μs): (i)雾化模态 (atomization), 液滴半径186 μm, 激光能量4.9 mJ; (ii)不稳定液膜模态 (unstable sheet), 液滴半径401 μm, 激光能量2.7 mJ, 黑色箭头指向液膜破碎形成的孔洞; (iii)稳定液膜模态 (stable stretched sheet), 液滴半径450 μm, 激光能量0.6 mJ; (iv)粗破裂模态 (coarse fragmentation), 液滴半径1419 μm, 激光能量2.2 mJ. (b) 水滴的不同破碎模态总结,横轴是动压与拉普拉斯压力之比, 纵轴是无量纲化气泡能量 (通过激光脉冲能量转化得到), 四种模态的标志分别是: 雾化模态 (◆), 稳定液膜模态(▲), 不稳定液膜模态 (●)和粗破裂模态 (■). (c) 激光轰击超声悬浮液滴后内部的空化气泡和激波: (i)实验现象, 侧视图, 激光能量2.2 mJ, (ii)模拟结果, 侧视图, (iii)模拟结果, 俯视图, (iv)激波传播过程中产生的压力最低的环形区域, 图中时间单位为μs (Gonzalez-Avila & Ohl 2016)

    图  15  (a)不同能量激光脉冲轰击Ga-In合金液滴后形成的激波轮廓, (b)轰击后释放到空气中的激波随时间的扩张.来自本文作者团队(Liu et al. 2021c)

    图  16  能量分布为高斯分布的激光光斑轰击液滴后, 液滴形变动能与总动能之比和光斑大小 (以高斯分布特征参数σ表示, σ越小, 光斑越小) 的关系. 模拟得到的σ = π/8 (i-iv)和σ = π/4 (v-viii)两种不同大小高斯光斑轰击液滴后的压力分布及液膜铺展情况: (i, v) 轰击后早期 (tτe) 液滴内部的等压线; (ii, vi) 液滴坐标系下的速度场(t/τc $ \ll $ We−1/2); (iii, vii)和(iv, viii)分别展示了在t/τc = 0.0021 (iii), 0.013 (iv), 0.021 (vii)和0.064 (viii)时的液膜形态. 蓝色虚线是理论分析解, 红色实线是模拟结果(Gelderblom等 2016)

    图  17  镓铟合金液滴与纳秒脉冲激光作用后的现象(Meijer et al. 2022a)

    图  18  镓铟合金液滴与纳秒脉冲激光作用后的现象. (a)液膜出现倾角(Reijers et al. 2018), (b)液膜厚度的测量(Liu et al. 2020), (c)激光气化液膜厚度测量法(Liu et al. 2021a)

    图  19  液滴与纳秒脉冲激光作用后的现象. (a)边缘径向喷射(Klein et al. 2020), (b)薄膜孔洞(Klein et al. 2020), (c) 网状筋条(Klein et al. 2020), (d)边缘液滴飞行(Liu et al. 2022)

    图  20  不同形状和密度靶的转换效率(Fomenkov et al. 2017a)

    图  21  金属液滴与皮秒脉冲激光作用后的现象. (a)皮秒激光脉冲轰击60 μm直径液滴(Basko et al. 2017), (b)不同功率密度下液滴变形的侧方视图(Grigoryev et al. 2018), (c)后方视图(Grigoryev et al. 2018)

    图  22  (a) 激光轰击射流靶等离子体产生装置(Hansson & Hertz 2004b), (b)氙射流和(c)激光轰击氙射流产生的等离子体(Tamotsu Abe et al. 2016), (d) 收集板上碎屑的扫描电子显微镜图像(Hansson & Hertz 2004b)

    图  23  (a) XFEL轰击射流后产生的间隙、液膜及其演变, (b)间隙扩张的三个阶段, (c)纳秒脉冲激光轰击射流后所形成间隙的发展过程, 依然遵循对数规律(Stan et al. 2016b, Gao et al. 2022)

    图  24  被耦合进射流传播的激光脉冲对喷口进行加热, 通过局部暴沸驱动产生的液膜及其发展过程. (a)轰击后液膜出现并经历快速铺展, 之后在表面张力的支配下, 液膜开始收缩, 全程可见液膜边缘失稳形成的指状破碎现象, (b)不锈钢喷口表面被使用前 (左) 和激光轰击射流20000次后 (右) 的对比(Gao et al. 2022)

    图  25  高功率密度(1018 W/cm2)激光脉冲轰击液膜靶的实验现象(George et al. 2019)

    图  26  CE和主脉冲与预脉冲之间时间延迟的关系曲线 (Kaku et al. 2009)

    表  1  文献中液滴靶产生装置的工作参数

    作者材质直径(D)/μm频率/kHz速度/(m·s−1)间距/μm间距/直径
    Richardson等 (2004) ~ 35100200 ~ 115 ~ 3
    Mizoguchi等 (2010)6010 ~ 14060721.2
    Rollinger等 (2011)35 ~ 5820 ~ 1008 ~ 12280 ~ 4648
    Vinokhodov等 (2016d)锡-铟30 ~ 9020 ~ 1504 ~ 151802 ~ 6
    Kawasuji等 (2017)2050 ~ 10045 ~ 90>900>45
    Luo等 (2023)53 ~ 84>1510 ~ 15378 ~ 7989 ~ 19
    ASML16 ~ 140(27)>80323 ~ 150056
    下载: 导出CSV
  • [1] Abhari R S, Rollinger B, Giovannini A Z, et al. 2012. Laser-produced plasma light source for extreme-ultraviolet lithography applications. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11 : 021114.
    [2] Andrew Musgrave C S, Lu N, Sato R, et al. 2019. Gallium-tin alloys as a low melting point liquid metal for repetition-pulse-laser-induced high energy density state toward compact pulse EUV sources. RSC Adv, 9: 13927-13932. doi: 10.1039/C9RA01905G
    [3] Ashegriz N, Mashayek F. 1995. Temporal analysis of capillary jet breakup. J. Fluid Mech., 291 : 163-190.
    [4] Attwood D, Sakdinawat A. X-Rays and Extreme Ultraviolet Radiation: Principles and Applications//Cambridge: Cambridge University Press, 2017DOI: 10.1017/CBO9781107477629.
    [5] Basko M M, Krivokorytov M S, Yu Vinokhodov A, et al. 2017. Fragmentation dynamics of liquid–metal droplets under ultra-short laser pulses. Laser Physics Letters, 14 : 036001.
    [6] Betti R, Hurricane O A. 2016. Inertial-confinement fusion with lasers. Nature Physics, 12: 435-448. doi: 10.1038/nphys3736
    [7] Blaj G, Liang M N, Aquila A L, et al. 2019. Generation of high-intensity ultrasound through shock propagation in liquid jets. Physical Review Fluids, 4: 043401. doi: 10.1103/PhysRevFluids.4.043401
    [8] Bush J W M, Hasha A E. 2004. On the collision of laminar jets: fluid chains and fishbones. Journal of Fluid Mechanics, 511: 285-310. doi: 10.1017/S002211200400967X
    [9] Chen X, Yang V. 2019. Recent advances in physical understanding and quantitative prediction of impinging-jet dynamics and atomization. Chinese Journal of Aeronautics, 32: 45-57. doi: 10.1016/j.cja.2018.10.010
    [10] Chen H, Lan H, Chen Z Q, Liu L N, Wu T, Zuo D L, Lu P X, Wang X B. 2015. Experimental study on laser produced tin droplet plasma extreme ultraviolet light source. Acta Phys. Sin, 64 : 075202.
    [11] Choo Y J, Kang B S. 2007. The effect of jet velocity profile on the characteristics of thickness and velocity of the liquid sheet formed by two impinging jets. Physics of Fluids, 19 : 112101.
    [12] Craxton R S, Anderson K S, Boehly T R, et al. 2015. Direct-drive inertial confinement fusion: A review. Physics of Plasmas, 22: 110501. doi: 10.1063/1.4934714
    [13] Crissman C J, Mo M, Chen Z, et al. 2022. Sub-micron thick liquid sheets produced by isotropically etched glass nozzles. Lab Chip, 22: 1365-1373. doi: 10.1039/D1LC00757B
    [14] David B I F, Alex E, William P, David M, et al. 2009. LPP source system development for HVM. Proceedings of SPIE.
    [15] de Faria Pinto T, Mathijssen J, Meijer R, et al. 2021. Cylindrically and non-cylindrically symmetric expansion dynamics of tin microdroplets after ultrashort laser pulse impact. Applied Physics A, 127 : 93.
    [16] Driessen T, Sleutel P, Dijksman F, et al. 2014. Control of jet breakup by a superposition of two Rayleigh-Plateau unstable modes. J. Fluid Mech, 749: 22.
    [17] Eggers J, Villermaux E. 2008. Physics of Liquid Jets. Reports on Progress in Physics, 71: 036601. doi: 10.1088/0034-4885/71/3/036601
    [18] Fomenkov I, Brandt D, Ershov A, et al. 2017a. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling. Advanced Optical Technologies, 6: 173-186. doi: 10.1515/aot-2017-0029
    [19] Fomenkov I. 2017b. EUV source for high volume manufacturing: Performance at 250 W and key technologies for power scaling. 2017 Source Workshop; Dublin, Ireland.
    [20] Fujimoto J, Hori T, Yanagida T, et al. 2012. Development of Laser-Produced Tin Plasma-Based EUV Light Source Technology for HVM EUV Lithography. Physics Research International, 2012: 1-11.
    [21] Fujioka S, Shimomura M, Shimada Y, et al. 2008. Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production. Applied Physics Letters, 92: 241502. doi: 10.1063/1.2948874
    [22] Galinis G, Strucka J, Barnard J C T, et al. 2017. Micrometer-thickness liquid sheet jets flowing in vacuum. Rev Sci Instrum, 88: 083117. doi: 10.1063/1.4990130
    [23] Gao L, Liu Y, Tang H, et al. 2022. Response of ∼100 micron water jets to intense nanosecond laser blasts. Physical Review Fluids, 7 : 034001.
    [24] Gelderblom H, Lhuissier H, Klein A, et al. 2016. Drop deformation by laser-pulse impact. Journal of Fluid Mechanics, 794: 676-699. doi: 10.1017/jfm.2016.182
    [25] George K M, Morrison J T, Feister S, et al. 2019. High-repetition-rate (kHz) targets and optics from liquid microjets for high-intensity laser–plasma interactions. High Power Laser Science and Engineering, 7: 21. doi: 10.1017/hpl.2018.74
    [26] George S A, Hou K C, Takenoshita K, et al. 2007. 13.5 nm EUV generation from tin-doped droplets using a fiber laser. Optics Express, 15: 16348-16356. doi: 10.1364/OE.15.016348
    [27] George S A, Koay C S, Takenoshita K, et al. EUV spectroscopy of mass-limited Sn-doped laser micro-plasmas//SPIE Advanced Lithography. 2005.
    [28] Gonzalez-Avila S R, Ohl C D. 2016. Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. Journal of Fluid Mechanics, 805: 551-576. doi: 10.1017/jfm.2016.583
    [29] Grigoryev S Y, Lakatosh B V, Krivokorytov M S, et al. 2018. Expansion and Fragmentation of a Liquid-Metal Droplet by a Short Laser Pulse. Physical Review Applied, 10 : 064009.
    [30] Ha B, DePonte D P, Santiago J G. 2018. Device design and flow scaling for liquid sheet jets. Physical Review Fluids, 3 : 114202.
    [31] Hansson B A M, Berglund M, Hemberg O, et al. 2004a. Stabilization of liquified-inert-gas jets for laser–plasma generation. Journal of Applied Physics, 95: 4432-4437. doi: 10.1063/1.1687037
    [32] Hansson B A M, Hertz H M. 2004b. Liquid-jet laser–plasma extreme ultraviolet sources: from droplets to filaments. Journal of Physics D:Applied Physics, 37: 3233-3243. doi: 10.1088/0022-3727/37/23/004
    [33] Harilal S S, O'Shay B, Tillack M S, et al. 2006. Spectral control of emissions from tin doped targets for extreme ultraviolet lithography. Journal of Physics D:Applied Physics, 39: 484. doi: 10.1088/0022-3727/39/3/010
    [34] Hasson D, Peck R E. 1964. Thickness distribution in a sheet formed by impinging jets. AIChE Journal, 10: 5. doi: 10.1002/aic.690100111
    [35] Hermens J, Gelderblom H, Liu B, et al. 2021. Laser-impact-induced splashing: an analysis of the splash crown evolution after Nd: YAG ns-pulse laser impact on a liquid tin pool. Applied Physics B, 127 : 44.
    [36] Hernandez-Rueda J, Liu B, Hemminga D J, et al. 2022. Early-time hydrodynamic response of a tin droplet driven by laser-produced plasma. Physical Review Research, 4: 013142. doi: 10.1103/PhysRevResearch.4.013142
    [37] Hudgins D, Abhari R S. 2019. Rupture time of droplets impacted by a burst of picosecond laser pulses. Phys Rev E, 99: 031102. doi: 10.1103/PhysRevE.99.031102
    [38] Hudgins D, Gambino N, Rollinger B, et al. 2016. Neutral cluster debris dynamics in droplet-based laser-produced plasma sources. Journal of Physics D: Applied Physics, 49 : 185205.
    [39] Iartsev B, Vichev I, Tsygvintsev I, et al. 2020. On experimental and numerical study of the dynamics of a liquid metal jet hit by a laser pulse. Experiments in Fluids, 61 : 119.
    [40] Jansson P A C, Hansson B A M, Hemberg O, et al. 2004. Liquid-tin-jet laser-plasma extreme ultraviolet generation. Applied Physics Letters, 84: 2256-2258. doi: 10.1063/1.1690874
    [41] Jun L, Shengnan L, Lehua Q, et al. 2023. Generation of the small tin-droplet streams with a manipulable droplet spacing via the forced velocity perturbation. Physics of Fluids, 35 : 013612.
    [42] Chaudhary K C, Maxworthy T. 1980. The nonlinear capillary instability of a liquid jet part 2 experiments on jet behaviour before droplet formation. J. Fluid Mech, 96 : 275-286.
    [43] Kaku M, Touge S, Katto M, et al. 2009. Debris characteristics and mitigation of a laser plasma tin-contained liquid jet/droplet targets, Proc. SPIE 7271, Alternative Lithographic Technologies: 727132.
    [44] Kamis Y E, Eral H B, Breugem W P. 2021. Active control of jet breakup and droplet formation using temperature modulation. Physical Review Fluids, 6 : 103903.
    [45] Kashanj S, Kebriaee A. 2019. The effects of different jet velocities and axial misalignment on the liquid sheet of two colliding jets. Chemical Engineering Science, 206: 235-248. doi: 10.1016/j.ces.2019.05.015
    [46] Kawasuji Y, Nowak K, Hori T, et al. 2017. Key components technology update of the 250W high-power LPP-EUV light source. SPIE Advanced Lithography, 10143 : 101432G.
    [47] Kemp K, Wurm S. 2006. EUV lithography. Comptes Rendus Physique, 7: 875-886. doi: 10.1016/j.crhy.2006.10.002
    [48] Kim J, Kim K H, Lee J H, et al. 2010. Ultrafast X-ray diffraction in liquid, solution and gas: present status and future prospects. Acta Crystallogr A, 66: 270-280. doi: 10.1107/S0108767309052052
    [49] Kim Y H, Kim H, Park S C, et al. 2023. High-harmonic generation from a flat liquid-sheet plasma mirror. Nature Communications, 14: 2328. doi: 10.1038/s41467-023-38087-3
    [50] Klein A, Bouwhuis W, Visser C W, et al. 2015. Drop Shaping by Laser-Pulse Impact. Physical Review Applied, 3: 044018. doi: 10.1103/PhysRevApplied.3.044018
    [51] Klein A L, Kurilovich D, Lhuissier H, et al. 2020. Drop fragmentation by laser-pulse impact. Journal of Fluid Mechanics, 893: A7. doi: 10.1017/jfm.2020.197
    [52] Koralek J D, Kim J B, Bruza P, et al. 2018. Generation and characterization of ultrathin free-flowing liquid sheets. Nature Communications, 9: 1353. doi: 10.1038/s41467-018-03696-w
    [53] Krivokorytov M S, Vinokhodov A Y, Sidelnikov Y V, et al. 2017. Cavitation and spallation in liquid metal droplets produced by subpicosecond pulsed laser radiation. Phys Rev E, 95: 031101. doi: 10.1103/PhysRevE.95.031101
    [54] Krivokorytov M S, Zeng Q, Lakatosh B V, et al. 2018. Shaping and Controlled Fragmentation of Liquid Metal Droplets through Cavitation. Sci Rep, 8: 597. doi: 10.1038/s41598-017-19140-w
    [55] Kurilovich D, Basko M M, Kim D A, et al. 2018a. Power-law scaling of plasma pressure on laser-ablated tin microdroplets. Physics of Plasmas, 25 : 012709.
    [56] Kurilovich D, Klein A L, Torretti F, et al. 2016. Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact. Physical Review Applied, 6: 014018. doi: 10.1103/PhysRevApplied.6.014018
    [57] Kurilovich D, Pinto T D F, Torretti F, et al. 2018b. Expansion Dynamics after Laser-Induced Cavitation in Liquid Tin Microdroplets. Physical Review Applied, 10: 054005. doi: 10.1103/PhysRevApplied.10.054005
    [58] Larsson D H, Takman P A C, Lundström U, et al. 2011. A 24 keV liquid-metal-jet x-ray source for biomedical applications. Review of Scientific Instruments, 82: 123701. doi: 10.1063/1.3664870
    [59] Lautrup B. 2011. Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World. 2nd ed. CRC Press
    [60] Li R, Ashgriz N. 2006. Characteristics of liquid sheets formed by two impinging jets. Physics of Fluids, 18 : 087104.
    [61] Liu B, Hernandez-Rueda J, Gelderblom H, et al. 2022. Speed of fragments ejected by an expanding liquid tin sheet. Physical Review Fluids, 7: 083601. doi: 10.1103/PhysRevFluids.7.083601
    [62] Liu B, Kurilovich D, Gelderblom H, et al. 2020. Mass Loss from a Stretching Semitransparent Sheet of Liquid Tin. Physical Review Applied, 13: 024035. doi: 10.1103/PhysRevApplied.13.024035
    [63] Liu B, Meijer R A, Hernandez-Rueda J, et al. 2021a. Laser-induced vaporization of a stretching sheet of liquid tin. Journal of Applied Physics, 129: 053302. doi: 10.1063/5.0036352
    [64] Liu B, Meijer R A, Li W, et al. 2023. Mass Partitioning in Fragmenting Tin Sheets. Physical Review Applied, 20 : 014048.
    [65] Liu H, Wang Z, Gao L, et al. 2021b. Optofluidic Resonance of a Transparent Liquid Jet Excited by a Continuous Wave Laser. Phys Rev Lett, 127: 244502. doi: 10.1103/PhysRevLett.127.244502
    [66] Liu Y, Gao L, Zhai T, et al. 2021c. Experimental study of a millimeter-sized Ga-In drop ablated by a nanosecond laser pulse. Physics of Fluids, 33: 122102. doi: 10.1063/5.0072348
    [67] Lord Rayleigh F R S. 1878. On The Instability Of Jets. Proceedings of the London Mathematical Society,.
    [68] Lu J, Corvalan C M. 2014. Influence of viscosity on the impingement of laminar liquid jets. Chemical Engineering Science, 119: 182-186. doi: 10.1016/j.ces.2014.08.024
    [69] Luo J, Lyu S, Qi L, et al. 2023. Generation of the small tin-droplet streams with a manipulable droplet spacing via the forced velocity perturbation. Physics of Fluids, 35: 013612. doi: 10.1063/5.0134623
    [70] Meijer R A, Kurilovich D, Eikema K S E, et al. 2022a. The transition from short- to long-timescale pre-pulses: Laser-pulse impact on tin microdroplets. Journal of Applied Physics, 131 .
    [71] Meijer R A, Kurilovich D, Liu B, et al. 2022b. Nanosecond laser ablation threshold of liquid tin microdroplets. Applied Physics A, 128: 570. doi: 10.1007/s00339-022-05685-9
    [72] Mizoguchi H, La Fontaine B M, Abe T, et al. 2010. First generation laser-produced plasma source system for HVM EUV lithography, Extreme Ultraviolet (EUV) Lithography.
    [73] Orme M. 1991. On the genesis of droplet stream microspeed dispersions. Physics of Fluids A:Fluid Dynamics, 3: 2936-2947. doi: 10.1063/1.857836
    [74] Panão M R O, Delgado J M D. 2013. Effect of pre-impingement length and misalignment in the hydrodynamics of multijet impingement atomization. Physics of Fluids, 25 : 012105.
    [75] Panning E M, Goldberg K A, Hori T, et al. 2016. 100W EUV light-source key component technology update for HVM, Extreme Ultraviolet (EUV) Lithography VII.
    [76] Pimbley W T, Lee H C. 1977. Satellite Droplet Formation in a Liquid Jet. IBM Journal of Research and Development,.
    [77] Rayleigh L. 1878. On The Instability Of Jets. Proceedings of the London Mathematical Society, s1-10: 4-13. doi: 10.1112/plms/s1-10.1.4
    [78] Reijers S A, Kurilovich D, Torretti F, et al. 2018. Laser-to-droplet alignment sensitivity relevant for laser-produced plasma sources of extreme ultraviolet light. Journal of Applied Physics, 124 .
    [79] Richardson M, Koay C S, Takenoshita K, et al. 2004. High conversion efficiency mass-limited Sn-based laser plasma source for extreme ultraviolet lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 22 .
    [80] Rollinger B, Morris O, Abhari R. 2011. Stable tin droplets for LPP EUV sources. Proc SPIE, 7969: 79692W. doi: 10.1117/12.879538
    [81] Rutland D F, Jameson G J. 1970. Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chemical Engineering Science, 25 .
    [82] Stamm U, Ahmad I, Balogh I, et al. 2003. High power EUV lithography sources based on gas discharges and laser produced plasmas. Emerging Lithographic Technologies Vii, Pts 1 and 2, 5037: 119-129. doi: 10.1117/12.482676
    [83] Stan C A, Milathianaki D, Laksmono H, et al. 2016a. Liquid explosions induced by X-ray laser pulses. Nature Physics, 12: 966-971. doi: 10.1038/nphys3779
    [84] Stan C A, Willmott P R, Stone H A, et al. 2016b. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves. J Phys Chem Lett, 7: 2055-2062. doi: 10.1021/acs.jpclett.6b00687
    [85] Tamotsu Abe T S, Yousuke Imai, Hiroshi Someya, Hideo Hoshino, , Masaki Nakano G S, Hiroshi Komori, Yuichi Takabayashi, , Hakaru Mizoguchi A E, Koichi Toyoda, Yasuhiro Horiike 2016. Performance of a 10-kHz laser-produced-plasma light source for EUV lithography. Proc. of SPIE, 5374 : 160-167.
    [86] Taylor G. 1950a. The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 201: 159-174.
    [87] Taylor G. 1950b. The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 201: 175-186.
    [88] Taylor G. 1997. The dynamics of thin sheets of fluid II. Waves on fluid sheets. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253: 296-312.
    [89] Ursescu D, Aleksandrov V, Matei D, et al. 2020. Generation of shock trains in free liquid jets with a nanosecond green laser. Physical Review Fluids, 5: 123402. doi: 10.1103/PhysRevFluids.5.123402
    [90] Versolato O O. 2019. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography. Plasma Sources Science and Technology, 28 : 083001.
    [91] Versolato O O, Sheil J, Witte S, et al. 2022. Microdroplet-tin plasma sources of EUV radiation driven by solid-state-lasers (Topical Review). Journal of Optics, 24 : 054014.
    [92] Villermaux E, Bossa B. 2011. Drop fragmentation on impact. Journal of Fluid Mechanics, 668: 412-435. doi: 10.1017/S002211201000474X
    [93] Vinokhodov A, Krivokorytov M, Sidelnikov Y, et al. 2016a. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source. Rev Sci Instrum, 87: 103304. doi: 10.1063/1.4964891
    [94] Vinokhodov A Y, Koshelev K N, Krivtsun V M, et al. 2016b. Formation of a fine-dispersed liquid-metal target under the action of femto- and picosecond laser pulses for a laser-plasma radiation source in the extreme ultraviolet range. Quantum Electronics, 46: 23-28. doi: 10.1070/QE2016v046n01ABEH015867
    [95] Vinokhodov A Y, Krivokorytov M S, Sidelnikov Y V, et al. 2016c. Droplet-based, high-brightness extreme ultraviolet laser plasma source for metrology. Journal of Applied Physics, 120: 163304. doi: 10.1063/1.4966930
    [96] Vinokhodov A Y, Krivokorytov M S, Sidelnikov Y V, et al. 2016d. High brightness EUV sources based on laser plasma at using droplet liquid metal target. Laser-Plasma Source of EUV Radiation, 46 : 473.
    [97] Weber C. 1931. Zum Zerfall eines Flüssigkeitsstrahles. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 11: 136-154.
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  1616
  • HTML全文浏览量:  389
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 录用日期:  2024-01-17
  • 网络出版日期:  2024-01-30
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回