留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋工程力学中的若干前沿问题

李家春 聂冰川

李家春, 聂冰川, 林瀚瀚译. 海洋工程力学中的若干前沿问题. 力学进展, 待出版 doi: 10.6052/1000-0992-25-044
引用本文: 李家春, 聂冰川, 林瀚瀚译. 海洋工程力学中的若干前沿问题. 力学进展, 待出版 doi: 10.6052/1000-0992-25-044
Li J C, Nie B C, Lin H H trans. A few frontier issues in ocean engineering mechanics. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-044
Citation: Li J C, Nie B C, Lin H H trans. A few frontier issues in ocean engineering mechanics. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-044

海洋工程力学中的若干前沿问题

doi: 10.6052/1000-0992-25-044 cstr: 32046.14.1000-0992-25-044
基金项目: 本研究得到国家自然科学基金的资助 (11902024).
详细信息
    作者简介:

    李家春, 流体力学家, 中国科学院院士. 曾任中国科学院大学工程科学学院院长、中国力学学会理事长、国际理论与应用力学联合会理事、亚洲流体力学委员会主席、《力学快报》主编. 现为中国科学院力学研究所研究员, 研究方向为理论流体力学和海洋、环境工程

    聂冰川, 北京交通大学力学系副教授、博士生导师. 从事海洋环境流体力学研究. 现任中国力学学会环境力学专业委员会委员

    通讯作者:

    jcli05@imech.ac.cn

    bcnie@bjtu.edu.cn

  • 中图分类号: O3

A few frontier issues in ocean engineering mechanics

More Information
  • 摘要: 本文综述海洋工程领域中与自由面/界面相关的若干前沿问题的研究现状与最新进展. 主要内容包括热带气旋 (TC) 引发的巨浪、液化天然气 (LNG) 晃荡、空化与气泡动力学、涡激运动 (VIM) 与涡激振动 (VIV). 重点关注上述方向的最新研究进展与所面临的挑战. 过去70年研究成果显示, 人类正在开启新一轮海洋探索活动. 未来将出现从海面向深海拓展、从低中纬度向极地延伸, 从化石能源向可再生能源转型的明显趋势.

     

  • 图  1  海洋油气勘探开发作业水深记录

    图  2  非对称风场与海浪生成示意图

    图  3  二维矩形储罐在共振附近不同水深下的典型晃荡运动. (a) 浅水, (b) 中等水深, (c) 有限水深, (d) 深水

    图  4  (a) 近自由面气泡; (b) 自由场中气泡; (c) 近垂直壁面气泡; (d) 近水平底部气泡

    图  5  锁定状态下的涡脱离模式示意图: 2S模式、2P模式、2C模式以及2T模式

  • [1] 刘俊, 高福平. 2019. 近壁面柱体涡激振动的迟滞效应. 力学学报, 51(6): 1630-1640 (Liu J, Gao F P. 2019. Hysteresis in vortex-induced vibrations of a near-wall cylinder. Chinese Journal of Theoretical and Applied Mechanics, 51(6): 1630-1640). doi: 10.6052/0459-1879-19-293

    Liu J, Gao F P. 2019. Hysteresis in vortex-induced vibrations of a near-wall cylinder. Chinese Journal of Theoretical and Applied Mechanics, 51(6): 1630-1640 doi: 10.6052/0459-1879-19-293
    [2] Bauer H F. 1984. Oscillations of immiscible liquids in a rectangular container: A new damper for excited structures. Journal of Sound and Vibration, 93(1): 117-133. doi: 10.1016/0022-460X(84)90354-7
    [3] Bearman P W. 1984. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics, 16: 195-222. doi: 10.1146/annurev.fl.16.010184.001211
    [4] Benjamin T B, Ellis A T. 1966. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 260: 221-240. doi: 10.1098/rsta.1966.0046
    [5] Blake J R. 1988. The Kelvin impulse: Application to cavitation bubble dynamics. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 30(2): 127-146. doi: 10.1017/S0334270000006111
    [6] Blake J R, Leppinen D M, Wang Q X. 2015. Cavitation and bubble dynamics: The Kelvin impulse and its applications. Interface Focus, 5(5): 20150017. doi: 10.1098/rsfs.2015.0017
    [7] Bowyer P J, MacAfee A W. 2005. The theory of trapped-fetch waves within tropical cyclones—An operational perspective. Weather Forecast, 20: 229-244. doi: 10.1175/WAF849.1
    [8] Bulian G, Gercos-Pita J L. 2018. Co-simulation of ship motions and sloshing in tanks. Ocean Engineering, 152: 353-376. doi: 10.1016/j.oceaneng.2018.01.028
    [9] Cangialosi J P, Franklin P P. 2016. 2015 hurricane season. National Hurricane Center Forecast Verification Report.
    [10] Cole R H. 1965. Underwater explosions. Dover Publications New York.
    [11] Dias F, Ghidaglia J-M. 2018. Slamming: Recent progress in the evaluation of impact pressure. Annual Review of Fluid Mechanics, 50: 243-273. doi: 10.1146/annurev-fluid-010816-060121
    [12] Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9: 1937-1958. doi: 10.5194/gmd-9-1937-2016
    [13] Faltinsen O M, Timokha A N. 2002. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. Journal of Fluid Mechanics, 470: 319-357. doi: 10.1017/s0022112002002112
    [14] Faltinsen O M, Rognebakke O, Timokha A. 2005. Resonant three-dimensional nonlinear sloshing in a square-base basin, Part 2, effect of higher modes. Journal of Fluid Mechanics, 523: 199-218. doi: 10.1017/s002211200400196x
    [15] Faltinsen O M. 2017. Sloshing. Advances in Mechanics, 47: 201701. doi: 10.6052/1000-0992-16-017
    [16] Flemming F, Williamson C H K. 2005. Vortex-induced vibrations of a pivoted cylinder. Journal of Fluid Mechanics, 522: 215-252. doi: 10.1017/s0022112004001831
    [17] Fong S W, Ahhikari D, Klaserboer E, Khoo B C. 2009. Interactions of multiple spark-generated bubbles with phase differences. Experiments in Fluids, 46: 705-724. doi: 10.1007/s00348-008-0603-4
    [18] Fujarra A L C, Rosetti G F, Wilde J, Gonçalves R T. 2012. State-of-art on vortex-induced motion: A comprehensive survey after more than one decade of experimental investigation. Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil. July 1–6.
    [19] Ganesh H, Makiharju S A, Ceccio S L. 2016. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. Journal of Fluid Mechanics, 802: 37-78. doi: 10.1017/jfm.2016.425
    [20] Gañán-Calvo A M. 2017. Revision of bubble bursting: Universal scaling laws of top jet drop size and speed. Physical Review Letters, 119(20): 204502. doi: 10.1103/PhysRevLett.119.204502
    [21] Gilmore F R. 1952. The growth or collapse of a spherical bubble in a viscous compressible liquid. Hydrodynamics Laboratory, California Institute of Technology, Report No 26-4.
    [22] Govardhan R, Williamson C H K. 2000. Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics, 420: 85-130. doi: 10.1017/s0022112000001233
    [23] Hsu J-Y, Lien R-C, D’Asaro E A, Sanford T B. 2019. Scaling of drag coefficients under five tropical cyclones. Geophysical Research Letters, 46: 3349-3358. doi: 10.1029/2018GL081574
    [24] Holland G J. 1980. An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108: 1212-1218. doi: 10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2
    [25] Holland G J, Belanger J I, Fritz A. 2010. A revised model for radial profiles of hurricane winds. Monthly Weather Review, 138: 4393-4401. doi: 10.1175/2010MWR3317.1
    [26] Kana D D. 1989. Validated spherical pendulum model for rotary liquid slosh. Journal of Spacecraft and Rockets, 26(3): 188-195. doi: 10.2514/3.26052
    [27] Keller J B, Miksis M. 1980. Bubble oscillations of large amplitude. The Journal of the Acoustical Society of America, 68: 628-633. doi: 10.21236/ada095754
    [28] Khalak A, Williamson C H K. 1999. Motions, forces and mode transitions in vortex-induced vibrations at low mass damping. Journal of Fluids and Structures, 13(7-8): 813-851. doi: 10.1006/jfls.1999.0236
    [29] Kim Y, Nam B W, Kim D W, Kim Y S. 2007. Study on coupling effects of ship motion and sloshing. Ocean Engineering, 34: 2176-2187. doi: 10.1016/j.oceaneng.2007.03.008
    [30] Kossin J P. 2018. A global slowdown of tropical-cyclone translation speed. Nature, 558: 104-107. doi: 10.1038/s41586-018-0158-3
    [31] Lafeber W, Brosset L, Bogaert H. 2012. Elementary Loading Processes (ELP) involved in breaking wave impacts: Findings from the Sloshel project. The Proceedings of the 22nd International Offshore and Polar Engineering Conference.
    [32] Mafi S, Amirinia G. 2017. Forecasting hurricane wave height in Gulf of Mexico using soft computing methods. Ocean Engineering, 146: 352-362. doi: 10.1016/j.oceaneng.2017.10.003
    [33] Nie B C, Li J C, Zhang H Q. 2015. On the regimes of underwater explosion for a submerged slender structure by pulsating bubble. Marine Structure, 44: 85-100. doi: 10.1016/j.marstruc.2015.07.003
    [34] Ogink R H M, Metrikine A V. 2010. A wake oscillator with frequency dependent coupling for the modeling of vortex-induced vibration. Journal of Sound and Vibration, 329: 5452-5473. doi: 10.1016/j.jsv.2010.07.008
    [35] Parlitz U, Englisch V, Scheffczyk C, Lauterborn W. 1990. Bifurcation structure of bubble oscillators. The Journal of the Acoustical Society of America, 88: 1061-1077. doi: 10.1121/1.399855
    [36] Qu Y, Metrikine A V. 2020. A wake oscillator model with nonlinear coupling for the vortex-induced vibration of a rigid cylinder constrained to vibrate in the cross-flow direction. Journal of Sound and Vibration, 469: 115161. doi: 10.1016/j.jsv.2019.115161
    [37] Rayleigh O M F R S. 1917. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(200): 94-98. doi: 10.1017/CBO9780511704017.076
    [38] Saeki S, Madarame H, Okamoto K. 2001. Self-induced sloshing excited by a horizontally injected plane jet. Journal of Fluid Mechanics, 448: 81-114. doi: 10.1017/s0022112001004153
    [39] Sarpkaya T. 1995. Hydrodynamic damping, flow-induced oscillations, and biharmonic response. Journal of Offshore Mechanics and Arctic Engineering, 117(4): 232-238. doi: 10.1115/1.2827228
    [40] Sarpkaya T. 2004. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 19: 389-447. doi: 10.1016/j.jfluidstructs.2004.02.005
    [41] Sayar B A, Baumgarten J R. 1981. Pendulum analogy for nonlinear fluid oscillations in spherical containers. Journal of Applied Mechanics, 48: 769-772. doi: 10.1115/1.3157731
    [42] Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N, Farhat M. 2016. Scaling laws for jets of single cavitation bubbles. Journal of Fluid Mechanics, 802: 263-293. doi: 10.1017/jfm.2016.463
    [43] Tapiador F J, Navarro A, Moreno R, Sánchez J L, García-Ortega E. 2020. Regional climate models: 30 years of dynamical downscaling. Atmospheric Research, 235: 104785. doi: 10.1016/j.atmosres.2019.104785
    [44] Wang L Z, Li J C. 2016. Estimation of extreme wind speed in SCS and NWP by a non-stationary model. Theoretical and Applied Mechanics Letters, 6: 131-138. doi: 10.1016/j.taml.2016.04.001
    [45] Wang Y W, Huang C G, Du T Z, Wu X C, Fang X, Liang N G, Wei Y P. 2012. Shedding phenomenon of ventilated partial cavitation around an underwater projectile. Chinese Physics Letters, 29: 014601. doi: 10.1088/0256-307X/29/1/014601
    [46] Waterhouse D D. 1994. Resonant sloshing near a critical depth. Journal of Fluid Mechanics, 281: 313-318. doi: 10.1017/s0022112094003125
    [47] Wuxi Q Y, Li J C, Nie B C. 2018. Effects of tide-surge interaction and wave set-up/set-down on surge: Case studies of tropical cyclones landing China’s Zhe-Min coast. Theoretical & Applied Mechanics Letters, 8: 153-159. doi: 10.1016/j.taml.2018.03.002
    [48] Young I R. 2017. A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere, 8: 194. doi: 10.3390/atmos8100194
    [49] Zeff B W, Kleber B, Fineberg J, Lathrop D P. 2000. Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature, 403: 401-404. doi: 10.1038/35000151
    [50] Zijema M. 2010. Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57: 267-277. doi: 10.1016/j.coastaleng.2009.10.011
  • 加载中
图(5)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  11
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-12-29
  • 录用日期:  2025-01-09
  • 网络出版日期:  2025-01-15

目录

    /

    返回文章
    返回