留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非正泊松比力学超材料设计策略及其缓冲吸能特性

王玮婧 杨航 张伟明 马力

王玮婧, 杨航, 张伟明, 马力. 非正泊松比力学超材料设计策略及其缓冲吸能特性. 力学进展, 待出版 doi: 10.6052/1000-0992-25-021
引用本文: 王玮婧, 杨航, 张伟明, 马力. 非正泊松比力学超材料设计策略及其缓冲吸能特性. 力学进展, 待出版 doi: 10.6052/1000-0992-25-021
Wang W J, Yang H, Zhang W M, Ma L. Design strategies for non-positive Poisson’s ratio mechanical metamaterials and their cushioning and energy absorption characteristics. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-021
Citation: Wang W J, Yang H, Zhang W M, Ma L. Design strategies for non-positive Poisson’s ratio mechanical metamaterials and their cushioning and energy absorption characteristics. Advances in Mechanics, in press doi: 10.6052/1000-0992-25-021

非正泊松比力学超材料设计策略及其缓冲吸能特性

doi: 10.6052/1000-0992-25-021 cstr: 32046.14.1000-0992-25-021
基金项目: 感谢国家自然科学基金 (12072092, 11672085) 和黑龙江省头雁团队项目对本研究的支持及资助!
详细信息
    作者简介:

    马力, 哈尔滨工业大学教授、博士生导师, 中国力学学会理事、黑龙江省力学学会常务理事, 《应用力学和数学》编委. 马力教授长期从事先进轻质复合材料与结构的设计、制备及性能研究, 致力于推动高比刚度、高比强度材料在航空航天、交通运输、能源装备等领域的工程化应用. 曾获国家自然科学二等奖、教育部自然科学一等奖和黑龙江省自然科学奖各1项; 主持或参与包括国家自然科学基金重点项目在内的科研项目10余项. 在《Materials Today》《Journal of the Mechanics and Physics of Solids》等国际权威期刊发表论文200余篇, 总引量超9000余次, 入选2024年度爱思唯尔 (Elsevier) 中国高被引学者

    通讯作者:

    mali@hit.edu.cn

  • 中图分类号: TB34

Design strategies for non-positive Poisson’s ratio mechanical metamaterials and their cushioning and energy absorption characteristics

More Information
  • 摘要: 非正泊松比力学超材料是一类通过构型设计在宏观尺度上展现零/负泊松比效应的结构型功能材料. 因其在横向变形调控、尺寸稳定性和能量吸收等方面的独特优势, 在航空航天、海洋工程、交通运输、可穿戴防护装备和生物医学等领域展现出广泛的应用前景. 近年来, 随着微结构设计、先进材料制备技术和多材料集成手段的不断演进, 非正泊松比力学超材料在构型多样性、响应调控性与结构功能一体化等方面取得了显著进展. 本文从激活结构横向变形行为的主导机理出发, 系统梳理了非正泊松比力学超材料的典型设计策略. 负泊松比超材料围绕内凹几何、旋转体系 (旋转刚体/桁架、手性/反手性)、剪纸/折纸、弹性不稳定诱导与刚体联动等机制组织. 零泊松比超材料归纳为类矩形/平行四边形、半内凹、正/负泊松比单元组合与刚柔复合等几何范式. 围绕非正泊松比力学超材料在缓冲吸能应用中的关键性能, 重点讨论了多平台响应设计、梯度构型调控、多材料耦合与智能材料介入等性能增强途径. 在结构集成层面, 本文还探讨了模块化组装、夹层结构设计与本征三维结构设计等技术路径. 最后, 结合非正泊松比力学超材料在设计制备、性能调控与系统集成中的研究进展, 梳理了当前面临的核心技术瓶颈, 明确了亟需突破的关键方向, 并提出了面向多尺度制造、多场响应集成与工程化应用的未来发展路径.

     

  • 图  1  基于内凹机制的负泊松比蜂窝设计策略. (a) 典型内凹蜂窝 (从左至右分别为 (a1) 内凹六边形蜂窝、(a2) 内凹星形蜂窝和 (a3) 内凹双箭头蜂窝); (b) 其他内凹蜂窝 (从左至右分别为 (b1) 半内凹八边形蜂窝和 (b2) 多内凹角蜂窝); (c)“化直为曲”内凹蜂窝 (从左至右分别为 (c1) 内凹曲臂蜂窝和 (c2) 内凹双U形蜂窝); (d) 嵌入支撑单元的内凹蜂窝 (从左至右分别为 (d1) 星形−菱形蜂窝、(d2) 星形−圆形蜂窝和 (d3) 内凹−三角形蜂窝); (e) 通过经典构型组合重构得到的内凹蜂窝 (从左至右分别为 (e1) 和 (e2) 星形−双箭头蜂窝、(e3) 内凹−双箭头蜂窝、(e4) 和 (e5) 内凹−星形蜂窝)

    图  2  基于内凹机制的负泊松比点阵超材料设计策略. (a) 典型内凹点阵 (从左至右分别为 (a1) 内凹六边形点阵 (王信涛 2018)、(a2) 内凹星形点阵 (薛玉祥 2021) 和 (a3) 内凹双箭头点阵 (Wang et al. 2018b)); (b) 其他内凹点阵 (从左至右分别为 (b1) 双U形点阵 (Yang & Ma 2021)、(b2) 内凹−星形点阵 (王玮婧 等 2024) 和 (b3) 曲壁内凹点阵 (Jiang et al. 2022)); (c) 本征三维负泊松比内凹点阵 (从左至右分别为 (c1) 三维内凹薄板点阵 (Wang et al. 2022) 和 (c2) 三维双箭头薄板点阵 (Guo et al. 2022))

    图  3  基于旋转机制的负泊松比超材料设计策略 (旋转刚体/旋转桁架). (a) 二维旋转刚体结构 (Grima & Evans 2000)(从左至右分别为 (a1) 旋转方形结构、(a2) 旋转矩形结构、(a3) 旋转三角形结构和 (a4) 旋转混杂四边形结构); (b) 三维旋转立方体结构 (Andrade et al. 2018); (c) 二维旋转桁架结构 (从左至右分别为 (c1) 旋转−星形结构 (Li et al. 2021) 和 (c2) 旋转−内凹六边形结构 (Hao et al. 2022)); (d) 三维旋转桁架点阵 (Gao et al. 2021, Yang et al. 2025)(分别为 (d1) 旋转桁架点阵、(d2) 旋转六面体点阵、(d3) 旋转手性点阵、(d4) 旋转内凹点阵和 (d5) 复合旋转点阵)

    图  4  基于旋转机制的负泊松比超材料设计策略 (手性/反手性). (a) 二维手性蜂窝 (从左至右分别为 (a1) 二维六手性蜂窝、(a2) 二维三手性蜂窝和 (a3) 二维四手性蜂窝); (b) 二维反手性蜂窝 (从左至右分别为 (b1) 二维反三手性蜂窝和 (b2) 二维反四手性蜂窝); (c) 伪三维四手性点阵 (Fu et al. 2017); (d) 本征三维手性点阵 (从左至右分别为 (d1) 本征三维四手性点阵 (Fu et al. 2018) 和 (d2) 本征三维六手性点阵 (Jiao & Yan 2021))

    图  5  基于剪纸/折纸机制的负泊松比超材料设计策略. (a) 剪纸负泊松比超材料 (从左至右分别为 (a1) 有序/无序剪纸超材料 (Grima et al. 2016)、(a2) 弧形剪纸超材料 (Song et al. 2025) 和 (a3) 方形剪纸超材料 (Rafsanjani & Pasini 2016)); (b) 折纸负泊松比超材料 (从左至右分别为 (b1) 三浦折纸超材料 (Schenk & Guest 2013) 和 (b2) 内凹折纸超材料 (Li et al. 2022))

    图  6  其他机制的负泊松比超材料设计策略. (a) 基于弹性不稳定性屈曲设计的负泊松比超材料 (Overvelde & Bertoldi 2014); (b) 基于刚体联动机制设计的负泊松比超材料 (分别为 (b1) 嵌锁联动结构 (Evans & Alderson 2000) 和 (b2) 内凹联动结构 (Ravirala et al. 2007))

    图  7  零泊松比超材料设计策略. (a) 类矩形设计策略; (b) 类平行四边形设计策略; (c) 半重入设计策略; (d) 正/负泊松比单元组合设计策略; (e) 刚柔串联设计策略; (f) 伪三维零泊松比超材料设计策略 (Sahariah et al. 2023); (g) 本征三维零泊松比超材料设计策略

    图  8  多胞结构典型力学响应曲线

    图  9  非正泊松比超材料特性. (a) 变形机制 (杨航 2023); (b) 压痕阻性; (c) 剪切特性 (于靖军 等 2018); (d) 面外变形特性 (Lin et al. 2025)

    图  10  具有多平台响应特性的负泊松比缓冲吸能超材料设计策略. (a) 多尺度自相似设计 (Yu et al. 2024); (b) 多变形机制耦合设计 (Lu et al. 2022); (c) 子结构嵌套设计 (Wang & Liu 2024)

    图  11  梯度负泊松比缓冲吸能超材料. (a) 花生型梯度结构 (Zhang et al. 2025c); (b) 内凹曲壁梯度结构 (Wang et al. 2023); (c) 梯度内凹−星形结构; (d) 梯度手性结构 (Chen et al. 2024c); (e) 梯度曲壁结构 (Zhang et al. 2022b); (f) 梯度内凹结构 (Zhang et al. 2025b)

    图  12  多材料负泊松比缓冲吸能超材料. (a) 双材料多稳态拉胀蜂窝 (Wu et al. 2024); (b) 双材料内凹六边形结构 (Günaydın et al. 2022); (c) 双材料拼装式内凹薄板点阵

    图  13  填充型多材料负泊松比缓冲吸能超材料. (a) 填充PU泡沫的内凹六边形蜂窝 (Luo et al. 2022); (b) 填充PU泡沫的手性蜂窝 (Airoldi et al. 2020, Chen et al. 2024a); (c) 填充剪切增稠流体的三维内凹点阵 (Hu et al. 2024); (d) 填充剪切硬化凝胶的柔性复合结构 (Wu et al. 2022)

    图  14  基于夹层结构集成的负泊松比缓冲吸能超材料. (a) 内凹六边形夹芯板 (Jiang et al. 2025); (b) 内凹−星形夹芯板 (Qu et al. 2025); (c) 星形−圆形夹芯板 (Lu et al. 2023); (d) 手性蜂窝夹芯板 (Chen et al. 2024b, Sadikbasha & Pandurangan 2023); (e) 双箭头夹芯板 (廖瑜 等 2025); (f) 星形夹芯板 (余阳和付涛 2023); (g) 功能梯度负泊松比多孔材料夹芯壳 (Fu et al. 2023); (h) 曲壁内凹蜂窝夹芯壳 (Fu et al. 2024)

    图  15  模块化负泊松比缓冲吸能超材料. (a) 拼装式内凹薄板点阵超材料; (b) 拼装式压扭超材料 (Wei et al. 2025); (c) 拼装式波纹板−矩形超材料 (Jiang et al. 2023); (d) 自锁手性蜂窝 (Niu et al. 2025); (e) 拼装式缺失肋结构 (Zhu et al. 2025); (f) 拼装式手性结构 (Zhang et al. 2022c)

    图  16  零泊松比缓冲吸能力学超材料及其变形过程. (a) AuxHex蜂窝 (Xu et al. 2019); (b) 三维AuxHex点阵 (Guo et al. 2020b); (c) 类乌贼骨结构 (Mao et al. 2021); (d) AuxHex圆柱结构 (Liu et al. 2020); (e) 零泊松比薄壳点阵

  • [1] 廖瑜, 石少卿, 夏菲, 等. 2025. 双梯形负泊松比蜂窝夹心结构抗爆力学性能研究. 工程力学, 42: 244-261 (Liao Y, Shi S Q, Xia F, et al. 2025. Study on anti-explosion mechanical properties of double trapezoidal negative Poisson’s ratio auxetic sandwich honeycomb structure. Engineering Mechanics, 42: 244-261).

    Liao Y, Shi S Q, Xia F, et al. 2025. Study on anti-explosion mechanical properties of double trapezoidal negative Poisson’s ratio auxetic sandwich honeycomb structure. Engineering Mechanics, 42: 244-261
    [2] 王钦泽, 韩宾, 郑培远, 等. 2024. 负刚度扭转超结构力学性能研究. 应用数学和力学, 45: 1082-1095 (Wang Q Z, Han B, Zheng P Y, et al. 2024. Research on mechanical properties of negative stiffness torsion metastructures. Applied Mathematics and Mechanics, 45: 1082-1095).

    Wang Q Z, Han B, Zheng P Y, et al. 2024. Research on mechanical properties of negative stiffness torsion metastructures. Applied Mathematics and Mechanics, 45: 1082-1095
    [3] 王玮婧, 张伟明, 郭孟甫, 等. 2024. 内凹-星型三维负泊松比结构设计及冲击吸能特性. 振动与冲击, 43: 75-83 (Wang W J, Zhang W M, Guo M F, et al. 2024. Design and impact energy absorption characteristics of concave-star three dimensional negative Poisson’s ratio structures. Journal of Vibration and Shock, 43: 75-83).

    Wang W J, Zhang W M, Guo M F, et al. 2024. Design and impact energy absorption characteristics of concave-star three dimensional negative Poisson’s ratio structures. Journal of Vibration and Shock, 43: 75-83
    [4] 王信涛. 2018. 三维有序负泊松比结构的设计、制备与力学性能表征[博士学位论文]. 哈尔滨: 哈尔滨工业大学 (Wang X T. 2018. The design, fabrication and mechanical characterization of three-dimensional periodic auxetic cellular structures [PhD Thesis]. Harbin: Harbin Institute of Technology).

    Wang X T. 2018. The design, fabrication and mechanical characterization of three-dimensional periodic auxetic cellular structures [PhD Thesis]. Harbin: Harbin Institute of Technology
    [5] 薛玉祥. 2021. 三维负泊松比星型结构冲击动力学研究[硕士学位论文]. 广州: 广州大学 (Xue Y X. 2021. Study on the impact dynamics of three-dimensional negative Poisson’s ratio star-shaped structure [Master Thesis]. Guangzhou: Guangzhou University).

    Xue Y X. 2021. Study on the impact dynamics of three-dimensional negative Poisson’s ratio star-shaped structure [Master Thesis]. Guangzhou: Guangzhou University
    [6] 杨航. 2023. 可编程机械超材料的结构设计及力学行为研究[博士学位论文]. 哈尔滨: 哈尔滨工业大学 (Yang H. 2023. Structure design and mechanical behavior of programmable mechanical metamaterials [PhD Thesis]. Harbin: Harbin Institute of Technology).

    Yang H. 2023. Structure design and mechanical behavior of programmable mechanical metamaterials [PhD Thesis]. Harbin: Harbin Institute of Technology
    [7] 于靖军, 谢岩, 裴旭. 2018. 负泊松比超材料研究进展. 机械工程学报, 54: 1-14 (Yu J J, Xie Y, Pei X. 2018. State-of-art of metamaterials with negative Poisson’s ratio. Journal of Mechanical Engineering, 54: 1-14).

    Yu J J, Xie Y, Pei X. 2018. State-of-art of metamaterials with negative Poisson’s ratio. Journal of Mechanical Engineering, 54: 1-14
    [8] 余阳, 付涛. 2023. 低速冲击下负泊松比蝴蝶形蜂窝夹芯板的动力响应. 爆炸与冲击, 43: 84-95 (Yu Y, Fu T. 2023. Dynamic response of a sandwich panel cored by butterfly-shaped honeycombs with negative Poisson’s ratio to low-velocity impact. Explosion and Shock Waves, 43: 84-95).

    Yu Y, Fu T. 2023. Dynamic response of a sandwich panel cored by butterfly-shaped honeycombs with negative Poisson’s ratio to low-velocity impact. Explosion and Shock Waves, 43: 84-95
    [9] 张宝庆, 蒋森. 2025. 旋转型负泊松比星形蜂窝结构能量吸收特性研究. 固体力学学报, 46: 129-148 (Zhang B Q, Jiang S. 2025. Study on energy absorption characteristics of rotating star-shaped honeycomb structure with negative Poisson’s ratio. Chinese Journal of Solid Mechanics, 46: 129-148).

    Zhang B Q, Jiang S. 2025. Study on energy absorption characteristics of rotating star-shaped honeycomb structure with negative Poisson’s ratio. Chinese Journal of Solid Mechanics, 46: 129-148
    [10] 赵淳铮, 王昕, 李振, 等. 2024. 可调控热膨胀力学超材料设计制备与表征评测研究进展. 复合材料学报, 41: 4589-4605 (Zhao C Z, Wang X, Li Z, et al. 2024. Research progress in the design, manufacturing, characterization, and evaluation of tailorable thermal expansion mechanical metamaterials. Acta Materiae Compositae Sinica, 41: 4589-4605).

    Zhao C Z, Wang X, Li Z, et al. 2024. Research progress in the design, manufacturing, characterization, and evaluation of tailorable thermal expansion mechanical metamaterials. Acta Materiae Compositae Sinica, 41: 4589-4605
    [11] Airoldi A, Novak N, Sgobba F, et al. 2020. Foam-filled energy absorbers with auxetic behaviour for localized impacts. Materials Science and Engineering: A, 788: 139500. doi: 10.1016/j.msea.2020.139500
    [12] Alderson A, Alderson K L, Attard D, et al. 2010. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 70: 1042-1048. doi: 10.1016/j.compscitech.2009.07.009
    [13] Alderson K L, Webber R S, Evans K E. 2000. Novel variations in the microstructure of auxetic ultra-high molecular weight polyethylene. Part 2: Mechanical properties. Polymer Engineering & Science, 40: 1906-1914. doi: 10.1002/pen.11322
    [14] Andrade C, Ha C S, Lakes R S. 2018. Extreme cosserat elastic cube structure with large magnitude of negative Poisson’s ratio. Journal of Mechanics of Materials and Structures, 13: 93-101. doi: 10.2140/jomms.2018.13.93
    [15] Bauer J, Schroer A, Schwaiger R, et al. 2016. Approaching theoretical strength in glassy carbon nanolattices. Nature Materials, 15: 438-443. doi: 10.1038/nmat4561
    [16] Baughman R H, Stafstrom S, Cui C, et al. 1998. Materials with negative compressibilities in one or more dimensions. Science, 279: 1522-1524. doi: 10.1126/science.279.5356.1522
    [17] Bertoldi K, Reis P M, Willshaw S, et al. 2010. Negative Poisson’s ratio behavior induced by an elastic instability. Advanced Materials, 22: 361-366. doi: 10.1002/adma.200901956
    [18] Chen C Q, Airoldi A, Caporale A M, et al. 2024a. Impact response of composite energy absorbers based on foam-filled metallic and polymeric auxetic frames. Composite Structures, 331: 117916. doi: 10.1016/j.compstruct.2024.117916
    [19] Chen C Q, He Y L, Xu R, et al. 2024b. Dynamic behaviors of sandwich panels with 3D-printed gradient auxetic cores subjected to blast load. International Journal of Impact Engineering, 188: 104943. doi: 10.1016/j.ijimpeng.2024.104943
    [20] Chen C Q, Jiang L, Wang H R, et al. 2024c. Quasi-static and dynamic responses of gradient hexachiral auxetics: Experimental and numerical analysis. Materials Today Communications, 41: 110670. doi: 10.1016/j.mtcomm.2024.110670
    [21] Chen Y, Fu M H. 2018. Mechanical properties of a novel zero Poisson’s ratio honeycomb. Advanced Engineering Materials, 20: 1700452. doi: 10.1002/adem.201700452
    [22] Cui H, Hensleigh R, Yao D, et al. 2019. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials, 18: 234-241. doi: 10.1038/s41563-018-0268-1
    [23] De Jong M, Chen W, Angsten T, et al. 2015. Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data, 2: 150009. doi: 10.1038/sdata.2015.9
    [24] Del Broccolo S, Laurenzi S, Scarpa F. 2017. AuxHex-A Kirigami inspired zero Poisson’s ratio cellular structure. Composite Structures, 176: 433-441. doi: 10.1016/j.compstruct.2017.05.050
    [25] Ding L, Zhang D, Lin Y, et al. 2024. Improving energy absorption of rotating triangle auxetic metamaterials through multistage perforations. Materials Today Communications, 41: 110746. doi: 10.1016/j.mtcomm.2024.110746
    [26] Dong Y, Huang N. 2024. Multifield and higher-order analysis of sandwich smart curved beams made of graphene origami auxetic metamaterial. Mechanics of Advanced Materials and Structures, 31: 1-19. doi: 10.1080/15376494.2024.2302247
    [27] Donoghue J, Alderson K, Evans K. 2009. The fracture toughness of composite laminates with a negative Poisson’s ratio. Physica Status Solidi B, 246: 2011-2017. doi: 10.1002/pssb.200982031
    [28] Esmaeili A, Karimi M, Heidari-Rarani M, et al. 2024. A new design of star auxetic metastructure with enhanced energy-absorption under various loading rates: Experimental and numerical study. Structures, 63: 106457. doi: 10.1016/j.istruc.2024.106457
    [29] Etemadi E, Bashtani M, Hu H. 2024. Novel auxetic metamaterials inspired from geometry patterns of an Iranian Mosque with improved energy absorption capability. Materials Today Communications, 41: 110470. doi: 10.1016/j.mtcomm.2024.110470
    [30] Evans K E. 1991. Auxetic polymers: A new range of materials. Endeavour, 15: 170-174. doi: 10.1016/0160-9327(91)90123-S
    [31] Evans K E, Alderson A. 2000. Auxetic materials: Functional materials and structures from lateral thinking! Advanced Materials, 12: 617-628. doi: 10.1002/(SICI)1521-4095(200005)12:9%3C617::AID-ADMA617%3E3.0.CO;2-3
    [32] Fan J, Zhang L, Wei S, et al. 2021. A review of additive manufacturing of metamaterials and developing trends. Materials Today, 50: 303-328. doi: 10.1016/j.mattod.2021.04.019
    [33] Fu M H, Zheng B B, Li W H. 2017. A novel chiral three-dimensional material with negative Poisson’s ratio and the equivalent elastic parameters. Composite Structures, 176: 442-448. doi: 10.1016/j.compstruct.2017.05.027
    [34] Fu M, Liu F, Hu L. 2018. A novel category of 3D chiral material with negative Poisson’s ratio. Composites Science and Technology, 160: 111-118. doi: 10.1016/j.compscitech.2018.03.017
    [35] Fu T, Hu X, Yang C. 2023. Impact response analysis of stiffened sandwich functionally graded porous materials doubly-curved shell with re-entrant honeycomb auxetic core. Applied Mathematical Modelling, 124: 553-575. doi: 10.1016/j.apm.2023.08.024
    [36] Fu T, Wang X, Hu X, et al. 2024. Impact dynamic response of stiffened porous functionally graded materials sandwich doubly-curved shells with arc-type auxetic core. International Journal of Impact Engineering, 191: 105000. doi: 10.1016/j.ijimpeng.2024.105000
    [37] Gao Y, Wei X, Han X, et al. 2021. Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism. International Journal of Solids and Structures, 233: 111232. doi: 10.1016/j.ijsolstr.2021.111232
    [38] Gibson L J, Ashby M F, Schajer G, et al. 1982. The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382: 25-42. doi: 10.1098/rspa.1982.0087
    [39] Gömöry F, Solovyov M, Šouc J, et al. 2012. Experimental realization of a magnetic cloak. Science, 335: 1466-1468. doi: 10.1126/science.1218316
    [40] Gong X, Huang J, Scarpa F, et al. 2015. Zero Poisson’s ratio cellular structure for two-dimensional morphing applications. Composite Structures, 134: 384-392. doi: 10.1016/j.compstruct.2015.08.048
    [41] Greaves G N, Greer A L, Lakes R S, et al. 2011. Poisson’s ratio and modern materials. Nature Materials, 10: 823-837. doi: 10.1038/nmat3134
    [42] Grima J N, Evans K E. 2000. Auxetic behavior from rotating squares. Journal of Materials Science Letters, 19: 1563-1565. doi: 10.1023/A:1006781224002
    [43] Grima J N, Gatt R, Farrugia P S. 2008. On the properties of auxetic meta-tetrachiral structures. Physica Status Solidi B, 245: 511-520. doi: 10.1002/pssb.200777704
    [44] Grima J N, Mizzi L, Azzopardi K M, et al. 2016. Auxetic perforated mechanical metamaterials with randomly oriented cuts. Advanced Materials, 28: 385-389. doi: 10.1002/adma.201503653
    [45] Grima J N, Oliveri L, Attard D, et al. 2010. Hexagonal honeycombs with zero Poisson’s ratios and enhanced stiffness. Advanced Engineering Materials, 12: 855-862. doi: 10.1002/adem.201000140
    [46] Günaydın K, Rea C, Kazancı Z. 2022. Energy absorption enhancement of additively manufactured hexagonal and re-entrant (auxetic) lattice structures by using multi-material reinforcements. Additive Manufacturing, 59: 103076. doi: 10.1016/j.addma.2022.103076
    [47] Guo M F, Yang H, Ma L. 2020a. Design and analysis of 2D double-U auxetic honeycombs. Thin-Walled Structures, 155: 106915. doi: 10.1016/j.tws.2020.106915
    [48] Guo M F, Yang H, Ma L. 2020b. Design and characterization of 3D AuxHex lattice structures. International Journal of Mechanical Sciences, 181: 105700. doi: 10.1016/j.ijmecsci.2020.105700
    [49] Guo M F, Yang H, Ma L. 2022. 3D lightweight double arrow-head plate-lattice auxetic structures with enhanced stiffness and energy absorption performance. Composite Structures, 290: 115484. doi: 10.1016/j.compstruct.2022.115484
    [50] Guo Y, Zhang J, Chen L, et al. 2020c. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerospace Science and Technology, 98: 105662. doi: 10.1016/j.ast.2019.105662
    [51] Hao J, Han D, Zhang X G, et al. 2022. Novel dual-platform lightweight metamaterials with auxeticity. Engineering Structures, 270: 114891. doi: 10.1016/j.engstruct.2022.114891
    [52] He H, Wei X, Yang B, et al. 2022. Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers. Nature Communications, 13: 4242. doi: 10.1038/s41467-022-31957-2
    [53] Hou Y, Quan J, Thai B Q, et al. 2022. Ultralight biomass-derived carbon fibre aerogels for electromagnetic and acoustic noise mitigation. Journal of Materials Chemistry A, 10: 22771-22780. doi: 10.1039/D2TA06402B
    [54] Hu Q, Lu G, Tse K M. 2024. Dynamic responses of shear thickening fluid-filled lattice structures. International Journal of Impact Engineering, 189: 104954. doi: 10.1016/j.ijimpeng.2024.104954
    [55] Huang J, Gong X, Zhang Q, et al. 2016. In-plane mechanics of a novel zero Poisson’s ratio honeycomb core. Composites Part B: Engineering, 89: 67-76. doi: 10.1016/j.compositesb.2015.11.032
    [56] Jiang F, Yang S, Qi C. 2022. Quasi-static crushing response of a novel 3D re-entrant circular auxetic metamaterial. Composite Structures, 300: 116066. doi: 10.1016/j.compstruct.2022.116066
    [57] Jiang W, Zhang X G, Han D, et al. 2023. Experimental and numerical analysis of a novel assembled auxetic structure with two-stage programmable mechanical properties. Thin-Walled Structures, 185: 110555. doi: 10.1016/j.tws.2023.110555
    [58] Jiang Z, Rong J, Chen Z, et al. 2025. Deformation mechanisms and energy absorption characteristics of 3D-printed negative Poisson’s ratio sandwich structures subjected to underwater impulsive loading. International Journal of Impact Engineering, 203: 105355. doi: 10.1016/j.ijimpeng.2025.105355
    [59] Jiao C, Yan G. 2021. Design and elastic mechanical response of a novel 3D-printed hexa-chiral helical structure with negative Poisson’s ratio. Materials & Design, 212: 110219. doi: 10.1016/j.matdes.2021.110219
    [60] Kashani H, Ito Y, Han J, et al. 2019. Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 5: eaat6951. doi: 10.1126/sciadv.aat6951
    [61] Kokkinis D, Schaffner M, Studart A R. 2015. Multimaterial magnetically assisted 3D printing of composite materials. Nature Communications, 6: 8643. doi: 10.1038/ncomms9643
    [62] Lakes R. 1987. Foam structures with a negative Poisson’s ratio. Science, 235: 1038-1040. doi: 10.1126/science.235.4792.1038
    [63] Lakes R, Elms K. 1993. Indentability of conventional and negative Poisson’s ratio foams. Journal of Composite Materials, 27: 1193-1202. doi: 10.1177/002199839302701203
    [64] Larsen U D, Signund O, Bouwsta S. 1997. Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. Journal of Microelectromechanical Systems, 6: 99-106. doi: 10.1109/84.585787
    [65] Lendlein A, Gould O E. 2019. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nature Reviews Materials, 4: 116-133. doi: 10.1038/s41578-018-0078-8
    [66] Li C, Zhou Q, Li H, et al. 2024a. Dynamic crushing responses of enhanced auxetic re-entrant honeycomb based on additive manufacturing. Structures, 69: 107367. doi: 10.1016/j.istruc.2024.107367
    [67] Li F, Lin D, Chen Z, et al. 2018. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Materials, 17: 349-354. doi: 10.1038/s41563-018-0034-4
    [68] Li H, Bi K, Han Q, et al. 2025a. A state-of-the-art review on negative stiffness-based structural vibration control. Engineering Structures, 323: 119247. doi: 10.1016/j.engstruct.2024.119247
    [69] Li L, He Q, Jing X, et al. 2023. Study on three-point bending behavior of sandwich beams with novel auxetic honeycomb core. Materials Today Communications, 35: 106259. doi: 10.1016/j.mtcomm.2023.106259
    [70] Li Q X, Zhi X D, Fan F. 2022. Quasi-static compressive behaviour of 3D-printed origami-inspired cellular structure: Experimental, numerical and theoretical studies. Virtual and Physical Prototyping, 17: 69-91. doi: 10.1080/17452759.2021.1987051
    [71] Li W, Zhong Y, Zhu Y, et al. 2024b. Enhancing the structural stiffness and energy absorption of re-entrant auxetic honeycombs using folded stiffeners. Thin-Walled Structures, 205: 112504. doi: 10.1016/j.tws.2024.112504
    [72] Li X, Fan R, Fan Z, et al. 2021. Programmable mechanical metamaterials based on hierarchical rotating structures. International Journal of Solids and Structures, 216: 145-155. doi: 10.1016/j.ijsolstr.2021.01.028
    [73] Li X, Li Z, Guo Z, et al. 2025b. A novel hybrid star honeycomb with individually adjustable second plateau stresses. Composite Structures, 356: 118881. doi: 10.1016/j.compstruct.2025.118881
    [74] Lin H B, Liu H T. 2023. Mechanical properties and band gap characteristics of flexible skin based on multi-concave angle honeycomb. Materials Today Communications, 35: 106113. doi: 10.1016/j.mtcomm.2023.106113
    [75] Lin Y X, Zhong Y F, Hien P L, et al. 2025. Gradient re-entrant honeycomb with quasi-ZPR and improved out-of-plane flexibility through tunable horizontal ligaments. Thin-Walled Structures, 213: 113241. doi: 10.1016/j.tws.2025.113241
    [76] Lira C, Scarpa F, Tai Y H, et al. 2011. Transverse shear modulus of SILICOMB cellular structures. Composites Science and Technology, 71: 1236-1241. doi: 10.1016/j.compscitech.2011.04.008
    [77] Liu H, Deng H, Bao J. 2025a. A deployable modular structure with zero thermal expansion for mesh reflector antennas and its structural performance. Structures, 71: 108000. doi: 10.1016/j.istruc.2024.108000
    [78] Liu K, Han L, Hu W, et al. 2020. 4D printed zero Poisson’s ratio metamaterial with switching function of mechanical and vibration isolation performance. Materials & Design, 196: 109153. doi: 10.1016/j.matdes.2020.109153
    [79] Liu R, Ji C, Mock J, et al. 2009. Broadband ground-plane cloak. Science, 323: 366-369. doi: 10.1126/science.1166949
    [80] Liu W, Zhu H, Zhou S, et al. 2013. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing. Chinese Journal of Aeronautics, 26: 935-942. doi: 10.1016/j.cja.2013.04.015
    [81] Liu Z, Lv Q, Li D, et al. 2025b. A straight-arch-straight beam tandem quasi-zero stiffness structure. International Journal of Mechanical Sciences, 286: 109818. doi: 10.1016/j.ijmecsci.2024.109818
    [82] Lu H, Wang X, Chen T. 2021. In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson’s ratio and enhanced energy absorption. Thin-Walled Structures, 160: 107366. doi: 10.1016/j.tws.2020.107366
    [83] Lu H, Wang X, Chen T. 2022. Design and quasi-static responses of a hierarchical negative Poisson’s ratio structure with three plateau stages and three-step deformation. Composite Structures, 291: 115591. doi: 10.1016/j.compstruct.2022.115591
    [84] Lu H, Wang X, Chen T. 2023. Quasi-static bending response and energy absorption of a novel sandwich beam with a reinforced auxetic core under the fixed boundary at both ends. Thin-Walled Structures, 191: 111011. doi: 10.1016/j.tws.2023.111011
    [85] Lu Y, Luo Q, Tong L. 2025. Topology optimization for metastructures with quasi-zero stiffness and snap-through features. Computer Methods in Applied Mechanics and Engineering, 434: 117587. doi: 10.1016/j.cma.2024.117587
    [86] Lu Y, Ma Y, Deng F, et al. 2024. Gradient wood-derived hydrogel actuators constructed by an isotropic-anisotropic structure strategy with rapid thermal-response, high strength and programmable deformation. Chemical Engineering Journal, 504: 158903. doi: 10.1016/j.cej.2024.158903
    [87] Luo H C, Ren X, Zhang Y, et al. 2022. Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression. Composite Structures, 280: 114922. doi: 10.1016/j.compstruct.2021.114922
    [88] Maldovan M. 2013. Sound and heat revolutions in phononics. Nature, 503: 209-217. doi: 10.1038/nature12608
    [89] Mao A, Zhao N, Liang Y, et al. 2021. Mechanically efficient cellular materials inspired by cuttlebone. Advanced Materials, 33: 2007348. doi: 10.1002/adma.202007348
    [90] Mirabolghasemi A, Akbarzadeh A, Rodrigue D, et al. 2019. Thermal conductivity of architected cellular metamaterials. Acta Materialia, 174: 61-80. doi: 10.1016/j.actamat.2019.04.061
    [91] Mueller J, Raney J R, Shea K, et al. 2018. Architected lattices with high stiffness and toughness via multicore–shell 3D printing. Advanced Materials, 30: 1705001. doi: 10.1002/adma.201705001
    [92] Muth J T, Dixon P G, Woish L, et al. 2017. Architected cellular ceramics with tailored stiffness via direct foam writing. Proceedings of the National Academy of Sciences, 114: 1832-1837. doi: 10.1073/pnas.1616769114
    [93] Na H, Kang Y W, Park C S, et al. 2022. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science, 376: 301-307. doi: 10.1126/science.abm7862
    [94] Ni X, Wong Z J, Mrejen M, et al. 2015. An ultrathin invisibility skin cloak for visible light. Science, 349: 1310-1314. doi: 10.1126/science.aac9411
    [95] Nicolaou Z G, Motter A E. 2012. Mechanical metamaterials with negative compressibility transitions. Nature Materials, 11: 608-613. doi: 10.1038/nmat3331
    [96] Niu H, Lu J, Qin R, et al. 2025. A self-locked chiral honeycomb: In-plane compression behavior and energy absorption. European Journal of Mechanics-A/Solids, 111: 105580. doi: 10.1016/j.euromechsol.2025.105580
    [97] Ouyang S B, Zhong Y F, Hien P L, et al. 2025. Designing re-entrant nested star-shaped honeycombs for energy-absorbing and load-bearing capabilities. Engineering Structures, 335: 120258. doi: 10.1016/j.engstruct.2025.120258
    [98] Overvelde J T B, Bertoldi K. 2014. Relating pore shape to the non-linear response of periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 64: 351-366. doi: 10.1016/j.jmps.2013.11.014
    [99] Pan D, Tan S, Zhang Z, et al. 2025. The metastructures actuated by rotational motion with quasi-zero stiffness, negative stiffness, and bistability. Thin-Walled Structures, 207: 112700. doi: 10.1016/j.tws.2024.112700
    [100] Pendry J B, Schurig D, Smith D R. 2006. Controlling electromagnetic fields. Science, 312: 1780-1782. doi: 10.1126/science.1125907
    [101] Prall D, Lakes R S. 1997. Properties of a chiral honeycomb with a Poisson’s ratio of −1. International Journal of Mechanical Sciences, 39: 305-314. doi: 10.1016/S0020-7403(96)00025-2
    [102] Qu Y C, Teng X C, Zhang Y, et al. 2025. A novel 3D composite auxetic sandwich panel for energy absorption improvement. Engineering Structures, 322: 119129. doi: 10.1016/j.engstruct.2024.119129
    [103] Rafsanjani A, Pasini D. 2016. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mechanics Letters, 9: 291-296. doi: 10.1016/j.eml.2016.09.001
    [104] Ravirala N, Alderson A, Alderson K L. 2007. Interlocking hexagons model for auxetic behaviour. Journal of Materials Science, 42: 7433-7445. doi: 10.1007/s10853-007-1583-0
    [105] Ritchie R O. 2011. The conflicts between strength and toughness. Nature Materials, 10: 817-822. doi: 10.1038/nmat3115
    [106] Sadikbasha S, Pandurangan V. 2023. High velocity impact response of sandwich structures with auxetic tetrachiral cores: Analytical model, finite element simulations and experiments. Composite Structures, 317: 117064. doi: 10.1016/j.compstruct.2023.117064
    [107] Sahariah B J, Baishya M J, Namdeo A, et al. 2023. A novel strategy to design lattice structures with zero Poisson’s ratio. Engineering Structures, 288: 116214. doi: 10.1016/j.engstruct.2023.116214
    [108] Schaedler T A, Jacobsen A J, Torrents A, et al. 2011. Ultralight metallic microlattices. Science, 334: 962-965. doi: 10.1126/science.1211649
    [109] Schenk M, Guest S D. 2013. Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences, 110: 3276-3281. doi: 10.1073/pnas.1217998110
    [110] Schurig D, Mock J J, Justice B J, et al. 2006. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314: 977-980. doi: 10.1126/science.1133628
    [111] Schwartz J, Boydston A. 2019. Multimaterial actinic spatial control 3D and 4D printing. Nature Communications, 10: 791. doi: 10.1038/s41467-019-08639-7
    [112] Shelby R A, Smith D R, Schultz S. 2001. Experimental verification of a negative index of refraction. Science, 292: 77-79. doi: 10.1126/science.1058847
    [113] Sigmund O, Torquato S, Aksay I A. 1998. On the design of 1-3 piezocomposites using topology optimization. Journal of Materials Research, 13: 1038-1048. doi: 10.1557/JMR.1998.0145
    [114] Sklan S R, Li B. 2018. Thermal metamaterials: Functions and prospects. National Science Review, 5: 138-141. doi: 10.1093/nsr/nwy005
    [115] Smith C W, Grima J N, Evans K E. 2000. A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model. Acta Materialia, 48: 4349-4356. doi: 10.1016/S1359-6454(00)00269-X
    [116] Song Z, Guo D, Liu Y, et al. 2025. Design of kirigami metamaterials with square-symmetric auxeticity under large stretching. Thin-Walled Structures, 213: 113268. doi: 10.1016/j.tws.2025.113268
    [117] Sydney Gladman A, Matsumoto E A, Nuzzo R G, et al. 2016. Biomimetic 4D printing. Nature Materials, 15: 413-418. doi: 10.1038/nmat4544
    [118] Tan X, Chu K, Chen Z, et al. 2024. Recent advances in self-healing hydrogel composites for flexible wearable electronic devices. Nano Research Energy, 3: e9120123. doi: 10.26599/NRE.2024.9120123
    [119] Tang Y X, Zhong Y F, Zhu Y L, et al. 2025. Energy absorption characteristics and auxetic effect of novel elliptic-arc re-entrant honeycomb structures. Engineering Structures, 323: 119260. doi: 10.1016/j.engstruct.2024.119260
    [120] Theocaris P, Stavroulakis G, Panagiotopoulos P. 1997. Negative Poisson’s ratios in composites with star-shaped inclusions: A numerical homogenization approach. Archive of Applied Mechanics, 67: 274-286. doi: 10.1007/s004190050117
    [121] Toombs J T, Luitz M, Cook C C, et al. 2022. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science, 376: 308-312. doi: 10.1126/science.abm6459
    [122] Virk K, Monti A, Trehard T, et al. 2013. SILICOMB PEEK Kirigami cellular structures: Mechanical response and energy dissipation through zero and negative stiffness. Smart Materials and Structures, 22: 084014. doi: 10.1088/0964-1726/22/8/084014
    [123] Wang H, Lu Z, Yang Z, et al. 2019. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Composite Structures, 208: 758-770. doi: 10.1016/j.compstruct.2018.10.024
    [124] Wang J, Luo X, Wang K, et al. 2022. On impact behaviors of 3D concave structures with negative Poisson’s ratio. Composite Structures, 298: 115999. doi: 10.1016/j.compstruct.2022.115999
    [125] Wang N, Liu W, Tang A, et al. 2014. Strain isolation: A simple mechanism for understanding and detecting structures of zero Poisson’s ratio. Physica Status Solidi B, 251: 2239-2246. doi: 10.1002/pssb.201451376
    [126] Wang Q, Tian X, Huang L, et al. 2018a. Programmable morphing composites with embedded continuous fibers by 4D printing. Materials & Design, 155: 404-413. doi: 10.1016/j.matdes.2018.06.027
    [127] Wang S, Liu H T. 2023. Energy absorption performance of the auxetic arc-curved honeycomb with thickness and arc angle gradient based on additive manufacturing. Materials Today Communications, 35: 105515. doi: 10.1016/j.mtcomm.2023.105515
    [128] Wang S, Liu H T. 2024. Quasi-static compression response of a novel multi-step auxetic honeycomb with tunable transition strain. Aerospace Science and Technology, 155: 109730. doi: 10.1016/j.ast.2024.109730
    [129] Wang S, Liu H T, Cai G B. 2024a. Programmable mechanical responses of a hybrid star-rhombus honeycomb based on digital design method. Thin-Walled Structures, 205: 112399. doi: 10.1016/j.tws.2024.112399
    [130] Wang W J, Yang H, Zhang W M, et al. 2025. Experimental study on the impact resistance of fill-enhanced mechanical metamaterials. International Journal of Mechanical Sciences, 285: 109799. doi: 10.1016/j.ijmecsci.2024.109799
    [131] Wang W J, Zhang W M, Guo M F, et al. 2023. Energy absorption characteristics of a lightweight auxetic honeycomb under low-velocity impact loading. Thin-Walled Structures, 185: 110577. doi: 10.1016/j.tws.2023.110577
    [132] Wang W J, Zhang W M, Guo M F, et al. 2024b. Impact resistance of assembled plate-lattice auxetic structures. Composite Structures, 338: 118132. doi: 10.1016/j.compstruct.2024.118132
    [133] Wang X T, Wang B, Wen Z H, et al. 2018b. Fabrication and mechanical properties of CFRP composite three-dimensional double-arrow-head auxetic structures. Composites Science and Technology, 164: 92-102. doi: 10.1016/j.compscitech.2018.05.014
    [134] Wang Y C, Lakes R. 2005. Composites with inclusions of negative bulk modulus: Extreme damping and negative Poisson’s ratio. Journal of Composite Materials, 39: 1645-1657. doi: 10.1177/0021998305051112
    [135] Wei T, Lu F, Zhang C, et al. 2025. Energy absorption of 3D assembled auxetic meta-structure with compression-twisting effect. Structures, 73: 108482. doi: 10.1016/j.istruc.2025.108482
    [136] Wojciechowski K W. 1989. Two-dimensional isotropic system with a negative Poisson ratio. Physics Letters A, 137: 60-64. doi: 10.1016/0375-9601(89)90971-7
    [137] Wu L, Zhao F, Lu Z, et al. 2022. Impact energy absorption composites with shear stiffening gel-filled negative Poisson’s ratio skeleton by kirigami method. Composite Structures, 298: 116009. doi: 10.1016/j.compstruct.2022.116009
    [138] Wu W, Hu W, Qian G, et al. 2019. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & Design, 180: 107950. doi: 10.1016/j.matdes.2019.107950
    [139] Wu X, Su Y, Shi J. 2020. In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials. Composite Structures, 247: 112451. doi: 10.1016/j.compstruct.2020.112451
    [140] Wu X, Zhang S, Ding L, et al. 2024. Bi-material multistable auxetic honeycombs with reusable and enhanced energy-absorbing phases under in-plane crushing. Thin-Walled Structures, 201: 111988. doi: 10.1016/j.tws.2024.111988
    [141] Xia X, Afshar A, Yang H, et al. 2019. Electrochemically reconfigurable architected materials. Nature, 573: 205-213. doi: 10.1038/s41586-019-1538-z
    [142] Xu C, Stiubianu G T, Gorodetsky A A. 2018. Adaptive infrared-reflecting systems inspired by cephalopods. Science, 359: 1495-1500. doi: 10.1126/science.aar5191
    [143] Xu H, Liu H T, Li G F. 2025. In-plane characteristics of a multi-arc re-entrant auxetic honeycomb with enhanced negative Poisson’s ratio effect and energy absorption. European Journal of Mechanics-A/Solids, 109: 105473. doi: 10.1016/j.euromechsol.2024.105473
    [144] Xu M, Xu Z, Zhang Z, et al. 2019. Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies. International Journal of Mechanical Sciences, 159: 43-57. doi: 10.1016/j.ijmecsci.2019.05.044
    [145] Yan Y, Xu S, Wang X, et al. 2025. A photothermal-responsive and glucose-responsive antibacterial hydrogel featuring tunable mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 708: 136029. doi: 10.1016/j.colsurfa.2024.136029
    [146] Yang H, D’Ambrosio N, Liu P, et al. 2023. Shape memory mechanical metamaterials. Materials Today, 66: 36-49. doi: 10.1016/j.mattod.2023.04.003
    [147] Yang H, Ma L. 2021. Impact resistance of additively manufactured 3D double-U auxetic structures. Thin-Walled Structures, 169: 108373. doi: 10.1016/j.tws.2021.108373
    [148] Yang H, Yang L, Zheng X, et al. 2025. High-performance 3D auxetic metamaterials enabled by multiple auxetic mechanisms. International Journal of Mechanical Sciences, 287: 109981. doi: 10.1016/j.ijmecsci.2025.109981
    [149] Yang S, Chalivendra V B, Kim Y K. 2017. Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites. Composite Structures, 168: 120-129. doi: 10.1016/j.compstruct.2017.02.034
    [150] Yeo S J, Oh M J, Yoo P J. 2019. Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Advanced Materials, 31: 1803670. doi: 10.1002/adma.201803670
    [151] Yu P, Zhang P, Ji Q, et al. 2024. A multi-step auxetic metamaterial with instability regulation. International Journal of Solids and Structures, 305: 113040. doi: 10.1016/j.ijsolstr.2024.113040
    [152] Yu R, Luo W, Yuan H, et al. 2020. Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson’s ratio. Thin-Walled Structures, 153: 106679. doi: 10.1016/j.tws.2020.106679
    [153] Yu X, Chen H, Lin H, et al. 2014. Continuously tuning effective refractive index based on thermally controllable magnetic metamaterials. Optics Letters, 39: 4643-4646. doi: 10.1364/OL.39.004643
    [154] Yu X, Zhou J, Liang H, et al. 2018. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science, 94: 114-173. doi: 10.1016/j.pmatsci.2017.12.003
    [155] Yuan C, Mu X, Dunn C K, et al. 2018. Thermomechanically triggered two-stage pattern switching of 2D lattices for adaptive structures. Advanced Functional Materials, 28: 1705727. doi: 10.1002/adfm.201705727
    [156] Yue L, Liu H, Cheng Z, et al. 2024. Dynamic crushing behavior of a novel bi-directional gradient lattice structure under axial and oblique impact loadings. Thin-Walled Structures, 198: 111697. doi: 10.1016/j.tws.2024.111697
    [157] Ze Q, Kuang X, Wu S, et al. 2020. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Advanced Materials, 32: 1906657. doi: 10.1002/adma.201906657
    [158] Zhang B, Zhang W, Zhang Z, et al. 2019a. Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Applied Materials & Interfaces, 11: 10328-10336. doi: 10.1021/acsami.9b00359
    [159] Zhang C, Lu F, Mo W, et al. 2025a. Dynamic responses and energy absorption characteristics of windmill-shaped auxetic structure under impact loading. Structures, 75: 108670. doi: 10.1016/j.istruc.2025.108670
    [160] Zhang D, Lim X J G, Li X, et al. 2022a. 3D-Printed porous thermoelectrics for in situ energy harvesting. ACS Energy Letters, 8: 332-338. doi: 10.1021/acsenergylett.2c02425
    [161] Zhang H, Chen P, Lin G, et al. 2022b. A corrugated gradient mechanical metamaterial: Lightweight, tunable auxeticity and enhanced specific energy absorption. Thin-Walled Structures, 176: 109355. doi: 10.1016/j.tws.2022.109355
    [162] Zhang Q, Sun Y. 2025. Energy absorption characteristic of auxetic metamaterials honeycombs and lattices with negative thermal expansion. Thin-Walled Structures, 208: 112824. doi: 10.1016/j.tws.2024.112824
    [163] Zhang W, Chen J, Li X, et al. 2020. Liquid metal-polymer microlattice metamaterials with high fracture toughness and damage recoverability. Small, 16: 2004190. doi: 10.1002/smll.202004190
    [164] Zhang W, Wang H, Lou X, et al. 2024. On in-plane crushing behavior of a combined re-entrant double-arrow honeycomb. Thin-Walled Structures, 194: 111303. doi: 10.1016/j.tws.2023.111303
    [165] Zhang X, Vyatskikh A, Gao H, et al. 2019b. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences, 116: 6665-6672. doi: 10.1073/pnas.1817309116
    [166] Zhang Y, Ren X, Jiang W, et al. 2022c. In-plane compressive properties of assembled auxetic chiral honeycomb composed of slotted wave plate. Materials & Design, 221: 110956. doi: 10.1016/j.matdes.2022.110956
    [167] Zhang Z, Gu Y W, Wu H A, et al. 2025b. Investigation on the energy absorption characteristics of novel graded auxetic re-entrant honeycombs. Composite Structures, 352: 118633. doi: 10.1016/j.compstruct.2024.118633
    [168] Zhang Z, Lei Y P, Wang H. 2025c. Deformation and energy absorption characteristics of graded auxetic metamaterials featuring peanut-shaped perforations under in-plane compression. International Journal of Solids and Structures, 313: 113318. doi: 10.1016/j.ijsolstr.2025.113318
    [169] Zheng X, Lee H, Weisgraber T H, et al. 2014. Ultralight, ultrastiff mechanical metamaterials. Science, 344: 1373-1377. doi: 10.1126/science.1252291
    [170] Zhou C, Zhang F, Zhang X, et al. 2025. Hierarchical negative stiffness structures with improved resilience and energy absorption capability. Materials Today Communications, 42: 111371. doi: 10.1016/j.mtcomm.2024.111371
    [171] Zhou J, Wang Y, Luo H, et al. 2024. Energy absorption of auxetic honeycomb with graded beam thickness based on Bezier curve. Aerospace Science and Technology, 155: 109619. doi: 10.1016/j.ast.2024.109619
    [172] Zhou Y, Chen C, Zhu S, et al. 2019. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Materials Today, 30: 17-25. doi: 10.1016/j.mattod.2019.03.016
    [173] Zhu Y, Fu Y, Rui X, et al. 2025. On the design and crashworthiness of a novel auxetic self-locking energy absorption system. International Journal of Solids and Structures, 311: 113246. doi: 10.1016/j.ijsolstr.2025.113246
    [174] Zouaoui M, Saifouni O, Gardan J, et al. 2022. Improvement of fracture toughness based on auxetic patterns fabricated by metallic extrusion in 3D printing. Procedia Structural Integrity, 42: 680-686. doi: 10.1016/j.prostr.2022.12.086
  • 加载中
图(16)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  42
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-19
  • 录用日期:  2025-10-23
  • 网络出版日期:  2025-11-05

目录

    /

    返回文章
    返回