留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力科学: 开拓未知疆域与变革性技术的新高地

何国威 周建平 张卫红 顾逸东 张攀峰 陈猛 康琦 龙勉 田强 张璐 巴金 朱继宏 王丽珍 吕守芹 李曌斌

何国威, 周建平, 张卫红, 顾逸东, 张攀峰, 陈猛, 康琦, 龙勉, 田强, 张璐, 巴金, 朱继宏, 王丽珍, 吕守芹, 李曌斌. 微重力科学: 开拓未知疆域与变革性技术的新高地. 力学进展, 待出版 doi: 10.6052/1000-0992-25-043
引用本文: 何国威, 周建平, 张卫红, 顾逸东, 张攀峰, 陈猛, 康琦, 龙勉, 田强, 张璐, 巴金, 朱继宏, 王丽珍, 吕守芹, 李曌斌. 微重力科学: 开拓未知疆域与变革性技术的新高地. 力学进展, 待出版 doi: 10.6052/1000-0992-25-043
He G W, Zhou J P, Zhang W H, Gu Y D, Zhang P F, Chen M, Kang Q, Long M, Tian Q, Zhang L, Ba J, Zhu J H, Wang L Z, Lyu S Q, Li Z B. Microgravity science: The new horizon for knowledge expansion and transformative technologies. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-043
Citation: He G W, Zhou J P, Zhang W H, Gu Y D, Zhang P F, Chen M, Kang Q, Long M, Tian Q, Zhang L, Ba J, Zhu J H, Wang L Z, Lyu S Q, Li Z B. Microgravity science: The new horizon for knowledge expansion and transformative technologies. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-043

微重力科学: 开拓未知疆域与变革性技术的新高地

doi: 10.6052/1000-0992-25-043 cstr: 32046.14.1000-0992-25-043
详细信息
    作者简介:

    何国威, 中国科学院院士, 中国力学学会理事长, 中国科学院力学研究所研究员、学术所长, 中国科学院大学工程科学学院院长. 主要从事湍流、计算流体力学、AI驱动的多尺度力学研究. 曾获全国创新争先奖奖章、周培源力学奖等荣誉, 被选为美国物理学会会士

    周建平, 中国工程院院士, 中国载人航天工程总设计师. 航天工程系统设计与技术管理专家. 长期从事载人航天总体设计等方面的研究. 曾获得国家科技进步特等奖/一等奖、省部级科技进步一/二等奖等荣誉

    张卫红, 中国科学院院士, 西北工业大学教授、副校长, 科技部航宇材料结构一体化设计与增材制造装备技术国合基地主任. 长期从事航宇结构优化与先进制造技术研究. 曾获国家自然科学二等奖、国家技术发明二等奖、全国创新争先奖等

    顾逸东, 中国科学院院士, 中国科学院空间应用工程与技术中心研究员, 担任中国载人航天工程空间科学首席专家. 长期从事空间科学与应用领域的总体和专业技术工作. 获全国五一劳动奖章、国家科技进步特等奖/二等奖、部委级科技进步一/二等奖等

    通讯作者:

    hgw@lnm.imech.ac.cn

  • 中图分类号: V419.1

Microgravity science: The new horizon for knowledge expansion and transformative technologies

More Information
  • 摘要: 微重力科学是空间科学与应用诸多方向的基础之一. 它不仅是全球科技领域的新兴重点, 也是国家太空科技竞争力的重要标志. 目前, 中国空间站全面建成, 国际空间站将退役. 中国空间站作为国家太空实验室, 将公开征集并实施千余项研究项目, 为我国微重力科学研究提供独一无二的实验条件和前所未有的发展机遇. 基于国家自然科学基金委员会第385期“微重力科学与技术的机遇与挑战”双清论坛, 本文总结了我国微重力科学与技术研究及空间站应用面临的挑战和难点, 梳理了近年来在微重力流体物理、微重力制造与空间技术、微重力生命科学与医工技术等领域取得的主要进展和成就, 凝练了微重力科学与技术领域未来5 ~ 10年所面临的重大关键科学问题, 探讨了前沿研究方向并提出学科发展建议.

     

  • 图  1  液桥高径比−体积比效应图谱. (a) 高径比对临界温差的影响, (b) 高径比与体积比对临界Marangoni数的影响(Kang et al. 2019c)

    图  2  中国空间站流体物理实验柜贮箱气泡合并现象实验. (a) 实验结果, (b) 数值仿真, (c) 气泡合并过程, (d)气泡稳定状态 (Chen S et al. 2024a)

    图  3  中国空间站变重力池沸腾传热实验. (a) 变重力池沸腾实验装置, (b) 空间环境中典型池沸腾现象(中国载人航天工程办公室 2024)

    图  4  常重力环境下的火焰 (左), 微重力火焰 (右)(NASA 2020)

    图  5  胶体椭球单分子层玻璃化转变中的平移与旋转类临界行为 (Zheng et al. 2021)

    图  6  欧空局在国际空间站完成太空3D金属打印 (European Space Agency, 2024)

    图  7  复杂系统动力学与控制的微重力研究进展. (a) GITAI空间机器人在轨操作模拟, (b) 微重力抓取测试与贾尼别科夫效应, (c) 大型天线展开的地面微重力模拟实验与多柔体动力学仿真

    图  8  NASA长期暴露试验卫星侵蚀形貌变化(NASA 1989). (a) 卫星全景, (b) 发射前状态, (c) 暴露5.8年后状态

    图  9  国际空间站P6桁架太阳翼结构经历1年空间辐照暴露后出现明显侵蚀破坏 (Adeoti 2022)

    图  10  中国空间站生物技术实验的模块化装置. (a) 生物力学模块, (b) 样品单元

    图  11  空间站项目研究研制和在轨实施主要流程

    图  12  中国空间站微重力流体方向实验柜. (a) 微重力流体物理实验柜, (b) 两相流系统实验柜

    图  13  中国空间站材料科学方向实验柜. (a) 无容器材料实验柜, (b) 高温材料科学实验柜

    图  14  空间站天和核心舱及航天员操作图

  • [1] 崔平远, 乔栋, 陈余军等. 2025. 大型复杂航天器在轨动力学关键技术与工程实践, 中国工程科学. Available at: https://link.cnki.net/urlid/11.4421.G3.20251207.1948.002.
    [2] 杜王芳, 刘鹏, 赵建福等. 2022. 上中国空间站烧开水, 揭示沸腾现象中的重力作用机理, 力学与实践, 44(6), 1456-1463.
    [3] 杜王芳, 张良, 何发龙等. 2025. 低重力池沸腾双气泡相互作用数值模拟, 工程热物理学报, 46(7), 2269-2273.
    [4] 杜王芳, 赵建福. 2020. 核态池沸腾传热现象中的重力标度规律, 科学通报, 65(17), 1629-1637.
    [5] 顾逸东. 2022. 关于空间科学发展的一些思考, 中国科学院院刊, 37(8), 1031-1049.
    [6] 胡海岩, 田强, 文浩等. 2025. 极大空间结构在轨组装的动力学与控制, 力学进展, 55(1), 1-29.
    [7] 胡海岩, 田强, 张伟等. 2013. 大型网架式可展开空间结构的非线性动力学与控制, 力学进展, 43(4), 390-414.
    [8] 胡文瑞等. 2010. 微重力科学概论 [M]. 北京: 科学出版社.
    [9] 康琦, 胡文瑞. 2016. 微重力科学实验卫星−“实践十号”, 中国科学院院刊, 31(5), 574-580.
    [10] 康琦, 赵建福. 2024. 中国空间科学2035发展战略. 第六章微重力科学, 科学出版社, 223-294.
    [11] 康琦等. 2019. 中国学科发展战略−空间科学. 第七章微重力科学, 科学出版社, 307-354.
    [12] 李盛阳, 王震, 谭洪等. 2023. 载人航天工程数据管理现状研究与启示, 载人航天, 29(4), 527-535.
    [13] 刘有晟, 李星贤, 温禹哲等. 2025. 中国空间站气体射流火焰科学实验, 清华大学学报(自然科学版), 65(9), 1609-1620.
    [14] 田强, 刘铖, 李培等. 2017. 多柔体系统动力学研究进展与挑战, 动力学与控制学报, 15(5), 385-405.
    [15] 王明明, 罗建军, 袁建平等. 2021. 空间在轨装配技术综述, 航空学报, 42(1), 47-61.
    [16] 王双峰, 吴传嘉. 2023. 载人空间探索环境中固体材料可燃特性研究进展与态势, 空间科学学报, 43(3), 531-548.
    [17] 新华网. 2025. 完成首年太空考验我国首批“月壤砖”状态良好, [EB/OL]. Available at: https://www.xinhuanet.com/sci-tech/20251120/2e80b8a326bf48299b0463b5ee71fb9b/c.html.
    [18] 薛源, 徐国鑫, 胡松林等. 2020. 国际空间站微重力燃烧项目规划及进展, 载人航天, 26(2), 252-260.
    [19] 杨健, 庞松, 朱基裔等. 2025. 微重力条件下超高纯铝凝固与杂质偏析机理研究, 航天制造技术, 251, 37-41.
    [20] 张日晗, 王统才, 李亮, 王功. 2024. 面向月面原位制造/建造的月壤成型利用技术综述, 宇航学报, 45(06), 815-830.
    [21] 张夏. 2014. 微重力燃烧研究进展, 力学进展, 34(4), 507-528.
    [22] 中国科学院, 国家航天局, 中国载人航天工程办公室. 2023. 国家空间科学中长期发展规划(2024-2050年)[OL]. 中国政府网.
    [23] 中国载人航天官方网站. 2023. 空间站应用与发展工程空间科学与应用项目征集公告 [EB/OL]. Available at: https://www.cmse.gov.cn/gfgg/202306/t20230616_53912.html.
    [24] 中国载人航天工程办公室. 2024. 中国空间站科学研究与应用进展报告 [R].
    [25] Adeoti L. 2022. Radiation Effects on Composite Materials Used in Space Systems: A Review. NRIAG Journal of Astronomy and Geophysics, 11(1): 313-324. doi: 10.1080/20909977.2022.2079902
    [26] Afshinnekoo E. et al. 2021. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell, 184: 6002. doi: 10.1016/j.cell.2020.10.050
    [27] Airbus Defence and Space. 2021. Large-Scale 3D Printing Goes to Space on Airbus’ Eurostar Neo Satellites [W]. Available at: https://www.aerospacemanufacturinganddesign.com/news/large-scale-3d-printing-airbus-eurostar-neo-satellites/.
    [28] Aubert A. E. et al. 2016. Towards Human Exploration of Space: The THESEUS Review Series on Cardiovascular, Respiratory, and Renal Research Priorities. NPJ Microgravity, 2: 16031. doi: 10.1038/npjmgrav.2016.31
    [29] Bagherian A. et al. 2020. A Novel Numerical Model for the Prediction of Patient-Dependent Bone Density Loss in Microgravity Based on Micro-CT Images. Continuum Mechanics and Thermodynamics, 32, 17.
    [30] Bauer J. 2020. Microgravity and Cell Adherence. International Journal of Molecular Sciences, 21.
    [31] Blaber E., Marcal H., Burns B. P. 2010. Bioastronautics: The Influence of Microgravity on Astronaut Health. Astrobiology, 10: 463-473. doi: 10.1089/ast.2009.0415
    [32] Buravkova L., Romanov Y., Rykova M., Grigorieva O., Merzlikina N. 2005. Cell-to-Cell Interactions in Changed Gravity: Ground-Based and Flight Experiments. Acta Astronautica, 57: 67-74. doi: 10.1016/j.actaastro.2005.03.012
    [33] Chaikin P. , Clark N. , Nagel S. 2021. Grand Challenges in Soft Matter Science: Prospects for Microgravity Research. [R].
    [34] Chen J. et al. 2023. Amyloplast Sedimentation Repolarizes LAZYs to Achieve Gravity Sensing in Plants. Cell, 186, 4788-4802 e15.
    [35] Chen S., Hu L., Chen S. et al. 2024a. Study on the Shape and Motion of Bubbles in the Tank Model with a Central Column Aboard the Chinese Space Station. Physics of Fluids, 36(1): 012124. doi: 10.1063/5.0180681
    [36] Chen S. , Duan L. , Li W. et al. 2024b. Profiles of Free Surfaces in Revolved Containers under Microgravity. Microgravity Science and Technology, 36(11).
    [37] Chen S., Chen S., Wu D. et al. 2024c. Study on Liquid Climbing Behavior During Filling Process in Tank Models Aboard the Chinese Space Station. Microgravity Science and Technology, 36: 36. doi: 10.1007/s12217-024-10123-x
    [38] Chen Y., Duan L., Kang Q. 2022. Control of Quasi-Equilibrium State of Annular Flow Through Reinforcement Learning. Physics of Fluids, 34(9): 94105. doi: 10.1063/5.0102668
    [39] Chen Y., Wu D., Duan L. et al. 2021. Machine Learning Method for the Supplement, Correction, and Prediction of the Nonlinear Dynamics in Pattern Formation. Physics of Fluids, 33(2): 17. doi: 10.1063/5.0036762
    [40] Chen Z., Chen Y., Wu D. et al. 2024. Static Analysis and Contact Angle Hysteresis Study of Bubbles in Chinese Space Station Tank Models under Different Gravity Effects. Physics of Fluids, 36(7): 072101. doi: 10.1063/5.0211985
    [41] Cheng K., Hou M., Li T. et al. 2024b. Tracking the Motion of an Intruder Particle in a Three-Dimensional Granular Bed Onboard the Chinese Space Station. Microgravity Science and Technology, 36: 15. doi: 10.1007/s12217-024-10102-2
    [42] Cheng K., Hou M., Sun W. et al. 2024a. Unraveling the Role of Gravity in Shaping Intruder Dynamics within Vibrated Granular Media. Communications Physics, 7: 425. doi: 10.1038/s42005-024-01927-9
    [43] Choi J. U. A. et al. 2021. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Frontiers in Cell and Developmental Biology, 9: 770143. doi: 10.3389/fcell.2021.770143
    [44] Chuang W., Z. H. U. Jihong, W. U. Manqiao et al. 2021. Multi-Scale Design and Optimization for Solid-Lattice Hybrid Structures and Their Application to Aerospace Vehicle Components. Chinese Journal of Aeronautics, 34(5): 386-398. doi: 10.1016/j.cja.2020.08.015
    [45] Cialdai F. et al. 2023. How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level. NPJ Microgravity, 9: 84. doi: 10.1038/s41526-023-00330-y
    [46] Coffin L. F. 1972. The Effect of High Vacuum on the Low Cycle Fatigue Law. Metallurgical Transactions, 3(7): 1777-1788. doi: 10.1007/BF02642561
    [47] Cooper R., Hari P. et al. 2008. Protection of Polymer from Atomic-Oxygen Erosion Using Al2O3 Atomic Layer Deposition Coatings. Thin Solid Films, 12: 4036-4039. doi: 10.1016/j.tsf.2007.07.150
    [48] da Silveira W. A. et al. 2020. Comprehensive Multi-Omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell, 183, 1185-1201 e20.
    [49] Dance A. 2021. The Secret Forces that Squeeze and Pull Life into Shape. Nature, 589: 186-188. doi: 10.1038/d41586-021-00018-x
    [50] Davis T. et al. 2024. How Are Cell and Tissue Structure and Function Influenced by Gravity and What Are the Gravity Perception Mechanisms. NPJ Microgravity, 10: 16. doi: 10.1038/s41526-024-00357-9
    [51] de Groh K. K. , Whitt A. , Banks B. A. 2025. Effect of Space Exposure on the Tensile Properties of MISSE Teflon Flight Samples [R]. National Aeronautics and Space Administration.
    [52] Du H. et al. 2023. Tuning Immunity Through Tissue Mechanotransduction. Nature Reviews Immunology, 23: 174-188. doi: 10.1038/s41577-022-00761-w
    [53] Du Y. et al. 2025. Lunar and Martian Gravity Alter Immune Cell Interactions with Endothelia in Parabolic Flight. NPJ Microgravity, 11: 4. doi: 10.1038/s41526-024-00456-7
    [54] Duan E. , Long M. 2019. Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Springer Nature.
    [55] European Cooperation for Space Standardization. 2021. Processing and Quality Assurance Requirements for Metallic Powder Bed Fusion Technologies for Space Applications [W]. Available at: https://ecss.nl/standard/ecss-q-st-70-80c-processing-and-quality-assurance-requirements-for-metallic-powder-bed-fusion-technologies-for-space-applications-30-july-2021/.
    [56] European Space Agency. 2024. SA Launches First Metal 3D Printer to ISS [W]. Available at: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/ESA_launches_first_metal_3D_printer_to_ISS.
    [57] Favata F., Hasinger G., Tacconi L. J. et al. 2021. Introducing the Voyage 2050 White Papers: Contributions from the Science Community to ESA’s Long-Term Plan for the Scientific Programme. Experimental Astronomy, 51(3): 551-558. doi: 10.1007/s10686-021-09746-4
    [58] Ginés-Palomares J. C., Fateri M., Kalhöfer E. et al. 2023. Laser Melting Manufacturing of Large Elements of Lunar Regolith Simulant for Paving on the Moon. Scientific Reports, 13(1): 15593. doi: 10.1038/s41598-023-42008-1
    [59] GITAI. 2021. Space Robotics Start-up GITAI Completes Successful Technology Demonstration Inside the ISS [EB/OL]. Available at: https://gitai.tech/2021/10/28/iss-tech-demo-ja/.
    [60] Goto A., Umeda K., Yukumatsu K., Kimoto Y. 2021. Property Changes in Materials Due to Atomic Oxygen in the Low Earth Orbit. CEAS Space Journal, 13(3): 415-432. doi: 10.1007/s12567-021-00376-2
    [61] Goto A., Yukumatsu K., Tsuchiya Y. et al. 2023. Changes in Optical Properties of Polymeric Materials due to Atomic Oxygen in Very Low Earth Orbit. Acta Astronautica, 212: 70-83. doi: 10.1016/j.actaastro.2023.07.036
    [62] GU Yidong. 2022. The China Space Station: A New Opportunity for Space Science. National Science Review, 9(1).
    [63] Hino N., Camelo C., Heisenberg C. P. 2024. Development: Turing Mechanics. Current Biology, 34: R1230-R1232. doi: 10.1016/j.cub.2024.10.065
    [64] Hu J. S., Wang B. L. 2021. Enhanced Fatigue Performance of Auxetic Honeycomb/Substrate Structures under Thermal Cycling. International Journal of Mechanical Sciences, 199: 106432. doi: 10.1016/j.ijmecsci.2021.106432
    [65] Hu W., Kang Q. 2018. Science Research of Microgravity Satellite SJ-10. 空间科学学报, 38(5): 615-622.
    [66] Hu W. , Kang Q. 2019. Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite. Springer Nature.
    [67] Ilangovan H. et al. 2024. Harmonizing Heterogeneous Transcriptomics Datasets for Machine Learning-Based Analysis to Identify Spaceflown Murine Liver-Specific Changes. NPJ Microgravity, 10: 61. doi: 10.1038/s41526-024-00379-3
    [68] ISS National Lab. 2018. Manufacturing ZBLAN in Space [W]. Available at: https://issnationallab.org/upward/exotic-glass-fibers-from-space-the-race-to-manufacture-zblan/.
    [69] Jiang H., Hawkes E. W., Fuller C. et al. 2017. A Robotic Device Using Gecko-Inspired Adhesives Can Grasp and Manipulate Large Objects in Microgravity. Science Robotics, 2(7): eaan4545. doi: 10.1126/scirobotics.aan4545
    [70] Jiang H., Li S., Zhang L. et al. 2019. Effect of Microgravity on the Solidification of Aluminum–Bismuth–Tin Immiscible Alloys. NPJ Microgravity, 5(1): 26. doi: 10.1038/s41526-019-0086-z
    [71] Jiang W., Li Z., Zhao J. et al. 2022. The Study of an Integrated Sensor for Partial Nucleate Pool Boiling at Low Heat Flux. IEEE Sensors Journal, 22(24): 23692-23698. doi: 10.1109/JSEN.2022.3215680
    [72] Johnson L. , Carr J. A. , Boyd D. 2017. The Lightweight Integrated Solar Array and Antenna (LISA-T) Big Power for Small Spacecraft. In: International Astronautical Congress (IAC). IAC-17-C3.4. 1.
    [73] Juhl O. J. t. et al. 2021. Update on the Effects of Microgravity on the Musculoskeletal System. NPJ Microgravity, 7: 28. doi: 10.1038/s41526-021-00158-4
    [74] Kang Q., Wang J., Duan L. et al. 2019a. The Volume Ratio Effect on Flow Patterns and Transition Processes of Thermocapillary Convection. Journal of Fluid Mechanics, 868: 560-583.
    [75] Kang Q., Wang J., Duan L. et al. 2022. Transition to Chaos of Thermocapillary Convection. Physical Review E, 106(3): 35103.
    [76] Kang Q., Wu D., Duan L. et al. 2019b. Surface Configurations and Wave Patterns of Thermocapillary Convection Onboard the SJ10 Satellite. Physics of Fluids, 31: 044105. doi: 10.1063/1.5090466
    [77] Kang Q., Wu D., Duan L. et al. 2019c. The Effects of Geometry and Heating Rate on Thermocapillary Convection in the Liquid Bridge. Journal of Fluid Mechanics, 881: 951-982. doi: 10.1017/jfm.2019.757
    [78] Li P., Liu C., Tian Q. et al. 2016. Dynamics of a Deployable Mesh Reflector of Satellite Antenna: Form-Finding and Modal Analysis. Journal of Computational and Nonlinear Dynamics, 11(4): 041017. doi: 10.1115/1.4033440
    [79] Li T., Cheng K., Hou M. et al. 2024. The Intruder Motion in a Cubic Granular Container. Physics of Fluids, 36: 073304. doi: 10.1063/5.0210406
    [80] Li W., Wu D., Li Y. et al. 2024. Static Profiles of Capillary Surfaces in the Annular Space Between Two Coaxial Cones under Microgravity. Acta Mechanica Sinica, 40: 123218. doi: 10.1007/s10409-024-23218-x
    [81] Li Z., Zeng Z., Xing Y. et al. 2021. Microscopic Structure and Dynamics Study of Granular Segregation Mechanism by Cyclic Shear. Science Advances, 7: eabe8737. doi: 10.1126/sciadv.abe8737
    [82] Lockett T. R. , Martinez A. , Boyd D. et al. 2015. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). IEEE, 1-6.
    [83] Luo Y. , L. Y. , Sharma P. et al. 2021. Learning Human–Environment Interactions Using Conformal Tactile Textiles. Nature Electronics, 4(3).
    [84] Mahmoud W. M., Elfiky D., Robaa S. M. et al. 2021. Effect of Atomic Oxygen on LEO CubeSat. International Journal of Aeronautical and Space Sciences, 22(3): 726-733. doi: 10.1007/s42405-020-00336-w
    [85] Majumder N., Ghosh S. 2023. 3D Biofabrication and Space: A 'Far-Fetched Dream' or a 'Forthcoming Reality'. Biotechnology Advances, 69: 108273.
    [86] Man J. et al. 2022. The Effects of Microgravity on Bone Structure and Function. NPJ Microgravity, 8: 9. doi: 10.1038/s41526-022-00194-8
    [87] Marvasi M., Monici M., Pantalone D., Cavalieri D. 2022. Exploitation of Skin Microbiota in Wound Healing: Perspectives During Space Missions. Frontiers in Bioengineering and Biotechnology, 10: 873384. doi: 10.3389/fbioe.2022.873384
    [88] May M., Rupakula G. D., Matura P. 2020. Non-Polymer-Matrix Composite Materials for Space Applications. Composites Part C: Open Access, 3: 100057. doi: 10.1016/j.jcomc.2020.100057
    [89] McCamish S. B., Romano M., Nolet S. et al. 2009. Flight Testing of Multiple-Spacecraft Control on SPHERES during Close-Proximity Operations. Journal of Spacecraft and Rockets, 46(6): 1202-1213. doi: 10.2514/1.43563
    [90] McKeown B. , Dempster A. G. , Saydam S. et al. 2025. Placing Lunar Resources Research in the Context of Mining Feasibility Studies. Acta Astronautica.
    [91] Morrissey L. S., Rahnamoun A., Nakhla S. 2020. The Effect of Atomic Oxygen Flux and Impact Energy on the Damage of Spacecraft Metals. Advances in Space Research, 66(6): 1495-1506. doi: 10.1016/j.asr.2020.05.021
    [92] Naden N. , Prater T. J. 2020. A Review of Welding in Space and Related Technologies.
    [93] NASA. 1989. Effects of Thermal Cycling on Composite Materials for Space Structures [R].
    [94] NASA. 2017. Full Circle: NASA to Demonstrate Refabricator to Recycle, Reuse, Repeat [R]. Available at: https://ntrs.nasa.gov/citations/20190005004.
    [95] NASA. 2020. Candle Flame - 1G vs microgravityp[W] Available at: https://www.nasa.gov/image-article/candle-flame-1g-vs-microgravity/ (Accessed: 04 January 2026).
    [96] NASA. 2023. 20 Breakthroughs from 20 Years of Science Aboard the International Space Station [EB/OL].
    [97] NASA. 2025. Small Spacecraft Technology State of the Art Report: Thermal Systems Chapter [R].
    [98] National Academies of Sciences, Engineering, and Medicine. 2023. Thriving in Space: Ensuring the Future of Biological and Physical Sciences Research: A Decadal Survey for 2023-2032 [M].
    [99] Pai A., Divakaran R., Anand S. et al. 2022. Advances in the Whipple Shield Design and Development: A Brief Review. Journal of Dynamic Behavior of Materials, 8(1): 20-38. doi: 10.1007/s40870-021-00314-7
    [100] Qin J., Minetti C., Tao Y. Q., Iorio C. S., Liu Q. S., Glushchuk A. 2024. Evaporation of High-Volatile Binary Sessile Drop: Influence of Concentration. International Journal of Heat and Fluid Flow, 106: 109313. doi: 10.1016/j.ijheatfluidflow.2024.109313
    [101] Radstake W. E. et al. 2023. The Effects of Combined Exposure to Simulated Microgravity, Ionizing Radiation, and Cortisol on the In Vitro Wound Healing Process. Cells, 12.
    [102] Ren H., Qiu Y., Zhou Q. et al. 2025. Erosion Behaviors of Silicon Carbide at Micro-Nano Scales under Atomic Oxygen Exposure. Journal of Materials Chemistry A, 13: 22946-22961.
    [103] Roberts D. R. et al. 2017. Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI. New England Journal of Medicine, 377: 8. doi: 10.1056/nejmoa1705129
    [104] Saenz-Otero A. , Katz J. , Miller D. W. 2009. SPHERES Demonstrations of Satellite Formations Aboard the ISS. In: 32nd Annual AAS Guidance and Control Conference. 2009: 2009-011.
    [105] Sharma A. K., Sridhara N. 2012. Degradation of Thermal Control Materials under a Simulated Radiative Space Environment. Advances in Space Research, 50(10): 1411-1424. doi: 10.1016/j.asr.2012.07.010
    [106] Sihver L. , Kodaira S. , Ambrožová I. et al. 2016. Radiation Environment Onboard Spacecraft at LEO and in Deep Space. In: 2016 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, pp. 1-9.
    [107] Sui X., Gao L., Yin P. 2014. Shielding Kevlar Fibers from Atomic Oxygen Erosion via Layer-by-Layer Assembly of Nanocomposites. Polymer Degradation and Stability, 110: 23-26. doi: 10.1016/j.polymdegradstab.2014.08.010
    [108] Tao Y., Liu Q. 2023a. Conditions of Enhanced Evaporation for Nanofluids Droplet and Inhibition of Coffee-Ring Effect under Buoyancy and Marangoni Convection. Surfaces and Interfaces, 42: 103320. doi: 10.1016/j.surfin.2023.103320
    [109] Tao Y., Liu Q., Qin J. et al. 2023b. Thermocapillary Convection of Evaporating Thin Nanofluid Layer in a Rectangular Cavity. Microgravity Science and Technology, 35(5): 51. doi: 10.1007/s12217-023-10076-7
    [110] Tauber S. et al. 2017. Cytoskeletal Stability and Metabolic Alterations in Primary Human Macrophages in Long-Term Microgravity. PLoS One, 12: e0175599. doi: 10.1371/journal.pone.0175599
    [111] Thiel C. S. et al. 2019. Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages. International Journal of Molecular Sciences, 20.
    [112] Thompson A. W., Harris Z. D., Burns J. T. 2024. On the Low Temperature Fatigue Crack Growth Behavior of AA7075-T651 in Ultra-High Vacuum Environments. International Journal of Fatigue, 178: 107988. doi: 10.1016/j.ijfatigue.2023.107988
    [113] Tserpes K., Sioutis I. 2025. Advances in Composite Materials for Space Applications: A Comprehensive Literature Review. Aerospace, 12(3): 215. doi: 10.3390/aerospace12030215
    [114] van den Nieuwenhof D. W. A. et al. 2024. Cellular Response in Three-Dimensional Spheroids and Tissues Exposed to Real and Simulated Microgravity: A Narrative Review. NPJ Microgravity, 10: 102. doi: 10.1038/s41526-024-00442-z
    [115] Volpe G., Bechinger C., Cichos F. et al. 2022. Active Matter in Space. NPJ Microgravity, 8(1): 54. doi: 10.1038/s41526-022-00230-7
    [116] Vorselen D. et al. 2014. The Role of the Cytoskeleton in Sensing Changes in Gravity by Nonspecialized Cells. FASEB Journal, 28: 536-547. doi: 10.1096/fj.13-236356
    [117] Wang C., Zhang G., Wang Y. et al. 2025. A Review of Lunar Environment and In-Situ Resource Utilization for Achieving Long-Term Lunar Habitation. Galaxies, 13(5): 103. doi: 10.3390/galaxies13050103
    [118] Wang N., Chien S., Schwartz M. A. 2025. Mechanomedicine: Present State and Future Promise. Proceedings of the National Academy of Sciences of the United States of America, 122: e2509566122.
    [119] Wang X., Li Y., Qian Y., Qi H., Li J., Sun J. 2018. Mechanically Robust Atomic Oxygen-Resistant Coatings Capable of Autonomously Healing Damage in Low Earth Orbit Space Environment. Advanced Materials, 30(36): 1803854. doi: 10.1002/adma.201803854
    [120] Wen Y., Li L., Li X. et al. 2024a. Extinction of Microgravity Partially Premixed Flame Aboard the Chinese Space Station. Proceedings of Combustion Institute, 40: 105574. doi: 10.1016/j.proci.2024.105574
    [121] Wen Y. , Li L. , Li X. et al. 2024b. Extinction of Microgravity Partially Premixed Flame Aboard the Chinese Space Station. In 40th International Symposium on Combustion, Milan, Italy, July 21–26.
    [122] White O. et al. 2016. Towards Human Exploration of Space: The THESEUS Review Series on Neurophysiology Research Priorities. NPJ Microgravity, 2: 16023. doi: 10.1038/npjmgrav.2016.23
    [123] Wu D., Tang W., Wang J. et al. 2025. On Chinese Space Station: Pioneering Space Experiments Unraveling the Hydrodynamic Instability of Annular Thermocapillary Convection. Scientific Reports, 15: 40886. doi: 10.1038/s41598-025-24807-w
    [124] Wu X. T. et al. 2022. Cells Respond to Space Microgravity Through Cytoskeleton Reorganization. FASEB Journal, 36: e22114. doi: 10.1096/fj.202101140R
    [125] Wubshet N. H. et al. 2024. Cellular Mechanotransduction of Human Osteoblasts in Microgravity. NPJ Microgravity, 10: 35. doi: 10.1038/s41526-024-00386-4
    [126] Xiao X. 2019. Fundamental Mechanisms for Irradiation-Hardening and Embrittlement: A Review. Metals, 9(10): 1132. doi: 10.3390/met9101132
    [127] Xu J., Yan G., Lu M. 2023. Evaluation of the Minority-Carrier Lifetime of IMM3J Solar Cells under Proton Irradiation Based on Electroluminescence. Crystals, 13(2): 297. doi: 10.3390/cryst13020297
    [128] Xu Y., Jiang Y., Xie J. et al. 2024. Effect of Temperature, Vacuum Condition and Surface Roughness on Oxygen Boost Diffusion of Ti–6Al–4V Alloy. Coatings, 14(3): 314. doi: 10.3390/coatings14030314
    [129] Yatagai F., Honma M., Dohmae N., Ishioka N. 2019. Biological Effects of Space Environmental Factors: A Possible Interaction between Space Radiation and Microgravity. Life Sciences in Space Research, 20: 113-123. doi: 10.1016/j.lssr.2018.10.004
    [130] Zhan X. et al. 2021. Rapid Estimation of Entire Brain Strain Using Deep Learning Models. IEEE Transactions on Biomedical Engineering, 68: 3424-3434. doi: 10.1109/TBME.2021.3073380
    [131] Zhang J., Dong W., Wang Z. et al. 2021. Development of a New Microgravity Experiment Facility with Electromagnetic Launch. Microgravity Science and Technology, 33(6): 1-18. doi: 10.1007/s12217-021-09915-2
    [132] Zhao H., Zhu J., Yuan S. et al. 2023. Development of Lunar Regolith-Based Composite for In-Situ 3D Printing via High-Pressure Extrusion System. Frontiers of Mechanical Engineering, 18(2): 29. doi: 10.1007/s11465-022-0745-8
    [133] Zhao J., Tian Q., Hu H. Y. 2013. Deployment Dynamics of a Simplified Spinning IKAROS Solar Sail via Absolute Coordinate Based Method. Acta Mechanica Sinica, 29(1): 132-142. doi: 10.1007/s10409-013-0002-9
    [134] Zheng Z. Y., Ni R., Wang Y. R. et al. 2021. Translational and Rotational Critical-Like Behaviors in the Glass Transition of Colloidal Ellipsoid Monolayers. Science Advances, 7(3): 11. doi: 10.1126/sciadv.abd1958
    [135] Zhong S., Zheng L., Wu Y. et al. 2024. Rotating Culture Regulates the Formation of HepaRG-Derived Liver Organoids via YAP Translocation. BMC Biology, 22: 262. doi: 10.1186/s12915-024-02062-1
    [136] Zhu F., Lu Z., Wang S. et al. 2019. Microgravity Diffusion Flame Spread Over a Thick Solid in Step-Changed Low-Velocity Opposed Flows. Combustion and Flame, 205: 55-67. doi: 10.1016/j.combustflame.2019.03.040
  • 加载中
图(14)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  31
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-12-29
  • 录用日期:  2025-01-05
  • 网络出版日期:  2025-01-05

目录

    /

    返回文章
    返回