-
摘要: 在轨组装极大空间结构是实现大容量天基通信、高精度天基观测和天基太阳能电站等未来航天任务的技术基础, 具有重要的科学和工程价值. 针对百米级抛物面天线等在轨组装需求, 本文综述极大空间结构在轨组装相关的动力学与控制研究进展与挑战, 讨论五个关键环节, 即模块化组装方案及其动力学问题、多柔体系统动力学建模与计算、机器人运动规划与控制、组装结果的动态校验与调控、地面模拟实验. 本文指出, 在轨组装技术需解决柔性部件大范围运动的时空耦合动力学、机器人运动的高效规划与精准控制、力热耦合的误差校验与调控策略等难题, 同时需要建立理论分析、数值仿真和地面实验验证相融合的研究框架, 进而逐步推进从百米级到千米级空间结构技术的发展. 最后, 本文展望了未来十年的研究重点, 包括高效动力学建模、复杂环境下的运动规划与控制、多模块闭合组装的动态预测与调控、天地一致的实验验证体系, 进而为推动空间结构在轨组装技术提供系统性建议.Abstract: On-orbit assembly of ultra-large space structures serves as the technological foundation for future space missions including high-capacity space-based communications, high-precision space-based observations and space-based solar power stations. It holds significant scientific and engineering values. Addressing the demands for assembling ultra-large structures like 100-meter parabolic antennas on orbit, this review article surveys the research progress and challenges in the dynamics and control of ultra-large space structures assembled on orbit. The article focuses on five key aspects, including the overall assembly design and its dynamic problems, the dynamic modeling and computation of flexible multibody systems, the motion planning and control of robots, the dynamic verification and adjustment of assembly outcomes, and the ground simulation experiments. It highlights the necessity of solving critical issues such as the multi-scaled spatiotemporal coupling dynamics of flexible components undergoing large overall motions, the efficient motion planning and accurate control method of robots, and the thermal-mechanically coupled error verification and adjustment strategies. As such, the necessity requires a comprehensive research framework integrating theoretical analysis, numerical simulation, and ground experimental validation to realize the ultra-large space structures in a scale from 100 meters to 1000 meters. Finally, the article outlines research priorities for the next decade, including the efficient dynamics modeling, the motion planning and control of robots in complex environments, the dynamic prediction and adjustment of multi-module closed-loop assembly, and the earth-space consistent experiment validation systems, providing systematic suggestions for promoting the on-orbit assembly technology of ultra-large space structures.
-
图 1 大型和极大空间结构示意图. (a) 通信卫星的桁架−网面天线(Thomson 1999), (b) 空间站太阳帆板阵列及其支撑桁架(Mikulas et al. 2015), (c) 极大口径抛物面天线, (d) 空间太阳能电站(Carrington et al. 2000)
图 2 极大空间结构的模块化设计. (a) 反射镜面三角形结构模块(Viale et al. 2023), (b) 反射镜面六边形结构模块(Rouvinet et al. 2020), (c) 六棱柱桁架结构模块, (d) 四面体桁架结构模块(White et al. 2020)
图 4 大型空间结构的多柔体系统动力学并行计算分析. (a) 环形桁架−索网天线收回动力学模拟(刘铖 & 胡海岩 2021), (b) 大型飞网展开动力学模拟(刘铖 & 胡海岩 2021)
图 5 刚/柔多体系统非光滑动力学仿真. (a) 多刚体机械臂抓取过程非光滑动力学仿真(Wang et al. 2021), (b) 大变形柔性体摩擦接触仿真(Wang & Tian 2023)
图 6 航天器组装对接地面实验(Wei et al. 2020). (a) 初始状态, (b) 航天器 (左) 绕过障碍 (中), (c) 与目标航天器交会 (右二), (d) 与目标航天器对接 (右二), (e) 完成对接 (右二), (f) 组合航天器运动 (右二)
图 7 结构模块自主组装实验(Lu et al. 2020).
图 8 高精度装配典型案例. (a) 地面组装的FAST射电望远镜(李会贤 和 南仁东 2015), (b) 飞机蒙皮结构自动组装(Schmitt et al. 2014), (c) 在轨调节的James Webb太空望远镜(Rieke et al. 2005), (d) 地面验证机器人组装桁架结构(Doggett 2002)
图 9 薄膜空间结构热变形预测与调控(Zhou et al. 2023). (a) 预测优化与在轨离线控制策略, (b) 分布式组合作动调控实验
图 11 极大空间结构地面模拟实验. (a) NASA水下组装实验(Watson et al. 1988), (b) PULSAR项目水下组装实验(Roa et al. 2022), (c) 气浮平台上机械臂操控实验(Alizadeh & Zhu 2024), (d) ETS-VIII结构模块悬吊卸载实验(Yamada et al. 2003)
-
[1] 蔡园武, 徐亮, 程耿东. 2014. 正六角形单胞周期性蜂窝板等效刚度研究. 大连理工大学学报, 54: 377-383 (Cai Y W, Xu L, Cheng G D. 2014. Study of effective stiffnesses of periodic honeycomb plate with regular hexagonal unit cell. Journal of Dalian University of Technology, 54: 377-383).Cai Y W, Xu L, Cheng G D. 2014. Study of effective stiffnesses of periodic honeycomb plate with regular hexagonal unit cell. Journal of Dalian University of Technology, 54: 377-383 [2] 曹登庆, 白坤朝, 丁虎, 等. 2019. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 51: 1-13 (Cao D Q, Bai K C, Ding H, et al. 2019. Advances in Dynamics and Vibration Control of Large-Scale Flexible Spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 51: 1-13). doi: 10.6052/0459-1879-18-054Cao D Q, Bai K C, Ding H, et al. 2019. Advances in Dynamics and Vibration Control of Large-Scale Flexible Spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 51: 1-13 doi: 10.6052/0459-1879-18-054 [3] 陈金明, 黄本诚. 2002. 开展我国载人航天空间环境地面模拟试验的建议. 航天器环境工程, 19: 5-9 (Chen J M, Huang B C. 2002. Some suggestions for developing the manned space environment simulation testing in china. Spacecraft Environment Engineering, 19: 5-9).Chen J M, Huang B C. 2002. Some suggestions for developing the manned space environment simulation testing in china. Spacecraft Environment Engineering, 19: 5-9 [4] 陈萌, 郭为忠, 王峻峰, 等. 2022. 空间大型桁架结构的人机协作装配及应用. 北京: 科学出版社 (Chen M, Guo W Z, Wang J F, et al. 2022. Human-Machine Collaborative Assembly and Applications of Large Space Truss Structures Beijing: Science Press).Chen M, Guo W Z, Wang J F, et al. 2022. Human-Machine Collaborative Assembly and Applications of Large Space Truss Structures Beijing: Science Press [5] 陈占魁, 罗凯, 田强. 2021. 张拉整体结构的动力学等效建模与实验验证. 力学学报, 53: 1698-1711 (Chen Z K, Luo K, Tian Q. 2021. Dynamic equivalent modeling of tensegrity structures and experimental verification. Chinese Journal of Theoretical and Applied Mechanics, 53: 1698-1711).Chen Z K, Luo K, Tian Q. 2021. Dynamic equivalent modeling of tensegrity structures and experimental verification. Chinese Journal of Theoretical and Applied Mechanics, 53: 1698-1711 [6] 段嘉琪. 2020. 空间双臂机器人协调装配柔顺控制方法研究. 北京: 北京邮电大学硕士学位论文 (Duan J Q. 2020. The Coordinated Compliance Control of Dual-Arm Space Robot for On-Orbit Assembly. Beijing: Master Dissertation of Beijing University of Posts and Telecommunications).Duan J Q. 2020. The Coordinated Compliance Control of Dual-Arm Space Robot for On-Orbit Assembly. Beijing: Master Dissertation of Beijing University of Posts and Telecommunications [7] 段文杰, 王琪, 王天舒. 2011. 圆弧足被动行走器非光滑动力学仿真研究. 力学学报, 43: 765-774 (Duan W J, Wang Q, Wang T S. 2011. Simulation research of a passive dynamic walker with round feet based on non-smooth method. Chinese Journal of Theoretical and Applied Mechanics, 43: 765-774).Duan W J, Wang Q, Wang T S. 2011. Simulation research of a passive dynamic walker with round feet based on non-smooth method. Chinese Journal of Theoretical and Applied Mechanics, 43: 765-774 [8] 范新秀, 王琪. 2015. 车辆纵向非光滑多体动力学建模与数值算法研究. 力学学报, 47: 301-309 (Fan X X, Wang Q. 2015. Research on Modeling and Simulation of Longitudinal Vehicle Dynamics Based on Non-Smooth Dynamics of Multibody Systems. Chinese Journal of Theoretical and Applied Mechanics, 47: 301-309). doi: 10.6052/0459-1879-14-323Fan X X, Wang Q. 2015. Research on Modeling and Simulation of Longitudinal Vehicle Dynamics Based on Non-Smooth Dynamics of Multibody Systems. Chinese Journal of Theoretical and Applied Mechanics, 47: 301-309 doi: 10.6052/0459-1879-14-323 [9] 郭继峰, 王平, 程兴, 等. 2009. 一种用于空间在轨装配的两级递阶智能规划算法. 宇航学报, 29: 1059-1063 (Guo J F, Wang P, Cheng X, et al. 2009. Study on Modeling of EVA Glove Joint and Damping Parameters Measurement. Journal of Astronautics, 29: 1059-1063).Guo J F, Wang P, Cheng X, et al. 2009. Study on Modeling of EVA Glove Joint and Damping Parameters Measurement. Journal of Astronautics, 29: 1059-1063 [10] 胡飞, 宋燕平, 黄志荣, 等. 2022. 构架式可展开天线反射器模块化构型设计优化. 中国空间科学技术, 42: 99-106 (Hu F, Song Y P, Huang Z R, et al. 2022. Design optimization of modular configuration for deployable truss antenna reflector. Chinese Space Science and Technology, 42: 99-106).Hu F, Song Y P, Huang Z R, et al. 2022. Design optimization of modular configuration for deployable truss antenna reflector. Chinese Space Science and Technology, 42: 99-106 [11] 胡海岩, 田强, 张伟, 等. 2013. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 43: 390-414 (Hu H Y, Tian Q, Zhang W, et al. 2013. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 43: 390-414).Hu H Y, Tian Q, Zhang W, et al. 2013. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 43: 390-414 [12] 黄攀峰, 常海涛, 鹿振宇, 等. 2016. 面向在轨服务的可重构细胞卫星关键技术与展望. 宇航学报, 37: 1-10 (Huang P F, Chang H T, Lu Z Y, et al. 2016. Key Techniques of On-Orbit Service-Oriented Reconfigurable Cellularized Satellite and Its Prospects. Journal of Aeronautics, 37: 1-10).Huang P F, Chang H T, Lu Z Y, et al. 2016. Key Techniques of On-Orbit Service-Oriented Reconfigurable Cellularized Satellite and Its Prospects. Journal of Aeronautics, 37: 1-10 [13] 金栋平, 刘福寿, 文浩, 等. 2021. 空间结构动力学等效建模与控制. 北京: 科学出版社 (Jin D P, Liu F S, Wen H, et al. 2021. Equivalent Dynamic Modeling and Control of Space Structures. Beijing: Science Press).Jin D P, Liu F S, Wen H, et al. 2021. Equivalent Dynamic Modeling and Control of Space Structures. Beijing: Science Press [14] 李昂. 2022. 面向在轨组装地面演示系统的冗余机械臂智能化关键技术研究. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所)博士学位论文 (Li A. 2022. Research on Key Technologies of Redundant Robotic Arm Intellectualization for On-orbit Assembly Ground Demonstration System. Changchun: Doctoral Dissertation of Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences).Li A. 2022. Research on Key Technologies of Redundant Robotic Arm Intellectualization for On-orbit Assembly Ground Demonstration System. Changchun: Doctoral Dissertation of Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences [15] 李欢笑, 吕胜男, 马小飞, 等. 2024. 在轨组装空间天线模块化单元设计方法. 机械工程学报, 60: 345-353 (Li H X, Lv S N, Ma X F, et al. 2024. Design Method for Modular Units of Space Antennas Assembled On-orbit. Journal of Mechanical Engineering, 60: 345-353).Li H X, Lv S N, Ma X F, et al. 2024. Design Method for Modular Units of Space Antennas Assembled On-orbit. Journal of Mechanical Engineering, 60: 345-353 [16] 李会贤, 南仁东. 2015. FAST工程进展及展望. 自然杂志, 37: 424-434 (Li H X, Nan R D. 2015. Progress and outlook of FAST. Chinese Journal of Nature, 37: 424-434).Li H X, Nan R D. 2015. Progress and outlook of FAST. Chinese Journal of Nature, 37: 424-434 [17] 李团结, 马小飞, 华岳, 等. 2013. 大型空间天线在轨装配技术. 载人航天, 19: 86-90 (Li T J, Ma X F, Hua Y, et al. 2013. On-Orbit Assembly Technology of Large Space Antennas. Manned Spaceflight, 19: 86-90).Li T J, Ma X F, Hua Y, et al. 2013. On-Orbit Assembly Technology of Large Space Antennas. Manned Spaceflight, 19: 86-90 [18] 刘才山, 陈滨, 彭瀚, 等. 2003. 多体系统多点碰撞接触问题的数值求解方法. 动力学与控制学报, 1: 59-65 (Liu C S, Chen B, Peng H, et al. 2003. Numerical Resolution of Multi-Body Systems with Multiple Contact/Impact Points. Journal of Dynamics and Control, 1: 59-65).Liu C S, Chen B, Peng H, et al. 2003. Numerical Resolution of Multi-Body Systems with Multiple Contact/Impact Points. Journal of Dynamics and Control, 1: 59-65 [19] 刘铖, 胡海岩. 2021. 基于李群局部标架的多柔体系统动力学建模与计算. 力学学报, 53: 213-233 (Liu C, Hu H Y. 2021. Dynamic Modeling and Computation for Flexible Multibody Systems Based on the Local Frame of Lie Group. Chinese Journal of Theoretical and Applied Mechanics, 53: 213-233).Liu C, Hu H Y. 2021. Dynamic Modeling and Computation for Flexible Multibody Systems Based on the Local Frame of Lie Group. Chinese Journal of Theoretical and Applied Mechanics, 53: 213-233 [20] 马小飞, 李洋, 肖勇, 等. 2018. 大型空间可展开天线反射器研究现状与展望. 空间电子技术, 02: 16-26 (Ma X F, Li Y, Xiao Y, et al. 2018. Development and Tendency of Large Space Deployable Antenna Reflector. Space Electronic Technology, 02: 16-26).Ma X F, Li Y, Xiao Y, et al. 2018. Development and Tendency of Large Space Deployable Antenna Reflector. Space Electronic Technology, 02: 16-26 [21] 史创, 李伟杰, 郭宏伟, 等. 2022. 空间大型结构体在轨组装单元及对接接口研究. 机械工程学报, 58: 52-60 (Shi C, Li W J, Guo H W, et al. 2022. Research on In-orbit Assembly Unit and Docking Interface of Large Space Structure. Journal of Mechanical Engineering, 58: 52-60).Shi C, Li W J, Guo H W, et al. 2022. Research on In-orbit Assembly Unit and Docking Interface of Large Space Structure. Journal of Mechanical Engineering, 58: 52-60 [22] 司洪伟, 李东旭, 陈卫东. 2008. 大挠性航天桁架结构动力学及其主动控制研究进展. 力学进展, 38: 167-176 (Si H W, Li D X, Chen W D. 2008. Dynamic and Active Control of Large Flexible Space Truss: A Review. Advances in Mechanics, 38: 167-176).Si H W, Li D X, Chen W D. 2008. Dynamic and Active Control of Large Flexible Space Truss: A Review. Advances in Mechanics, 38: 167-176 [23] 孙加亮, 田强, 胡海岩. 2019. 多柔体系统动力学建模与优化研究进展. 力学学报, 51: 1565-1586 (Sun J L, Tian Q, Hu H Y. 2019. Advances in Dynamic Modeling and Optimization of Flexible Multibody Systems. Chinese Journal of Theoretical and Applied Mechanics, 51: 1565-1586).Sun J L, Tian Q, Hu H Y. 2019. Advances in Dynamic Modeling and Optimization of Flexible Multibody Systems. Chinese Journal of Theoretical and Applied Mechanics, 51: 1565-1586 [24] 陶磊. 2020. 空间大型结构体组装单元及装配性能研究. 哈尔滨: 哈尔滨工业大学硕士学位论文 (Tao L. 2020. Research on Assembled Unit of Space Large Structure and Performance of Assembly. Harbin: Master Dissertation of Harbin Institute of Technology).Tao L. 2020. Research on Assembled Unit of Space Large Structure and Performance of Assembly. Harbin: Master Dissertation of Harbin Institute of Technology [25] 田大可, 范小东, 金路, 等. 2021. 六棱柱模块化可展开天线形面精度分析. 光学精密工程, 29: 2855-2867 (Tian D K, Fan X D, Jin L, et al. 2021. Surface accuracy analysis for hexagonal prism modular deployable antenna. Optics and Precision Engineering, 29: 2855-2867). doi: 10.37188/OPE.20212912.2855Tian D K, Fan X D, Jin L, et al. 2021. Surface accuracy analysis for hexagonal prism modular deployable antenna. Optics and Precision Engineering, 29: 2855-2867 doi: 10.37188/OPE.20212912.2855 [26] 田大可, 郭振伟, 刘荣强, 等. 2021. 模块化构架式空间可展开天线支撑机构设计. 航天器工程, 30: 39-47 (Tian D K, Guo Z W, Liu R Q, et al. 2021. Design of Supporting Mechanism for Space Modular Deployable Truss Antenna. Spacecraft Engineering, 30: 39-47).Tian D K, Guo Z W, Liu R Q, et al. 2021. Design of Supporting Mechanism for Space Modular Deployable Truss Antenna. Spacecraft Engineering, 30: 39-47 [27] 田大可, 刘荣强, 邓宗全, 等. 2012. 空间可展开天线基本单元构型的数综合方法. 沈阳工业大学学报, 34: 420-426 (Tian D K, Liu R Q, Deng Z Q, et al. 2012. Number synthesis method for basic unit configuration of space deployable antenna. Journal of Shenyang University of Technology, 34: 420-426).Tian D K, Liu R Q, Deng Z Q, et al. 2012. Number synthesis method for basic unit configuration of space deployable antenna. Journal of Shenyang University of Technology, 34: 420-426 [28] 田强, 刘铖, 李培, 等. 2017. 多柔体系统动力学研究进展与挑战. 动力学与控制学报, 15: 385-405 (Tian Q, Liu C, Li P, et al. 2017. Advances and Challenges in Dynamics of Flexible Multibody Systems. Journal of Dynamics and Control, 15: 385-405).Tian Q, Liu C, Li P, et al. 2017. Advances and Challenges in Dynamics of Flexible Multibody Systems. Journal of Dynamics and Control, 15: 385-405 [29] 王明明, 罗建军, 袁建平, 等. 2021. 空间在轨装配技术综述. 航空学报, 42: 523913 (Wang M M, Luo J J, Yuan J P, et al. 2021. In-orbit assembly technology: Review. Acta Aeronautica et Astronautica Sinica, 42: 523913).Wang M M, Luo J J, Yuan J P, et al. 2021. In-orbit assembly technology: Review. Acta Aeronautica et Astronautica Sinica, 42: 523913 [30] 王琪, 庄方方, 郭易圆, 等. 2013. 非光滑多体系统动力学数值算法的研究进展. 力学进展, 43: 101-111 (Wang Q, Zhuang F F, Guo Y Y, et al. 2013. Advances in the Research on Numerical Methods for Non-Smooth Dynamics of Multibody Systems. Advances in Mechanics, 43: 101-111).Wang Q, Zhuang F F, Guo Y Y, et al. 2013. Advances in the Research on Numerical Methods for Non-Smooth Dynamics of Multibody Systems. Advances in Mechanics, 43: 101-111 [31] 王旭. 2020. 基于机械臂的空间直立桁架装配技术研究. 武汉: 华中科技大学硕士学位论文 (Wang X. 2020. Research on Assembly Technology of Space Vertical Truss Based on Manipulator. Wuhan: Master Dissertation of Huazhong University of Science & Technology).Wang X. 2020. Research on Assembly Technology of Space Vertical Truss Based on Manipulator. Wuhan: Master Dissertation of Huazhong University of Science & Technology [32] 王岩. 2015. 可展开四棱锥单元构型综合与模块化阵面天线机构设计. 哈尔滨: 哈尔滨工业大学博士学位论文 (Wang Y. 2015. Configuration Synthesis of Deployable Rectangular Pyramid Unit and Mechanism Design for Modular Array Antenna. Harbin: Doctoral Dissertation of Harbin Institute of Technology).Wang Y. 2015. Configuration Synthesis of Deployable Rectangular Pyramid Unit and Mechanism Design for Modular Array Antenna. Harbin: Doctoral Dissertation of Harbin Institute of Technology [33] 熊玉勇, 李松旭, 彭志科. 2020. 基于微波感知的挠性结构动态响应监测. 振动与冲击, 39: 277-282 (Xiong Y Y, Li S X, Peng Z K. 2020. Dynamic response monitoring of flexible structures based on microwave sensing. Journal of Vibration and Shock, 39: 277-282).Xiong Y Y, Li S X, Peng Z K. 2020. Dynamic response monitoring of flexible structures based on microwave sensing. Journal of Vibration and Shock, 39: 277-282 [34] 薛明德, 向志海. 2011. 大型空间结构的热-动力学耦合问题及其有限元分析. 固体力学学报, 32: 318-328 (Xue M D, Xiang Z H. 2011. Thermal-dynamic coupling problem of large space structures and its FEM analysis. Chinese Journal of Solid Mechanics, 32: 318-328).Xue M D, Xiang Z H. 2011. Thermal-dynamic coupling problem of large space structures and its FEM analysis. Chinese Journal of Solid Mechanics, 32: 318-328 [35] 易斯男, 程耿东, 徐亮. 2016. 一维周期性梁结构等效性能计算方法讨论. 计算力学学报, 33: 704-710 (Yi S N, Cheng G D, Xu L. 2016. Discussion of effective properties prediction methods for 1D periodic beam structure. Chinese Journal of Computational Mechanics, 33: 704-710).Yi S N, Cheng G D, Xu L. 2016. Discussion of effective properties prediction methods for 1D periodic beam structure. Chinese Journal of Computational Mechanics, 33: 704-710 [36] 余瑶, 文浩, 陈提. 2017. 中心刚体-柔性梁应变反馈多目标优化控制. 动力学与控制学报, 15: 356-362 (Yu Y, Wen H, Chen T. 2017. Multi-objective optimal control of a flexible hub-beam with strain feedback. Journal of Dynamics and Control, 15: 356-362).Yu Y, Wen H, Chen T. 2017. Multi-objective optimal control of a flexible hub-beam with strain feedback. Journal of Dynamics and Control, 15: 356-362 [37] 中国科学技术协会. 2022. 中国科协发布2022重大科学问题、工程技术难题和产业技术问题. 中国科技产业, 7: 11-11 (China Association for Science and Technology. 2022. The Chinese Association for Science and Technology (CAST) released the Major Scientific Issues, Engineering and Technical Challenges, and Industrial Technology Problems for 2022. Science & Technology Industry of China, 7: 11-11).China Association for Science and Technology. 2022. The Chinese Association for Science and Technology (CAST) released the Major Scientific Issues, Engineering and Technical Challenges, and Industrial Technology Problems for 2022. Science & Technology Industry of China, 7: 11-11 [38] Alizadeh M, Zhu Z H. 2024. A comprehensive survey of space robotic manipulators for on-orbit servicing. Frontiers in Robotics and AI, 11: 1470950 doi: 10.3389/frobt.2024.1470950 [39] Allen B D. 2021. OSAM: autonomy & dexterous robots. Proceedings of Workshop: Logistics and Manufacturing Under Attack [40] Arney D, Sutherland R, Mulvaney J, et al. 2021. On-orbit servicing, assembly, and manufacturing (OSAM) state of play. NASA Technical Report, 20210022660 [41] Badawy A, McInnes C R. 2008. On-orbit assembly using superquadric potential fields. Journal of Guidance, Control, and Dynamics, 31: 30-43 doi: 10.2514/1.28865 [42] Belgacem F B, Hild P, Laborde P. 1998. The mortar finite element method for contact problems. Mathematical and Computer Modeling, 28: 263-271 doi: 10.1016/S0895-7177(98)00121-6 [43] Bensoussan A, Lions J L, Papanicolaou G. 2011. Asymptotic analysis for periodic structures. Providence: AMS Chelsea Publishing [44] Boley B A. 1956. Thermally induced vibrations of beams. Journal of the Aeronautical Sciences, 23: 179-181 [45] Boning P, Dubowsky S. 2010. Coordinated control of space robot teams for the on-orbit construction of large flexible space structures. Advanced Robotics, 24: 303-323 doi: 10.1163/016918609X12619993300665 [46] Bourgault F. 2000. Model uncertainty and performance analysis for precision controlled space structures. Cambridge: Doctoral Dissertation of Massachusetts Institute of Technology [47] Boutin B A, Misra A K, Modi V J. 1999. Dynamics and control of variable-geometry truss structures. Acta Astronautica, 45: 717-728 doi: 10.1016/S0094-5765(99)00125-3 [48] Boyd I D, Buenconsejo R S, Piskorz D, et al. 2017. On-orbit manufacturing and assembly of spacecraft. Alexandria: Institute for Defense Analysis, IDA Paper P-8335 [49] Cao K, Li S, She Y C, et al. 2021. Dynamics and on-orbit assembly strategies for an orb-shaped solar array. Acta Astronautica, 178: 881-893 doi: 10.1016/j.actaastro.2020.10.030 [50] Carrington C, Fikes J, Gerry M, et al. 2000. The Abacus/Reflector and integrated symmetrical concentrator-Concepts for space solar power collection and transmission. Proceedings of 35th Intersociety Energy Conversion Engineering Conference and Exhibit, 3067 [51] Çelik O, McInnes C R. 2024. A constellation design for orbiting solar reflectors to enhance terrestrial solar energy. Acta Astronautica, 217: 145-161 doi: 10.1016/j.actaastro.2024.01.031 [52] Chen J, Huang Z H, Tian Q. 2022. A multisymplectic Lie algebra variational integrator for flexible multibody dynamics on the special Euclidean group SE (3). Mechanism and Machine Theory, 174: 104918 doi: 10.1016/j.mechmachtheory.2022.104918 [53] Chen J, Huang Z H, Tian Q. 2023. Hamel’s field variational integrator for simulating dynamics of thin-walled geometrically exact beams with warping effects. Mechanism and Machine Theory, 190: 105462 doi: 10.1016/j.mechmachtheory.2023.105462 [54] Chen Q, Acary V, Virlez G, et al. 2013. A nonsmooth generalized-α scheme for flexible multibody systems with unilateral constraints. International Journal for Numerical Methods in Engineering, 96: 487-511 doi: 10.1002/nme.4563 [55] Chen T, Wen H, Hu H Y, et al. 2016. Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly. Acta Astronautica, 121: 271-281 doi: 10.1016/j.actaastro.2015.11.004 [56] Chen T, Wen H, Hu H Y, et al. 2017. On-orbit assembly of a team of flexible spacecraft using potential field based method. Acta Astronautica, 133: 221-232 doi: 10.1016/j.actaastro.2017.01.021 [57] Chen T, Wang Y, Wen H, et al. 2023. Autonomous assembly of multiple flexible spacecraft using RRT* algorithm and input shaping technique. Nonlinear Dynamics, 111: 11223-11241 doi: 10.1007/s11071-023-08445-3 [58] Cheng Z A, Hou X, Zhang X, et al. 2016. In-orbit assembly mission for the space solar power station. Acta Astronautica, 129: 299-308 doi: 10.1016/j.actaastro.2016.08.019 [59] Cui D F, Hu H Y. 2015. Primary resonance of lateral vibration of a heated beam with an axial stick-slip-stop boundary. Journal of Sound and Vibration, 339: 230-246 doi: 10.1016/j.jsv.2014.10.042 [60] Cui D F, Hu H Y. 2016. Thermal buckling and natural vibration of a rectangular thin plate with in-plane stick-slip-stop boundaries. Journal of Vibration and Control, 22: 1950-1966 doi: 10.1177/1077546314546394 [61] Cui Y Q, Lan P, Zhou H T, et al. 2020. The rigid-flexible-thermal coupled analysis for spacecraft carrying large-aperture paraboloid antenna. Journal of Computational and Nonlinear Dynamics, 15: 031003 doi: 10.1115/1.4045890 [62] Deremetz M, Debroise M, De Stefano M, et al. 2022. Design and integration of a multi-arm installation robot demonstrator for orbital large assembly. Proceedings of 73rd International Astronautical Congress, International Astronautical Congress (IAC), D1.6. 6x72833 [63] Doggett W. 2002. Robotic assembly of truss structures for space systems and future research plans. Proceedings of IEEE Aerospace Conference, Big Sky, 7-7 [64] Feyel F. 1999. Multiscale FE2 elastoviscoplastic analysis of composite structures. Computational Materials Science, 16: 344-354 doi: 10.1016/S0927-0256(99)00077-4 [65] Flores P, Leine R, Glocker C. 2010. Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody System Dynamics, 23: 165-190 doi: 10.1007/s11044-009-9178-y [66] Foust R C, Lupu E S, Nakka Y K, et al. 2020. Autonomous in-orbit satellite assembly from a modular heterogeneous swarm. Acta Astronautica, 169: 191-205 doi: 10.1016/j.actaastro.2020.01.006 [67] Friend R B. 2008. Orbital express program summary and mission overview. Proceedings of SPIE Sensors and systems for space application II, 6958: 11-21 [68] Fu K, Zhao Z, Ren G, et al. 2019. From multiscale modeling to design of synchronization mechanisms in mesh antennas. Acta Astronautica, 159: 156-165 doi: 10.1016/j.actaastro.2019.03.056 [69] Gregg C E, Catanoso D, Formoso O I B, et al. 2024. Ultralight, strong, and self-reprogrammable mechanical metamaterials. Science Robotics, 9: 1-15 [70] Gu S, Chen J, Tian Q. 2022. An implicit asynchronous variational integrator for flexible multibody dynamics. Computer Methods in Applied Mechanics and Engineering, 401: 115660 doi: 10.1016/j.cma.2022.115660 [71] Ha C, Kim H, Lee D. 2017. Passivity-based control of manipulator-stage systems on vertical flexible beam. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 429-435 [72] Han S L, Bauchau O A. 2016. On the analysis of periodically heterogeneous beams. Journal of Applied Mechanics, 83: 091001 doi: 10.1115/1.4033721 [73] Hu Y H, Zhang W, Wen H, et al. 2024. On-orbit transportation with non-conserved momenta by cooperative space robots. Advances in Space Research, 74: 5179-5191 doi: 10.1016/j.asr.2024.07.033 [74] Hong D, Ren G. 2011. A modeling of sliding joint on one-dimensional flexible medium. Multibody System Dynamics, 26: 91-106 doi: 10.1007/s11044-010-9242-7 [75] Jenett B, Abdel-Rahman A, Cheung K C, et al. 2019. Material–robot system for assembly of discrete cellular structures. IEEE Robotics and Automation Letters, 4: 4019-4026 doi: 10.1109/LRA.2019.2930486 [76] Jiang Z N, Li Z Q, Li C Y, et al. 2019. Design and preliminary ground experiment for robotic assembly of a modular space telescope. IEEE Access, 7: 160870-106878 doi: 10.1109/ACCESS.2019.2950666 [77] Karumanchi S, Edelberg K, Nash J, et al. 2018. Payload-centric autonomy for in-space robotic assembly of modular space structures. Journal of Field Robotics, 35: 1005-1021 doi: 10.1002/rob.21792 [78] Klarmann S, Gruttmann F, Klinkel S. 2020. Homogenization assumptions for coupled multiscale analysis of structural elements: beam kinematics. Computational Mechanics, 65: 635-661 doi: 10.1007/s00466-019-01787-z [79] Lee D H, Choi M S, Park H, et al. 2022. Peg-in-hole assembly with dual-arm robot and dexterous robot hands. IEEE Robotics and Automation Letters, 7: 8566-8573 doi: 10.1109/LRA.2022.3187497 [80] Lee N, Backes P, Burdick J, et al. 2016. Architecture for in-space robotic assembly of a modular space telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2: 1-13 [81] Li F, Liu L, Lan X, et al. 2019. Ground and geostationary orbital qualification of a sunlight-stimulated substrate based on shape memory polymer composite. Smart Materials and Structures, 28: 075023 doi: 10.1088/1361-665X/ab18b7 [82] Li P, Liu C, Tian Q, et al. 2016. Dynamics of a deployable mesh reflector of satellite antenna: form-finding and modal analysis. Journal of computational and nonlinear dynamics, 11: 041017 doi: 10.1115/1.4033440 [83] Li Q, Deng Z. 2019. Coordinated orbit–attitude–vibration control of a sun-facing solar power satellite. Journal of Guidance, Control and Dynamics, 42: 1863-1869 doi: 10.2514/1.G004202 [84] Li Y, Hao X, She Y, et al. 2021. Constrained motion planning of free-float dual-arm space manipulator via deep reinforcement learning. Aerospace Science and Technology, 109: 106446 doi: 10.1016/j.ast.2020.106446 [85] Liu J Y, Pan K Q. 2016. Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system. Aerospace Science and Technology, 52: 102-114 doi: 10.1016/j.ast.2016.02.025 [86] Liu J P, Shu X B, Kanazawa H, et al. 2018. A model order reduction method for the simulation of gear contacts based on Arbitrary Lagrangian Eulerian formulation. Computer Methods in Applied Mechanics and Engineering, 338: 68-96 doi: 10.1016/j.cma.2018.03.039 [87] Liu Y H, Luo K, Wang S, et al. 2023. A Soft and Bistable Gripper with Adjustable Energy Barrier for Fast Capture in Space. Soft Robotics, 10: 77-87 doi: 10.1089/soro.2021.0147 [88] Liu Y H, Luo K, Tian Q, Hu H Y. 2024. Nonlinear dynamics design for in-space assembly motion of manipulators on flexible base structures. Nonlinear Dynamics, DOI: 10.1007/s11071-024-10588-w [89] Lötstedt P. 1981. Coulomb friction in two-dimensional rigid body systems. ZAMM - Journal of Applied Mathematics and Mechanics, 61: 605-615 doi: 10.1002/zamm.19810611202 [90] Lu Y, Huang Z, Zhang W, et al. 2020. Experimental investigation on automated assembly of space structure from cooperative modular components. Acta Astronautica, 171: 378-387 doi: 10.1016/j.actaastro.2020.03.033 [91] Luo K, Hu H Y, Liu C, et al. 2017. Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Computer Methods in Applied Mechanics and Engineering, 324: 573-594 doi: 10.1016/j.cma.2017.06.029 [92] Lutze J P, Schuller R, Mishra H, et al. 2023. Optimization of multi-arm robot locomotion to reduce satellite disturbances during in-orbit assembly. Proceedings of 2023 IEEE Aerospace Conference, 1-11 [93] Ma X F, Li Y, Li T, et al. 2021. Design and analysis of a novel deployable hexagonal prism module for parabolic cylinder antenna. Mechanical Sciences, 12: 9-18 doi: 10.5194/ms-12-9-2021 [94] Mcgowan P E, Edighoffer H E, Wallace J W. 1990. Development of an experimental space station model for structural dynamics research. Hampton Virginia: Langley Research Center, NASA-TM-102601 [95] Meng D, Lu W, Xu W, et al. 2018. Vibration suppression control of free-floating space robots with flexible appendages for autonomous target capturing. Acta Astronautica, 151: 904-918 doi: 10.1016/j.actaastro.2018.07.044 [96] Meng J W, Jin Y F. 2024. A novel probabilistic analysis method for long-term dynamical response analysis. Acta Mechanica, DOI: 10.1007/s00707-024-04137-0 [97] Miehe C, Koch A. 2002. Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Archive of Applied Mechanics, 72: 300-317 doi: 10.1007/s00419-002-0212-2 [98] Mikulas M M, Pappa R S, Warren J, et al. 2015. Telescoping solar array concept for achieving high packaging efficiency. Proceedings of 2nd AIAA Spacecraft Structures Conference, 1398 [99] Moreau J. 1999. Numerical aspects of the sweeping process. Computer Methods in Applied Mechanics and Engineering, 177: 329-349 doi: 10.1016/S0045-7825(98)00387-9 [100] Mukherjee R, Siegler N, Thronson H, et al. 2019a. In Space Assembled Telescope (ISAT) Study Preliminary Findings. Proceedings of International Conference for Aerospace Experts, Academics, Military Personnel, and Industry Leaders, GSFC-E-DAA-TN58571 [101] Mukherjee R, Siegler N, Thronson H, et al. 2019b. When is it worth assembling observatories in space. Bulletin of the American Astronomical Society, 51: 50 [102] Nakanose S, Nakamura-Messenger K. 2023. GITAI USA: Providing Safe and Affordable Means of Labor in Space. Proceedings of ASCEND 2023, 4744 [103] Nanjangud A, Blacker P C, Young A, et al. 2019. Robotic architectures for the on-orbit assembly of large space telescopes. Proceedings of the Advanced Space Technologies in Robotics and Automation Symposium, European Space Agency (ESA) [104] Natori M, Iwasaki K, Kuwao, F. 1987. Adaptive planar truss structures and their vibration characteristics. Proceedings of 28th Structures, Structural Dynamics and Materials Conference, Monterey, 0743: 143-151 [105] Noël J P, Kerschen G. 2017. Nonlinear system identification in structural dynamics: 10 more years of progress. Mechanical Systems and Signal Processing, 83: 2-35 doi: 10.1016/j.ymssp.2016.07.020 [106] Oegerle W R, Purves L R, Budinoff J G, et al. 2006. Concept for a large scalable space telescope: In-space assembly. Proceedings of Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, International Society for Optics and Photonics (SPIE), 6265: 755-766 [107] OSTP (The Office of Science and Technology Policy). 2022. In-Space Servicing, Assembly, and Manufacturing National Strategy. Washington, DC: In-Space Servicing, Assembly, and Manufacturing Interagency Working Group of the National Science & Technology Council [108] Pan X, Wei Z, Chen T. 2024. Neural network-based control for the on-orbit assembly of heterogeneous spacecraft cluster based on Vicsek fractal. Aerospace Science and Technology, 153: 109429 doi: 10.1016/j.ast.2024.109429 [109] Pang C, Zhong R. 2022. Design and experiment of on-orbit assembly ground simulation robot. Journal of Physics: Conference Series, 2369: 012071 doi: 10.1088/1742-6596/2369/1/012071 [110] Paoli L, Schatzman M. 2002. A numerical scheme for impact problems II: The multidimensional case. SIAM Journal on Numerical Analysis, 40: 734-768 doi: 10.1137/S003614290037873X [111] Pfeiffer F, Foerg M, Ulbrich H. 2006. Numerical aspects of non-smooth multibody dynamics. Computer Methods in Applied Mechanics and Engineering, 195: 6891-6908 doi: 10.1016/j.cma.2005.08.012 [112] Postman M, Sparks W B, Liu F, et al. 2012. Using the ISS as a testbed to prepare for the next generation of space-based telescopes. Proceedings of Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, 8442: 644-653 [113] Qiu Z C, Zhang X M, Wu H X, et al. 2007. Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. Journal of Sound and Vibration, 301: 521-543 doi: 10.1016/j.jsv.2006.10.018 [114] Rieke M J, Kelly D M, Horner S D. 2005. Overview of James Webb Space Telescope and NIRCam's Role. Proceedings of Cryogenic optical systems and instruments XI, San Diego, 590401 [115] Roa M A, Koch C, Rognant M, et al. 2022. PULSAR: Testing the technologies for on-orbit assembly of a large telescope. Proceedings of 16th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), 1-8 [116] Rognant M, Cumer C, Biannic J M, et al. 2019. Autonomous assembly of large structures in space: a technology review. Proceedings of the 8th European Conference for Aeronautics and Aerospace Sciences (EUCASS), hal-03316188 [117] Rouvinet J, Ummel A, Cosandier F, et al. 2020. PULSAR: Development of a mirror tile prototype for future large telescopes robotically assembled in space. Proceedings of SPIE - The International Society for Optical Engineering, 11451 [118] Schmitt R, Witte A, Janßen M, et al. 2014. Metrology assisted assembly of airplane structure elements. Procedia CIRP, 23: 116-121 doi: 10.1016/j.procir.2014.10.073 [119] Schmitt R H, Peterek M, Morse E, et al. 2016. Advances in large-scale metrology–review and future trends. CIRP Annals, 65: 643-665 doi: 10.1016/j.cirp.2016.05.002 [120] Senda K, Murotsu Y, Mitsuya A, et al. 2002. Hardware experiments of a truss assembly by an autonomous space learning robot. Journal of spacecraft and rockets, 39: 267-273 doi: 10.2514/2.3808 [121] Shabana A A. 1997. Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody System Dynamics, 1: 339-348 doi: 10.1023/A:1009740800463 [122] Sheng Z, Chen W, Chen Z, et al. 2024. Sequence planning for on-orbit robotic assembly based on symbiotic organisms search with diversification strategy. Acta Astronautica, 219: 941-951 doi: 10.1016/j.actaastro.2024.04.013 [123] Shi Y, Hou X, Gao G, et al. 2023. Design and simulation of on-orbit assembly system based on insect-inspired transportation. Biomimetics, 8: 256 doi: 10.3390/biomimetics8020256 [124] Smit R J M, Brekelmans W A M, Meijer H E H. 1998. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering, 155: 181-192 doi: 10.1016/S0045-7825(97)00139-4 [125] Sonneville V, Cardona A, Brüls O. 2014. Geometric interpretation of a non-linear beam finite element on the Lie group SE(3). Archive of Mechanical Engineering, 64: 305-329 [126] Sonneville V, Brüls O, Bauchau O. 2017. Interpolation schemes for geometrically exact beams: a motion approach. International Journal for Numerical Methods in Engineering, 112: 1129-1153 doi: 10.1002/nme.5548 [127] Sun D W, Liu C, Hu H Y. 2021. Dynamic computation of 2D segment-to-segment frictional contact for a flexible multibody system subject to large deformations. Mechanism and Machine Theory, 158: 104197 doi: 10.1016/j.mechmachtheory.2020.104197 [128] Sun K P, Zhao Y H, Hu H Y. 2015a. Identification of temperature-dependent thermal-structural properties via finite element model updating and selection. Mechanical Systems and Signal Processing, 52: 147-161 [129] Sun K P, Zhao Y H, Hu H Y. 2015b. Experimental studies on finite element model updating for a heated beam-like structure. Shock and Vibration, 2015: 143254 [130] Sun J L, Tian Q, Hu H Y, et al. 2018a. Topology optimization of a flexible multibody system with variable-length bodies described by ALE-ANCF. Nonlinear Dynamics, 93: 413-441 doi: 10.1007/s11071-018-4201-6 [131] Sun J L, Tian Q, Hu H Y, et al. 2018b. Simultaneous topology and size optimization of a 3D variable-length structure described by the ALE-ANCF. Mechanism and Machine Theory, 129: 80-105 doi: 10.1016/j.mechmachtheory.2018.07.013 [132] Sun J L, Hu H Y. 2024. Dynamic topology optimization of flexible multibody systems. Nonlinear Dynamics, 112: 11711-11743 doi: 10.1007/s11071-024-09619-3 [133] Suzuki Y, Tsuchiya S, Okuyama T, et al. 2001. Mechanism for assembling antenna in space. IEEE Transactions on Aerospace & Electronic Systems, 37: 254-265 [134] Swei S S M, Jenett B, Cramer N B, et al. 2020. Modeling and control of robot-structure coupling during in-space structure assembly. Proceedings of AIAA Scitech 2020 Forum, 1544 [135] Tang Y X, Hu H Y, Tian Q. 2019. Model order reduction based on successively local linearizations for flexible multibody dynamics. International Journal for Numerical Methods in Engineering, 118: 159-180 doi: 10.1002/nme.6011 [136] Thornton E A, Kim Y A. 1993. Thermally induced bending vibrations of a flexible rolled-up solar array. Journal of Spacecraft and Rockets, 30: 438-448 doi: 10.2514/3.25550 [137] Viale A, Çelik O, Oderinwale T, et al. 2023. A reference architecture for orbiting solar reflectors to enhance terrestrial solar power plant output. Advances in Space Research, 72: 1304-1348 doi: 10.1016/j.asr.2023.05.037 [138] Thomson M W. 1999. The AstroMesh deployable reflector. Proceedings of IEEE Antennas and Propagation Society International Symposium, 3: 1516-1519 [139] Wang E, Wu S, Wu Z. 2022. Dynamic multi-constrained assembly sequence planning of large space structures considering structural vibration. Acta Astronautica, 195: 27-40 doi: 10.1016/j.actaastro.2022.02.021 [140] Wang M, Luo J, Yuan J, et al. 2018. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization. Acta Astronautica, 146: 259-272 doi: 10.1016/j.actaastro.2018.03.012 [141] Wang K, Tian Q, Hu H Y. 2021. Nonsmooth spatial frictional contact dynamics of multibody systems. Multibody System Dynamics, 53: 1-27 doi: 10.1007/s11044-021-09786-w [142] Wang K, Tian Q. 2023. A nonsmooth method for spatial frictional contact dynamics of flexible multibody systems with large deformation. International Journal for Numerical Methods in Engineering, 124: 752-779 doi: 10.1002/nme.7141 [143] Wang K, Luo K, Tian Q. 2024. Nonsmooth model order reduction for transient tire–road dynamics of frictional contact with ALE formulations. Nonlinear Dynamics, 112: 18847-18868 doi: 10.1007/s11071-024-10021-2 [144] Wang Q, Huang P, Li J, et al. 2016. Assembly accuracy analysis for small components with a planar surface in large-scale metrology. Measurement Science and Technology, 27: 045006 doi: 10.1088/0957-0233/27/4/045006 [145] Wang X, Shi L, Katupitiya J. 2020. Coordinated control of a dual-arm space robot to approach and synchronise with the motion of a spinning target in 3D space. Acta Astronautica, 176: 99-110 doi: 10.1016/j.actaastro.2020.02.028 [146] Watson J J, Heard W J, Bush H G, et al. 1988. Results of EVA/mobile transporter space station truss assembly tests. Hampton Virginia: Langley Research Center, NASA-TM-100661 [147] Wei Z, Wen H, Hu H Y, et al. 2020. Ground experiment on rendezvous and docking with a spinning target using multistage control strategy. Aerospace Science and Technology, 104: 105967 doi: 10.1016/j.ast.2020.105967 [148] Wei Z, Chen T, Wen H, et al. 2023. Experimental study on autonomous assembly of multiple spacecraft simulators in a spinning scenario. Acta Astronautica, 207: 106-117 doi: 10.1016/j.actaastro.2023.03.009 [149] Wei Z, Chen T, Wen H, et al. 2024. Autonomous assembly of multiple spacecraft by tether-aided rendezvous and docking: From theory to experiment. Aerospace Science and Technology, 150: 109187 doi: 10.1016/j.ast.2024.109187 [150] Wen H, Chen T, Yu B, et al. 2016. Dynamics and control of robotic spacecrafts for the transportation of flexible elements. Journal of Physics: Conference Series, 744: 012060 doi: 10.1088/1742-6596/744/1/012060 [151] White B, Doggett W R, Song K. 2020. Tessellation and Numerical Simulation of the In-Space Assembled Telescope (iSAT) Reflector. Proceedings of ASCEND 2020, 4192 [152] Wilkie W, Williams R, Agnes G, et al. 2007. Structural feasibility analysis of a robotically assembled very large aperture optical space telescope. Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics (AIAA), 1814 [153] Xu R, Li D X, Jiang J P. 2015. An online learning based fuzzy control method for vibration control of smart solar panel. Journal of Intelligent Material Systems and Structures, 26: 2547-2555 doi: 10.1177/1045389X15606999 [154] Yamada K, Tsutsumi Y, Yoshihara M, et al. 2003. Integration and testing of large deployable reflector on ETS-VIII. Proceedings of 21st International Communications Satellite Systems Conference and Exhibit, 2217 [155] Yang S, Wen H, Hu H Y, et al. 2020. Coordinated motion control of a dual-arm space robot for assembling modular parts. Acta Astronautica, 177: 627-638 doi: 10.1016/j.actaastro.2020.08.006 [156] Yang S, Zhang W, Zhang Y, et al. 2023a. Development and evaluation of a space robot prototype equipped with a cable-driven manipulator. Acta Astronautica, 208: 142-154 doi: 10.1016/j.actaastro.2023.04.014 [157] Yang S, Zhang Y, Wen H, et al. 2023b. Coordinated control of dual-arm robot on space structure for capturing space targets. Advances in Space Research, 71: 2437-2448 doi: 10.1016/j.asr.2022.10.027 [158] Yao M, Xiao X, Tian Y, et al. 2019. A two-time scale control scheme for on-orbit manipulation of large flexible module. Acta Astronautica, 154: 92-102 doi: 10.1016/j.actaastro.2018.09.020 [159] Yuan T, Tang L, Liu Z, et al. 2021. Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction. Nonlinear Dynamics, 106: 1789-1822 doi: 10.1007/s11071-021-06860-y [160] Zhang E, Sai H, Li Y, et al. 2024. Modular robotic manipulator and ground assembly system for on-orbit assembly of space telescopes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238: 2283-2293 doi: 10.1177/09544062231193212 [161] Zhang H M, Xing Y F. 2019. A framework of time integration methods for nonsmooth systems with unilateral constraints. Applied Mathematics and Computation, 363: 124590 doi: 10.1016/j.amc.2019.124590 [162] Zhang W, Wen H. 2022. Motion planning of a free-flying space robot system under end effector task constraints. Acta Astronautica, 199: 195-205 doi: 10.1016/j.actaastro.2022.07.005 [163] Zhang X, Zhu W, Wu X, et al. 2020. Dynamics and control for in-space assembly robots with large translational and rotational maneuvers. Acta Astronautica, 174: 166-179 doi: 10.1016/j.actaastro.2020.04.063 [164] Zhou W X, Luo K, Tian Q, Hu H Y. 2023. Distributed Actuation Optimization of In-Orbit Membrane Structures Based on Clustering. AIAA Journal, 61: 444-453 doi: 10.2514/1.J062172 [165] Zoller J, Gruttmann F. 2019. On boundary conditions and constraints for representative volume elements of a two‐scale shell formulation. PAMM, 19: 201900123 doi: 10.1002/pamm.201900123