留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据驱动的金属疲劳寿命模型研究进展

甘磊 吴昊 仲政

甘磊, 吴昊, 仲政. 数据驱动的金属疲劳寿命模型研究进展. 力学进展, 待出版 doi: 10.6052/1000-0992-24-025
引用本文: 甘磊, 吴昊, 仲政. 数据驱动的金属疲劳寿命模型研究进展. 力学进展, 待出版 doi: 10.6052/1000-0992-24-025
Gan L, Wu H, Zhong Z. Advances in data-driven models for fatigue life prediction of metallic materials. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-025
Citation: Gan L, Wu H, Zhong Z. Advances in data-driven models for fatigue life prediction of metallic materials. Advances in Mechanics, in press doi: 10.6052/1000-0992-24-025

数据驱动的金属疲劳寿命模型研究进展

doi: 10.6052/1000-0992-24-025 cstr: 32046.14.1000-0992-24-025
基金项目: 感谢国家自然科学基金 (11932005, 12372081)、深圳市深港合作项目 (SGDX20230116091247009)、深圳市高校稳定支持计划 (GXWD20231130100351002)、深圳市战略性新兴产业发展专项资金扶持计划 (XMHT20220103004)、广东省高校创新团队 (2021KCXTD006) 资助.
详细信息
    作者简介:

    甘磊, 现任哈尔滨工业大学 (深圳) 副教授, 中共党员, 深圳市高层次人才, 主要研究兴趣包括金属疲劳、数据驱动疲劳、结构强化延寿技术, 近年来围绕人工智能驱动的疲劳失效分析取得系列成果, 以第一作者/通讯作者身份发表SCI论文十余篇

    仲政, 教授/博士, 博士生导师. 哈尔滨工业大学 (深圳) 理学院院长, 教育部力学专业教学指导委员会副主任、中国力学学会常务理事、固体力学专业委员会副主任、断裂与疲劳专业组组长、上海市力学学会理事长、上海市复合材料学会副理事长, 曾任同济大学航空航天与力学学院院长. 长期从事固体力学基础理论研究和工程应用, 特别是近年来开展了固体材料的力化学耦合理论研究、固体氧化物燃料电池的多场耦合分析与耐久性研究, 主持国家自然科学基金重点项目、重大项目课题和科技部重点研发课题等重要科研项目, 发表论文200余篇, 出版专著多部

    通讯作者:

    zhongzheng@hit.edu.cn

  • 中图分类号: O346.2

Advances in data-driven models for fatigue life prediction of metallic materials

More Information
  • 摘要: 金属疲劳寿命模型是开展工程结构完整性和可靠性评估的基础. 传统的知识驱动模型关注疲劳机理和数理逻辑, 一般具有明确的物理意义, 并且可高度概括疲劳失效过程. 然而, 随着对结构安全性要求的日益提高以及新兴工程材料的不断涌现, 传统模型在预测能力、应用场景、工程适用性等方面都逐渐显现出局限性. 近年来, 由人工智能赋能的数据驱动模型在金属疲劳寿命研究领域受到了广泛关注, 相关研究成果正逐步应用于解决包括单轴疲劳、多轴疲劳、变幅疲劳在内的各类经典疲劳问题. 数据驱动模型能够在最小化人因误差的情况下, 从多变量作用中解析出对疲劳寿命的最优显\隐式表达, 可揭示传统方法难以发现的失效规律, 已然成为领域内新的研究热点. 本文综述了当前数据驱动模型在金属疲劳寿命预测方面的研究进展, 首先总结了纯数据驱动模型的一般应用流程及其应用现状, 其次归纳了各类知识-数据混合驱动模型的实现方式及应用优势, 最后对未来潜在研究方向及挑战进行了探讨与展望.

     

  • 图  1  四种科学研究范式

    图  2  金属疲劳失效的典型三阶段过程

    图  3  (a) Basquin方程; (b) Manson-Coffin方程

    图  4  拉-扭复合加载下薄壁管件的最大切应力面 (α为最大切应力平面与水平方向间夹角)

    图  5  弹、塑性应变能所对应的循环滞回环面积

    图  6  蠕变-疲劳损伤交互作用区示意图(Hales 1994)

    图  7  长/短裂纹在恒幅加载下的扩展行为(下标A、B、C、L分别表示短裂纹A、B、C及长裂纹L)

    图  8  纯数据驱动模型的一般应用流程

    图  9  纯数据驱动的金属疲劳寿命模型相关研究发表年份统计. 注: 统计文献来自笔者团队调研积累以及一次性线上检索筛选(检索数据库: Web of Science; 关键词: “fatigue life”和“data-driven”或“machine learning”或“neural network”)

    图  10  占比饼状图: (a) 疲劳问题: (b) 数据驱动技术; (c) 优化算法; (d) 数据体量; (e) 性能指标

    图  11  针对纯数据驱动模型所涉及疲劳问题的划分方法

    图  12  针对钢材单轴疲劳寿命预测的级联BPNN结构(Artymiak et al. 1999)

    图  13  PNN模型与指数拟合模型对7020 T7l铝合金裂纹扩展速率预测的比较(Mohanty et al. 2009)

    图  14  增量学习框架下基于BPNN的裂纹扩展预测模型(Ma et al. 2021)

    图  15  以加载路径离散序列为输入特征的LSTM多轴疲劳寿命预测流程(Yang et al. 2021)

    图  16  SVR结合缺陷特征预测激光选区熔化成形Ti6Al4V合金的疲劳寿命(Bao et al. 2021)

    图  17  知识-数据混合驱动的金属疲劳寿命模型相关研究发表年份统计 (文献来源同图9)

    图  18  知识-数据混合驱动的金属疲劳寿命模型分类

    图  19  结合CDM、数值模拟及数据驱动技术的疲劳寿命预测框架(Zhan et al. 2022)

    图  20  结合传统能量模型与RF的粉末高温合金热机疲劳寿命预测流程(Shen et al. 2022)

    图  21  在经典频域法分析框架内嵌入BPNN的变幅疲劳寿命预测流程(Sun et al. 2022a)

    图  22  用于预测球墨铸铁单轴疲劳寿命的子网络联乘型BPNN结构(Jing et al. 2024)

    图  23  用于疲劳寿命预测的BPNN层级链接结构(Liu & Yuan 2023)

    图  24  以Walker平均应力模型及Basquin方程为激活函数的BPPN结构示例(Chen et al. 2023)

    图  25  结合多种临界面损伤参量的BPNN损失函数及网络训练过程(He et al. 2023)

    图  26  依据领域知识限制权重及偏置更新空间的BPNN结构示例(Halamka et al. 2023)

    表  1  常用的模型性能评估指标

    问题类型 指标 公式 备注
    分类任务 准确率ACC $\mathrm{ACC}=\dfrac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}} $ TP: 真正例数
    TN: 真反例数
    FP: 假正例数
    FN: 假反例数
    FPR: 假正率
    TPR: 真正率
    查准率P $\mathrm{P}=\dfrac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}} $
    查全率R $\mathrm{R}=\dfrac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} $
    F1分数 $\mathrm{F}_1=\dfrac{2 \mathrm{TP}}{2 \mathrm{TP}+\mathrm{FP}+\mathrm{FN}} $
    ROC曲线 由FPR和TPR围成的曲线面积
    回归任务 均方误差MSE $\mathrm{MSE}=\dfrac{1}{m} \displaystyle\sum_{i=1}^m\left(f\left(x_i\right)-y_i\right)^2 $ m: 样本数
    $f\left(x_i\right) $: 预测值
    $\overline{f(x)}: f\left(x_i\right) $平均值
    $y_i $: 真实值
    $\overline{y_i}: \quad y_i $平均值
    均方根误差RMSE $\text { RMSE }=\sqrt{\dfrac{1}{m} \displaystyle\sum_{i=1}^m\left(f\left(x_i\right)-y_i\right)^2} $
    平均绝对误差MAE $\mathrm{MAE}=\dfrac{1}{m} \displaystyle\sum_{i=1}^m\left|f\left(x_i\right)-y_i\right| $
    平均绝对百分误差MAPE $\text { MAPE }=\dfrac{100}{m} \displaystyle\sum_{i=1} m\left|\dfrac{y_i-f\left(x_i\right)}{y_i}\right| $
    决定系数R2 $R^2=1-\dfrac{\displaystyle\sum_{i=1}^m\left(f\left(x_i\right)-y_i\right)^2}{\displaystyle\sum_{i=1}^m\left(f\left(x_i\right)-\bar{y}\right)^2} $
    皮尔逊关联系数PCC $\mathrm{PCC}=\dfrac{\displaystyle\sum\nolimits_{i=1}^m\left(f\left(x_i\right)-\overline{f(x)}\right)\left(y_i-\bar{y}\right)}{\sqrt{\displaystyle\sum\nolimits_{i=1}^m\left(f\left(x_i\right)-\overline{f(x)}\right)^2} \cdot \sqrt{\displaystyle\sum\nolimits_{i=1}^m\left(y_i-\bar{y}\right)^2}} $
    分散度指标SI $\mathrm{SI}=\dfrac{1}{m} \displaystyle\sum_{i=1}^m \max \left(\dfrac{f\left(x_i\right)}{y_i}, \dfrac{y_i}{f\left(x_i\right)}\right) $
    下载: 导出CSV

    表  2  三类知识-数据混合驱动模型实现方式及其主要增益效果

    模型类型 知识-数据混合策略 实现方式 示例文献 主要增益
    组合模型 知识组合数据
    驱动流程
    特征筛选 Gan et al. 2022b 提高计算效率
    特征构造 Feng et al. 2023 提高精度
    数据扩增 Zhan et al. 2022 降低数据需求
    数据驱动流程
    组合知识
    输出加工 Shen et al. 2022 提高精度及
    物理相符性
    输出过滤 Karolczuk et al. 2023 提高精度及
    物理相符性
    残差学习 Liu et al. 2022a 提高精度及
    降低数据需求
    数据扩增 Gu et al. 2022 提高精度
    嵌合模型 数据驱动流程嵌入
    知识框架中
    难点建模 Sun et al. 2022a 提高计算效率
    及精度
    知识嵌入数据驱动
    流程中
    主动学习
    融合模型 知识融入数据驱动计算结构中 定制网络结构 Ciampaglia et al. 2023 提高精度及
    物理相符性
    定制激活函数 Chen et al. 2023
    定制损失函数 Salvati et al. 2022
    定制参数更新空间 Chen & Liu 2021
    下载: 导出CSV
  • [1] 董照钦, 段作祥, 何晋瑞. 1985. 应变能-频率分离法及其应用. 航空学报, 5: 461-466 (Dong Z Q, Duan Z X, He J R. 1985. A strain energy frequencu seperation method and its application. Acta Aeronautica Et Astronautica Sinica, 5: 461-466).

    Dong Z Q, Duan Z X, He J R. 1985. A strain energy frequencu seperation method and its application. Acta Aeronautica Et Astronautica Sinica, 5: 461-466.
    [2] 董志波, 王程程, 李承昆, 等. 2024. 复杂载荷、极端环境下焊接结构疲劳寿命预测研究综述. 中国机械工程, 35(5): 829-839 (Dong Z B, Wang C C, Li C K, et al. 2024. Review for research of fatigue life prediction of welded structures under complex loads and extreme environments. Journal of Mechanical Engineering, 35(5): 829-839). doi: 10.3969/j.issn.1004-132X.2024.05.008

    Dong Z B, Wang C C, Li C K, et al. 2024. Review for research of fatigue life prediction of welded structures under complex loads and extreme environments. Journal of Mechanical Engineering, 35(5): 829-839. doi: 10.3969/j.issn.1004-132X.2024.05.008
    [3] 洪友士, 孙成奇, 刘小龙. 2018. 合金材料超高周疲劳的机理与模型综述. 力学进展, 48: 201801 (Hong Y S, Sun C Q, Liu X L. 2018. A review on mechanisms and models for very-high-cycle fatigue of metallic materials. Advances in Mechanics, 48: 201801). doi: 10.6052/1000-0992-17-002

    Hong Y S, Sun C Q, Liu X L. 2018. A review on mechanisms and models for very-high-cycle fatigue of metallic materials. Advances in Mechanics, 48: 201801. doi: 10.6052/1000-0992-17-002
    [4] 胡殿印, 潘锦超, 米栋, 等. 2022. 航空发动机增材制造结构强度、寿命评估与设计: 研究现状及展望. 航空动力学报, 37(10): 2112-2126 (Hu D Y, Pan J C, Mi D, et al. 2022. Strength and lifetime assessment and design for additive manufacturing structures in aero-engine: review and prospects. Journal of Aerospace Power, 37(10): 2112-2126). doi: 10.13224/j.cnki.jasp.20220465

    Hu D Y, Pan J C, Mi D, et al. 2022. Strength and lifetime assessment and design for additive manufacturing structures in aero-engine: review and prospects. Journal of Aerospace Power, 37(10): 2112-2126. doi: 10.13224/j.cnki.jasp.20220465
    [5] 胡绪腾, 宋迎东. 2007. 总应变-应变能区分法. 机械工程学报, 2: 219-224 (Hu X T, Song Y D. 2007. Total strain version of strain energy partitioning. Journal of Mechanical Engineering, 2: 219-224). doi: 10.3321/j.issn:0577-6686.2007.02.038

    Hu X T, Song Y D. 2007. Total strain version of strain energy partitioning. Journal of Mechanical Engineering, 2: 219-224. doi: 10.3321/j.issn:0577-6686.2007.02.038
    [6] 李航. 2019. 统计学习方法. 北京: 清华大学出版社. (Li H. 2019, Statistical learning methods. Beijing: Tsinghua University Press).

    Li H. 2019, Statistical learning methods. Beijing: Tsinghua University Press.
    [7] 郦明, 奥脱·布克斯鲍姆, 哈茨·罗华克. 1987. 结构抗疲劳设计. 北京: 机械工业出版社. (Li M, Buxbaum O, Lowack H. 1987. Structural fatigue resistance design. Beijing: China Machine Press).

    Li M, Buxbaum O, Lowack H. 1987. Structural fatigue resistance design. Beijing: China Machine Press.
    [8] 廉艳平, 王潘丁, 高杰, 等. 2021. 金属增材制造若干关键力学问题研究进展. 力学进展, 51(03): 648-701 (Lian Y P, Wang P D, Gao J, et al. 2021. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review. Advances in Mechanics, 51(03): 648-701).

    Lian Y P, Wang P D, Gao J, et al. 2021. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review. Advances in Mechanics, 51(03): 648-701.
    [9] 廖贞, 杨冰, 秦亚航, 等. 2018. 基于遗传小波神经网络的疲劳短裂纹演变规律研究. 铁道学报, 40(5): 66-72 (Liao Z, Yang B, Qin Y, et al. 2018. Estimation of P-S-N Curve of Metal Materials Based on Bayesian Neural Network. Journal of the China Railway Society, 40(5): 66-72). doi: 10.6052/1000-0992-21-037

    Liao Z, Yang B, Qin Y, et al. 2018. Estimation of P-S-N Curve of Metal Materials Based on Bayesian Neural Network. Journal of the China Railway Society, 40(5): 66-72. doi: 10.6052/1000-0992-21-037
    [10] 刘斌超, 鲁嵩嵩, 曾苇鹏, 等. 2023. 从金属材料疲劳性能的力学描述到飞机结构疲劳寿命评定: 现状与展望. 固体力学学报, 4: 417-457 (Liu B C, Lu S S, Zheng W P, et al. 2023. From mechanical description for metal fatigue properties to service life evaluation of aircraft structural components: Status and challenges. Chinese Journal of Solid Mechanics, 4: 417-457).

    Liu B C, Lu S S, Zheng W P, et al. 2023. From mechanical description for metal fatigue properties to service life evaluation of aircraft structural components: Status and challenges. Chinese Journal of Solid Mechanics, 4: 417-457.
    [11] 刘源, 魏世忠. 2022. 数据驱动的钢铁耐磨材料性能预测研究综述. 机械工程学报, 58(10): 31-50 (Liu Y, Wei S Z. 2022. Review on data-driven method for property prediction of iron and steel wear-resistant materials. Journal of Mechanical Engineering, 58(10): 31-50). doi: 10.3901/JME.2022.10.031

    Liu Y, Wei S Z. 2022. Review on data-driven method for property prediction of iron and steel wear-resistant materials. Journal of Mechanical Engineering, 58(10): 31-50. doi: 10.3901/JME.2022.10.031
    [12] 秦建兵. 2019. 金属材料疲劳短裂纹扩展研究综述. 航空工程进展, 10(2): 247-254, 269 (Qin J B. 2019. A review of studies on short fatigue crack propagation in metallic materials. Advances in Aeronautical Science and Engineering, 10(2): 247-254, 269).

    Qin J B. 2019. A review of studies on short fatigue crack propagation in metallic materials. Advances in Aeronautical Science and Engineering, 10(2): 247-254, 269.
    [13] 施惠基, 马显锋, 于涛. 2010. 高温结构材料的蠕变和疲劳研究的一些新进展. 固体力学学报, 31(06): 696-715 (Shi H J, Ma X F, Yu T. 2010. Some new progresses on the research of creep and fatigue behaviors of high temperature structural materials. Chinese Journal of Solid Mechanics, 31(06): 696-715). doi: CNKI:SUN:GTLX.0.2010-06-011

    Shi H J, Ma X F, Yu T. 2010. Some new progresses on the research of creep and fatigue behaviors of high temperature structural materials. Chinese Journal of Solid Mechanics, 31(06): 696-715. doi: CNKI:SUN:GTLX.0.2010-06-011
    [14] 王润梓. 2019. 基于能量密度耗散准则的蠕变—疲劳寿命预测模型及应用. 华东理工大学博士论文. (Wang R-Z. 2019. A creep-fatigue life prediction model based on strain energy density exhaustion criterion and its application on aero-engine turbine. East China University Of Science and Technology).

    Wang R-Z. 2019. A creep-fatigue life prediction model based on strain energy density exhaustion criterion and its application on aero-engine turbine. East China University Of Science and Technology.
    [15] 王润梓, 廖鼎, 张显程, 等. 2021. 高温结构蠕变疲劳寿命设计方法: 从材料到结构. 机械工程学报, 57(16): 66-86 (Wang R Z, Liao D, Zhang X C, et al. 2021. Creep-fatigue life design methods in high-temperature structures: From materials to components. Journal of Mechanical Engineering, 57(16): 66-86). doi: 10.3901/JME.2021.16.066

    Wang R Z, Liao D, Zhang X C, et al. 2021. Creep-fatigue life design methods in high-temperature structures: From materials to components. Journal of Mechanical Engineering, 57(16): 66-86. doi: 10.3901/JME.2021.16.066
    [16] 吴富民. 1985. 结构疲劳强度. 西安: 西北工业大学出版社 (WU F M. 1985. Fatigue strength of structure. Xi’an: Northwestern Polytechnical University Press).

    WU F M. 1985. Fatigue strength of structure. Xi’an: Northwestern Polytechnical University Press.
    [17] 吴昊, 仲政. 2016. 金属材料多轴非比例低周疲劳寿命预测概述. 力学季刊, 32(2): 201-213 (Wu H, Zhong Z. 2016. Low cycle fatigue life prediction of metallic materials under multi-axial nonproportional loading: An overview. Chinese Quarterly of Mechanic, 32(2): 201-213). doi: 10.15959/j.cnki.0254-0053.2016.02.001

    Wu H, Zhong Z. 2016. Low cycle fatigue life prediction of metallic materials under multi-axial nonproportional loading: An overview. Chinese Quarterly of Mechanic, 32(2): 201-213. doi: 10.15959/j.cnki.0254-0053.2016.02.001
    [18] 吴圣川, 李存海, 张文, 等. 2019. 金属材料疲劳裂纹扩展机制及模型的研究进展. 固体力学学报, 40(6): 489-538 (Wu S C, Li C H, Zhang W, et al. 2019. Recent progress on mechanisms and models of fatigue crack growth for metallic materials. Chinese Journal of Solid Mechanics, 40(6): 489-538). doi: 10.19636/j.cnki.cjsm42-1250/o3.2019.035

    Wu S C, Li C H, Zhang W, et al. 2019. Recent progress on mechanisms and models of fatigue crack growth for metallic materials. Chinese Journal of Solid Mechanics, 40(6): 489-538. doi: 10.19636/j.cnki.cjsm42-1250/o3.2019.035
    [19] 许金泉. 2017. 疲劳力学. 北京: 科学出版社 (Xu J Q. 2017. Mechanics of fatigue. Beijing: Science Press).

    Xu J Q. 2017. Mechanics of fatigue. Beijing: Science Press.
    [20] 轩福贞, 朱明亮, 王国彪, 等. 2021. 结构疲劳百年研究的回顾与展望. 机械工程学报, 57(6): 26-51 (Xuan F Z, Zhu M L, Wang G B, et al. 2021. Retrospect and prospect on century-long research of structural fatigue. Journal of Mechanical Engineering, 57(6): 26-51). doi: 10.3901/JME.2021.06.026

    Xuan F Z, Zhu M L, Wang G B, et al. 2021. Retrospect and prospect on century-long research of structural fatigue. Journal of Mechanical Engineering, 57(6): 26-51. doi: 10.3901/JME.2021.06.026
    [21] 杨强, 孟松鹤, 仲政, 等. 2020. 力学研究中“大数据”的启示、应用与挑战. 力学进展, 50: 406-449 (Yang Q, Meng S H, Zhong Z, et al. 2020. Big data in mechanical research: Potentials, applications and challenges. Advances in Mechanics, 50: 406-449). doi: 10.6052/1000-0992-19-002

    Yang Q, Meng S H, Zhong Z, et al. 2020. Big data in mechanical research: Potentials, applications and challenges. Advances in Mechanics, 50: 406-449. doi: 10.6052/1000-0992-19-002
    [22] 杨旭锋, 刘泽清, 张懿. 2023. 基于贝叶斯神经网络的金属材料P-S-N曲线估计. 华南理工大学学报(自然科学版), 51(11): 82-92 (Yang X F, Liu Z Q, Zhang Y. 2023. Estimation of P-S-N curve of metal materials based on bayesian neural network. Journal of South China University of Technology (Natural Science Edition), 51(11): 82-92). doi: 10.12141/j.issn.1000-565X.220649

    Yang X F, Liu Z Q, Zhang Y. 2023. Estimation of P-S-N curve of metal materials based on bayesian neural network. Journal of South China University of Technology (Natural Science Edition), 51(11): 82-92. doi: 10.12141/j.issn.1000-565X.220649
    [23] 杨晓光, 谭龙, 郝文琦, 等. 2023. 数据驱动的高温结构强度与寿命评估: 进展与挑战. 推进技术, 44(05): 8-25 (Yang X G, Tan L, Hao W Q, et al. 2023. Data-driven structural strength and life assessment of high temperature structure: Progresses and challenges. Journal of Propulsion Technology, 44(05): 8-25).

    Yang X G, Tan L, Hao W Q, et al. 2023. Data-driven structural strength and life assessment of high temperature structure: Progresses and challenges. Journal of Propulsion Technology, 44(05): 8-25.
    [24] Zhang T. 2022. An introduction to materials informatics(I), Beijing: Science Press.

    Zhang T. 2022. An introduction to materials informatics(I), Beijing: Science Press.
    [25] 张伟伟, 王旭, 寇家庆. 2023. 面向流体力学的多范式融合研究展望. 力学进展, 53(2): 433-467 (Zhang W W, Wang X, Kou J Q. 2023. Prospects of multi-paradigm fusion methods for fluid mechanics research. Advances in Mechanics, 53(2): 433-467). doi: 10.6052/1000-0992-22-050

    Zhang W W, Wang X, Kou J Q. 2023. Prospects of multi-paradigm fusion methods for fluid mechanics research. Advances in Mechanics, 53(2): 433-467. doi: 10.6052/1000-0992-22-050
    [26] 赵少汴. 2000. 常用累积损伤理论疲劳寿命估算精度的试验研究. 机械强度, 22(3): 206-209 (Zhao S B. 2000. Study on the accuracy of fatigue life predictions by the generally used damage accumlation throyr. Journal of Mechanical Strength, 22(3): 206-209). doi: 10.3321/j.issn:1001-9669.2000.03.014

    Zhao S B. 2000. Study on the accuracy of fatigue life predictions by the generally used damage accumlation throyr. Journal of Mechanical Strength, 22(3): 206-209. doi: 10.3321/j.issn:1001-9669.2000.03.014
    [27] 郑修麟, 王泓, 鄢君辉, 等. 2013. 材料疲劳理论与工程应用. 北京: 科学出版社. (Zhen X L, Wang H, Yan J H, et al. 2013. Theory of material fatigue and engineering application. Beijing: Science Press).

    Zhen X L, Wang H, Yan J H, et al. 2013. Theory of material fatigue and engineering application. Beijing: Science Press
    [28] 朱顺鹏. 2011. 高温复杂结构的混合概率故障物理建模与疲劳寿命预测. 电子科技大学博士论文. (Zhu S P. 2011. Research on hybrid probabilistic physics of failure modeling and fatigue life estimation of high-temperature structures. University of Electronic Science and Technology of China).

    Zhu S P. 2011. Research on hybrid probabilistic physics of failure modeling and fatigue life estimation of high-temperature structures. University of Electronic Science and Technology of China.
    [29] Acharya R, Caputo A N, Neu R W. 2023. Predicting creep-fatigue and thermomechanical fatigue life of Ni-base superalloys using a probabilistic physics-guided neural network. Fatigue & Fracture of Engineering Materials & Structures, 46(4): 1554-1571. doi: 10.1111/ffe.13948
    [30] Antunes F V, Ferreira M S C, Branco R, et al. 2019. Fatigue crack growth versus plastic CTOD in the 304L stainless steel. Engineering Fracture Mechanics, 214: 487-503. doi: 10.1016/j.engfracmech.2019.04.013
    [31] Aoyagi K, Wang H, Sudo H, et al. 2019. Simple method to construct process maps for additive manufacturing using a support vector machine. Additive Manufacturing, 27: 353-362. doi: 10.1016/j.addma.2019.03.013
    [32] Artymiak P, Bukowski L, Feliks J, et al. 1999. Determination of S-N curves with the application of artificial neural networks. Fatigue & Fracture of Engineering Materials & Structures, 22(8): 723-728. doi: 10.1046/j.1460-2695.1999.t01-1-00198.x
    [33] Awd M, Awd M, Münstermann S, Walther F. 2022. Effect of microstructural heterogeneity on fatigue strength predicted by reinforcement machine learning. Fatigue & Fracture of Engineering Materials & Structures, 45(11): 3267-3287. doi: 10.1111/ffe.13816
    [34] Bao H, Wu S, Wu Z, et al. 2021. A machine-learning fatigue life prediction approach of additively manufactured metals. Engineering Fracture Mechanics, 242: 107508. doi: 10.1016/j.engfracmech.2020.107508
    [35] Barat K, Sivaprasad S, Kar S K, et al. 2020. A novel rate-based methodology for creep fatigue life estimation of superalloys. International Journal of Pressure Vessels and Piping, 182: 104064. doi: 10.1016/j.ijpvp.2020.104064
    [36] Bartošák M. 2022. Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading. International Journal of Fatigue, 163: 107067. doi: 10.1016/j.ijfatigue.2022.107067
    [37] Bergstra J, Bardenet R, Bengio Y, et al. 2011. Algorithms for hyper-parameter optimization. Advances in Neural Information Processing Systems, 24: 2546-2554.
    [38] Borodii M V, Strizhalo V A. 2000. Analysis of the experimental data on a low cycle fatigue under nonproportional straining. International Journal of Fatigue, 22: 275-282. doi: 10.1016/S0142-1123(00)00005-0
    [39] Braun M, Kellner L. 2022. Comparison of machine learning and stress concentration factors-based fatigue failure prediction in small-scale butt-welded joints. Fatigue & Fracture of Engineering Materials & Structures, 45(11): 3403-3417. doi: 10.1111/ffe.13800
    [40] Brito Oliveira G A, Freire Júnior R C S, Conte Mendes Veloso L A, et al. 2022. A hybrid ANN-multiaxial fatigue nonlocal model to estimate fretting fatigue life for aeronautical Al alloys. International Journal of Fatigue, 162: 107011. doi: 10.1016/j.ijfatigue.2022.107011
    [41] Bucar T, Nagode M, Fajdiga M. 2006. A neural network approach to describing the scatter of S–N curves. International Journal of Fatigue, 28(4): 311-323. doi: 10.1016/j.ijfatigue.2005.08.002
    [42] Chaboche J L, Lesne P M. 1988. A non-linear continuous fatigue damage model. Fatigue & Fracture of Engineering Materials & Structures, 11(1): 1-17.
    [43] Chen D, Li Y, Liu K, et al. 2023. A physics-informed neural network approach to fatigue life prediction using small quantity of samples. International Journal of Fatigue, 166: 107270. doi: 10.1016/j.ijfatigue.2022.107270
    [44] Chen J, Liu Y. 2021. Fatigue property prediction of additively manufactured Ti-6Al-4V using probabilistic physics-guided learning. Additive Manufacturing, 39: 101876. doi: 10.1016/j.addma.2021.101876
    [45] Chen J, Liu Y. 2022. Fatigue modeling using neural networks: A comprehensive review. Fatigue & Fracture of Engineering Materials & Structures, 45(4): 945-979. doi: 10.1111/ffe.13640
    [46] Chen X, Song J, Kim K S. 2006. Low cycle fatigue life prediction of 63Sn–37Pb solder under proportional and non-proportional loading. International Journal of Fatigue, 28(7): 757-766. doi: 10.1016/j.ijfatigue.2005.08.006
    [47] Ciampaglia A, Tridello A, Paolino D S, et al. 2023. Data driven method for predicting the effect of process parameters on the fatigue response of additive manufactured AlSi10Mg parts. International Journal of Fatigue, 170: 107500. doi: 10.1016/j.ijfatigue.2023.107500
    [48] Conduit B D, Illston T, Baker S, et al. 2019. Probabilistic neural network identification of an alloy for direct laser deposition. Materials & Design, 168: 107644. doi: 10.1016/j.matdes.2019.107644
    [49] Corten H T, Dolan T J. 1956. Cumulative fatigue damage. Proceedings of the International Conference on Fatigue of Metals. Institution of Mechanical Engineering and American Society of Mechanical Engineers , 235-246.
    [50] Cui C, Chen A, Ma R. 2020. An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment. International Journal of Fatigue, 135: 105540. doi: 10.1016/j.ijfatigue.2020.105540
    [51] Deng Q-Y, Zhu S-P, Niu X, et al. 2023. Load path sensitivity and multiaxial fatigue life prediction of metals under non-proportional loadings. International Journal of Fatigue, 166: 107281. doi: 10.1016/j.ijfatigue.2022.107281
    [52] Durodola J F, Li N, Ramachandra S, et al. 2017. A pattern recognition artificial neural network method for random fatigue loading life prediction. International Journal of Fatigue, 99: 55-67. doi: 10.1016/j.ijfatigue.2017.02.003
    [53] El Haddad M H, Topper T H, Smith K N. 1979. Prediction of non-propagating cracks. Engineering Fracture Mechanics, 11(3): 573-584. doi: 10.1016/0013-7944(79)90081-X
    [54] Elber W. 1970. Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2(1): 37-45. doi: 10.1016/0013-7944(70)90028-7
    [55] Ellyin F, Golos K. 1988. Multiaxial fatigue damage criterion. Journal of Engineering Materials & Technology, 110(1): 63-68.
    [56] Fan Y S, Yang X G, Shi D Q, et al. 2021. Quantitative mapping of service process-microstructural degradation property deterioration for a Ni-based superalloy based on chord length distribution imaging process. Materials & Design, 203: 109561. doi: 10.1016/j.matdes.2021.109561
    [57] Fatemi A, Socie D F. 1988. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue and Fracture of Engineering Materials and Structures, 11(3): 149-165. doi: 10.1111/j.1460-2695.1988.tb01169.x
    [58] Fatemi A, Yang L. 1998. Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials. International Journal of Fatigue, 20(1): 9-34. doi: 10.1016/S0142-1123(97)00081-9
    [59] Feng C, Su M, Xu L, et al. 2023. Estimation of fatigue life of welded structures incorporating importance analysis of influence factors: A data-driven approach. Engineering Fracture Mechanics, 281: 109103. doi: 10.1016/j.engfracmech.2023.109103
    [60] Feng E, Wang X, Jiang C. 2022. Multiaxial fatigue evaluation of type 316L stainless steel based on critical plane and energy dissipation. Fatigue and Fracture of Engineering Materials and Structures, 45(12): 3486-3499. doi: 10.1111/ffe.13822
    [61] Findley W N. 1959. Fatigue of metals under combinations of stresses. Journal of Engineering Materials & Technology ASME, 79: 1337-1348. doi: 10.1115/1.4013320
    [62] Forman R G. 1972. Study of fatigue crack initiation from flaws using fracture mechanics theory. Engineering Fracture Mechanics, 4(2): 333-345. doi: 10.1016/0013-7944(72)90048-3
    [63] Foti P, Razavi N, Fatemi A, et al. 2023. Multiaxial fatigue of additively manufactured metallic components: A review of the failure mechanisms and fatigue life prediction methodologies. Progress in Materials Science, 137: 101126. doi: 10.1016/j.pmatsci.2023.101126
    [64] Freudenthal A M, Heller R A. 1959. On stress interaction in fatigue and a cumulative damage rule. Journal of the Aerospace Sciences, 26(7): 431-442. doi: 10.2514/8.8131
    [65] Fujii H, Mackay D J C, Bhadeshia H K D H. 1996. Bayesian neural network analysis of fatigue crack growth rate in nickel base superalloys. ISIJ International, 36(11): 1373-1382. doi: 10.2355/isijinternational.36.1373
    [66] Gan L, Wu H, Zhong Z. 2022a. Fatigue life prediction in presence of mean stresses using domain knowledge-integrated ensemble of extreme learning machines. Fatigue & Fracture of Engineering Materials & Structures, 45(9): 2748-2766. doi: 10.1111/ffe.13792
    [67] Gan L, Wu H, Zhong Z. 2022b. Integration of symbolic regression and domain knowledge for interpretable modeling of remaining fatigue life under multistep loading. International Journal of Fatigue, 161: 106889. doi: 10.1016/j.ijfatigue.2022.106889
    [68] Gan L, Wu H, Zhong Z. 2022c. On the use of data-driven machine learning for remaining life estimation of metallic materials based on Ye-Wang damage theory. International Journal of Fatigue, 156: 106666. doi: 10.1016/j.ijfatigue.2021.106666
    [69] Gan L, Wu H, Zhong Z. 2023. On the integration of domain knowledge and branching neural network for fatigue life prediction with small samples. International Journal of Fatigue, 172: 107648. doi: 10.1016/j.ijfatigue.2023.107648
    [70] Gan L, Zhao X, Wu H, et al. 2021. Estimation of remaining fatigue life under two-step loading based on kernel-extreme learning machine. International Journal of Fatigue, 148: 106190. doi: 10.1016/j.ijfatigue.2021.106190
    [71] Garud Y S. 1981. A new approach to the evaluation of fatigue under multiaxial loadings. Journal of Engineering Materials & Technology Transactions ASME, 103(2): 118-125. doi: 10.1115/1.3224982
    [72] Genel K. 2004. Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests. International Journal of Fatigue, 26(10): 1027-1035. doi: 10.1016/j.ijfatigue.2004.03.009
    [73] Gobert C, Reutzel E W, Petrich J, et al. 2018. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing, 21: 517-528. doi: 10.1016/j.addma.2018.04.005
    [74] Gong J-G, Xuan F-Z. 2017. Notch behavior of components under the stress-controlled creep–fatigue condition: Weakening or strengthening. Journal of Pressure Vessel Technology, 139(1): 011407-011415. doi: 10.1115/1.4033731
    [75] Gu H-H, Wang R-Z, Zhu S-P, et al. 2022. Machine learning assisted probabilistic creep-fatigue damage assessment. International Journal of Fatigue, 156: 106677. doi: 10.1016/j.ijfatigue.2021.106677
    [76] Gu H-H, Zhang X-C, Zhang K, et al. 2024. A novel fatigue and creep-fatigue life prediction model by combining data-driven approach with domain knowledge. International Journal of Fatigue, 186: 108402. doi: 10.1016/j.ijfatigue.2024.108402
    [77] Halamka J, Bartošák M, Španiel M. 2023. Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading. Engineering Fracture Mechanics, 289: 109351. doi: 10.1016/j.engfracmech.2023.109351
    [78] Hales R. 1994. The role of cavity growth mechanisms in determining creep-rupture under multiaxial stresses. Fatigue & Fracture of Engineering Materials & Structures, 17(5): 579-591. doi: 10.1111/j.1460-2695.1994.tb00257.x
    [79] He G, Zhao Y, Yan C. 2022. Application of tabular data synthesis using generative adversarial networks on machine learning-based multiaxial fatigue life prediction. International Journal of Pressure Vessels and Piping, 199: 104779. doi: 10.1016/j.ijpvp.2022.104779
    [80] He G, Zhao Y, Yan C. 2023. MFLP-PINN: A physics-informed neural network for multiaxial fatigue life prediction. European Journal of Mechanics-A/Solids, 98: 104889. doi: 10.1016/j.euromechsol.2022.104889
    [81] Himmiche S, Mortazavi S N S, Ince A. 2021. Comparative study of neural network–based models for fatigue crack growth predictions of short cracks. Journal of Peridynamics and Nonlocal Modeling, 4(4): 501-526.
    [82] Hobson P D. 1982. The formulation of a crack growth equation for short cracks. Fatigue & Fracture of Engineering Materials & Structures, 5: 323-327. doi: 10.1111/j.1460-2695.1982.tb01241.x
    [83] Hou Y, Kench S, Wauters T, et al. 2024. Numerical framework for predicting fatigue scatter in additively manufactured parts. International Journal of Mechanical Sciences, 281: 109562. doi: 10.1016/j.ijmecsci.2024.109562
    [84] Hu X, Chu L, Pei J, et al. 2021. Model complexity of deep learning: A survey. Knowledge and Information Systems, 63(10): 2585-2619. doi: 10.1007/s10115-021-01605-0
    [85] Itoh T, Sakane M, Ohnami M. 1995. Nonproportional low cycle fatigue criterion for type 304 stainless steel. Journal of Engineering Materials and Technology, 117(3): 285-292. doi: 10.1115/1.2804541
    [86] Japp S. 2014, Fatigue of structures and materials. Netherlands: Kluwer academic publisher.
    [87] Jimenez-Martinez M, Alfaro-Ponce M. 2019. Fatigue damage effect approach by artificial neural network. International Journal of Fatigue, 124: 42-47. doi: 10.1016/j.ijfatigue.2019.02.043
    [88] Jing G, Ma T, Wang Z, et al. 2024. Physical hierarchical neural network for low cycle fatigue life prediction of compacted graphite cast iron based on small data. International Journal of Fatigue, 188: 108509. doi: 10.1016/j.ijfatigue.2024.108509
    [89] Kamal M, Rahman M M. 2018. Advances in fatigue life modeling: A review. Renewable and Sustainable Energy Reviews, 82: 940-949. doi: 10.1016/j.rser.2017.09.047
    [90] Kanazawa K, Miller K J, Brown M W. 1979. Cyclic deformation of 1% Cr–Mo–V steel under out-of-phase loads. Fatigue of Engineering Materials and Structures, 2(2): 217-228. doi: 10.1111/j.1460-2695.1979.tb01357.x
    [91] Kandil F A, Brown M W, Miller K J. 1982. “Biaxial low cycle fatigue of 316 stainless steel at elevated temperatures”. Book 280, The metals Society, London: 203-210.
    [92] Kankanamge U M H U, Reiner J, Ma X, et al. 2022. Machine learning guided alloy design of high-temperature NiTiHf shape memory alloys. Journal of Materials Science, 57(41): 19447-19465. doi: 10.1007/s10853-022-07793-6
    [93] Karniadakis G E, Kevrekidis I G, Lu L, et al. 2021. Physics-informed machine learning. Nature Reviews Physics, 3(6): 422-440. doi: 10.1038/s42254-021-00314-5
    [94] Karolczuk A, Liu Y, Kluger K, et al. 2023. Physics-constrained Gaussian process for life prediction under in-phase multiaxial cyclic loading with superposed static components. International Journal of Fatigue, 175: 107776. doi: 10.1016/j.ijfatigue.2023.107776
    [95] Karpatne A, Atluri G, Faghmous J H, et al. 2017. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering, 29(10): 2318-2331. doi: 10.1109/TKDE.2017.2720168
    [96] Khanzadeh M, Chowdhury S, Tschopp M A, et al. 2019. In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transactions, 51(5): 437-455. doi: 10.1080/24725854.2017.1417656
    [97] Kiran R, Khandelwal K. 2015. A micromechanical cyclic void growth model for ultra-low cycle fatigue. International Journal of Fatigue, 70: 24-37. doi: 10.1016/j.ijfatigue.2014.08.010
    [98] Koza J R. 1994. Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4(2): 87-112.
    [99] Kwofie S, Rahbar N. 2013. A fatigue driving stress approach to damage and life prediction under variable amplitude loading. International Journal of Damage Mechanics, 22(3): 393-404. doi: 10.1177/1056789512449638
    [100] Lantegine J, Nguyen-Duy P. 1983. Energy balance approach to low-cycle fatigue. International Journal of Fracture, 23(4): 147-151. doi: 10.1007/BF00020703
    [101] Li H, Tian Z, Zheng J, et al. 2023. A defect-based fatigue life estimation method for laser additive manufactured Ti-6Al-4V alloy at elevated temperature in very high cycle regime. International Journal of Fatigue, 167: 107375. doi: 10.1016/j.ijfatigue.2022.107375
    [102] Li Z, Zhao T, Zhang J, et al. 2024. Fusing image and physical data for fatigue life prediction of nickel-based single crystal superalloys. Engineering Failure Analysis, 162: 108343. doi: 10.1016/j.engfailanal.2024.108343
    [103] Liang Z, Wang X, Cui Y, et al. 2023. A new data-driven probabilistic fatigue life prediction framework informed by experiments and multiscale simulation. International Journal of Fatigue, 174: 107731. doi: 10.1016/j.ijfatigue.2023.107731
    [104] Liao D, Zhu S P, Correia J A F O, et al. 2020. Recent advances on notch effects in metal fatigue: A review. Fatigue & Fracture of Engineering Materials & Structures, 43(4): 637-659. doi: 10.1111/ffe.13195
    [105] Liu S, Shi W, Zhan Z, et al. 2022a. On the development of error-trained BP-ANN technique with CDM model for the HCF life prediction of aluminum alloy. International Journal of Fatigue, 160: 106836. doi: 10.1016/j.ijfatigue.2022.106836
    [106] Liu X, Hu D, Wang R, et al. 2022b. Calibration and validation of fatigue lifetime model in complex structures based on multi-level data. International Journal of Fatigue, 159: 106783. doi: 10.1016/j.ijfatigue.2022.106783
    [107] Liu Y, Yuan H. 2023. A hierarchical mechanism-informed neural network approach for assessing fretting fatigue of dovetail joints. International Journal of Fatigue, 168: 107453. doi: 10.1016/j.ijfatigue.2022.107453
    [108] Lotfi B, Beiss P. 2013. Application of neural networking for fatigue limit prediction of powder metallurgy steel parts. Materials & Design, 50: 440-445. doi: 10.1016/j.matdes.2013.03.002
    [109] Ma X, He X, Tu Z C. 2021. Prediction of fatigue–crack growth with neural network-based increment learning scheme. Engineering Fracture Mechanics, 241: 107402. doi: 10.1016/j.engfracmech.2020.107402
    [110] Manson S S. 1953. Behavior of materials under conditions of thermal stress, heat transfer symposium. Engineering Research Institute, University of Michigan: Ann Arbor: 9–15.
    [111] Mao J-X, Xian Z-F, Wang X, et al. 2025. Fatigue life prediction of cold expansion hole using physics-enhanced data-driven method. International Journal of Fatigue, 190: 108634. doi: 10.1016/j.ijfatigue.2024.108634
    [112] Marco S M, Starkey W L. 1954. A concept of fatigue damage. Transactions of the American Society of Mechanical Engineers, 76(4): 627-632. doi: 10.1115/1.4014922
    [113] Mei J, Dong P. 2017. An equivalent stress parameter for multi-axial fatigue evaluation of welded components including non-proportional loading effects. International Journal of Fatigue, 101: 297-311. doi: 10.1016/j.ijfatigue.2017.01.006
    [114] Miller K J. 1987. The behaviour of short fatigue cracks and their initiation part II-A general summary. Fatigue & Fracture of Engineering Materials & Structures, 10(2): 93-113. doi: 10.1111/j.1460-2695.1987.tb01153.x
    [115] Mohanty J R, Parhi D R K, Ray P K, et al. 2009. Prediction of residual fatigue life under interspersed mixed-mode (I and II) overloads by artificial neural network. Fatigue & Fracture of Engineering Materials & Structures, 32(12): 1020-1031. doi: 10.1111/j.1460-2695.2009.01407.x
    [116] Mortazavi S N S, Ince A. 2023. Artificial neural networks-based J-integral prediction for cracked bodies under elasto-plastic deformation state–monotonic loading. International Journal of Fatigue, 167: 107311. doi: 10.1016/j.ijfatigue.2022.107311
    [117] Murakami Y, Endo M. 2022. The reality of the concept of fatigue damage in multiple step amplitude loadings: Reason for unsuccessful results of existing damage counting models. International Journal of Fatigue, 154: 106529. doi: 10.1016/j.ijfatigue.2021.106529
    [118] Narayanan U, Unnikrishnan A, Paul V, et al. 2017. A survey on various supervised classification algorithms. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp. 2118-2124.
    [119] Navarro A, De Los Rios E R. 1987. A model for short fatigue crack propagation with an interpretation of the short-long crack transition. Fatigue & Fracture of Engineering Materials & Structures, 10(2): 169-186. doi: 10.1111/j.1460-2695.1987.tb01158.x
    [120] Niu X, He C, Zhu S-P, et al. 2024. Defect sensitivity and fatigue design: Deterministic and probabilistic aspects in additively manufactured metallic materials. Progress in Materials Science, 144: 101290. doi: 10.1016/j.pmatsci.2024.101290
    [121] Nowell D, Nowell S C. 2019. A comparison of recent models for fatigue crack tip deformation. Theoretical and Applied Fracture Mechanics, 103: 102299. doi: 10.1016/j.tafmec.2019.102299
    [122] Ostergren W J A. 1976. Damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue. Journal of Testing and Evaluation, 4(5): 327-339. doi: 10.1520/JTE10520J
    [123] Pałczyński K, Skibicki D, Pejkowski Ł, et al. 2022. Application of machine learning methods in multiaxial fatigue life prediction. Fatigue & Fracture of Engineering Materials & Structures, 46(2): 416-432.
    [124] Pan X, Liu J, Li Y, et al. 2024. Fatigue behavior analysis and life evaluation method of building steel under the influence of multiple factors. Engineering Fracture Mechanics, 303: 110116. doi: 10.1016/j.engfracmech.2024.110116
    [125] Paris P, Erdogan F. 1963. A critical analysis of crack propagation laws. Journal of Basic Engineering, 85: 528-534. doi: 10.1115/1.3656900
    [126] Pei X, Cao Y, Gu T, et al. 2024. Generalizing multiaxial vibration fatigue criteria in the frequency domain: A data-driven approach. International Journal of Fatigue, 186: 108390. doi: 10.1016/j.ijfatigue.2024.108390
    [127] Peng X, Wu S C, Qian W J, et al. 2022. The potency of defects on fatigue of additively manufactured metals. International Journal of Mechanical Sciences, 221: 107185. doi: 10.1016/j.ijmecsci.2022.107185
    [128] Pilania G. 2021. Machine learning in materials science: From explainable predictions to autonomous design. Computational Materials Science, 193: 110360. doi: 10.1016/j.commatsci.2021.110360
    [129] Plets J, Bouckaert Q, Ahmed B, et al. 2024. Neural network based fatigue lifetime prediction of metals subjected to block loading. International Journal of Fatigue, 183: 108283. doi: 10.1016/j.ijfatigue.2024.108283
    [130] Qian H, Huang Z, Xu Y, et al. 2023. Very high cycle fatigue life prediction of Ti60 alloy based on machine learning with data enhancement. Engineering Fracture Mechanics, 289: 109431. doi: 10.1016/j.engfracmech.2023.109431
    [131] Raissi M, Perdikaris P, Karniadakis G E. 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [132] Ramachandra S, Durodola J F, Fellows N A, et al. 2019. Experimental validation of an ANN model for random loading fatigue analysis. International Journal of Fatigue, 126: 112-121. doi: 10.1016/j.ijfatigue.2019.04.028
    [133] Rovinelli A, Sangid M D, Proudhon H, et al. 2018. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. NPJ Computational Materials, 4(35): 1-10. doi: 10.1038/s41524-018-0094-7
    [134] Sadananda K, Nani Babu M, Vasudevan A K. 2019. A review of fatigue crack growth resistance in the short crack growth regime. Materials Science and Engineering: A, 754 : 674-701.
    [135] Sakai T. 2023. Historical review and future prospect for researches on very high cycle fatigue of metallic materials. Fatigue & Fracture of Engineering Materials & Structures, 46(4): 1217-1255. doi: 10.1111/ffe.13885
    [136] Salvati E, Tognan A, Laurenti L, et al. 2022. A defect-based physics-informed machine learning framework for fatigue finite life prediction in additive manufacturing. Materials & Design, 222: 111089. doi: 10.1016/j.matdes.2022.111089
    [137] Sanaei N, Fatemi A. 2021. Defect-based fatigue life prediction of L-PBF additive manufactured metals. Engineering Fracture Mechanics, 244: 107541. doi: 10.1016/j.engfracmech.2021.107541
    [138] Sawant V, Deshmukh R, Awati C. 2023. Machine learning techniques for prediction of capacitance and remaining useful life of supercapacitors: A comprehensive review. Journal of Energy Chemistry, 77: 438-451. doi: 10.1016/j.jechem.2022.11.012
    [139] Shen J, Hu X, Mi D, et al. 2022. Thermomechanical fatigue behavior and lifetime modeling of powder metallurgy superalloy considering phase angle effect. International Journal of Fatigue, 164: 107164. doi: 10.1016/j.ijfatigue.2022.107164
    [140] Shen Z, Lv G, Fu D, et al. 2023. A machine learning study on the fatigue crack path of short crack on an α titanium alloy. Philosophical Transactions of the Royal Society A, 381 (2260): 20220391.
    [141] Shyam A, Allison J, Jones J. 2005. A small fatigue crack growth relationship and its application to cast aluminum. Acta Materialia, 53(5): 1499-1509. doi: 10.1016/j.actamat.2004.12.004
    [142] Skelton R P. 2013. The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components. Materials at High Temperatures, 30(3): 183-201. doi: 10.3184/096034013X13757890932442
    [143] Socie D F. 1987. Multiaxial fatigue damage models. Journal of Engineering Materials and Technology, 109(4): 283-298. doi: 10.1115/1.3225980
    [144] Srinivasan V. 2003. Low cycle fatigue and creep–fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach. International Journal of Fatigue, 25(12): 1327-1338. doi: 10.1016/S0142-1123(03)00064-1
    [145] Subramanyan S. 1976. A cumulative damage rule based on the knee point of the S-N curve. Journal of Engineering Materials & Technology ASME, 98(4): 316-321. doi: 10.1115/1.3443383
    [146] Sun H, Qiu Y, Li J. 2022a. A novel artificial neural network model for wide-band random fatigue life prediction. International Journal of Fatigue, 157: 106701. doi: 10.1016/j.ijfatigue.2021.106701
    [147] Sun X, Zhou K, Shi S, et al. 2022b. A new cyclical generative adversarial network-based data augmentation method for multiaxial fatigue life prediction. International Journal of Fatigue, 162: 106996. doi: 10.1016/j.ijfatigue.2022.106996
    [148] Sun X, Zhou T, Song K, et al. 2023. An image recognition based multiaxial low-cycle fatigue life prediction method with CNN model. International Journal of Fatigue, 167: 107324. doi: 10.1016/j.ijfatigue.2022.107324
    [149] Tanaka K, Nakai Y, Yamashita M. 1981. Fatigue growth threshold of small cracks. International Journal of Fracture, 17(5): 519-533. doi: 10.1007/BF00033345
    [150] Tian Q, Xie X, Li S. 2021. A model for ultra-low cycle fatigue damage prediction of structural steel. Journal of Constructional Steel Research, 187: 106956. doi: 10.1016/j.jcsr.2021.106956
    [151] Venkatesh V, Rack H J. 1999. A neural network approach to elevated temperature creep-fatigue life prediction. International Journal of Fatigue, 21: 225-234. doi: 10.1016/S0142-1123(98)00071-1
    [152] Wang J, Zhang Y, Wang X, et al. 2023a. Thermodynamics-based method considering orientation and notch effect to predict the high cycle fatigue life of a nickel-based single crystal superalloy. International Journal of Fatigue, 168: 107452. doi: 10.1016/j.ijfatigue.2022.107452
    [153] Wang L, Zhu S-P, Luo C, et al. 2023b. Defect driven physics-informed neural network framework for fatigue life prediction of additively manufactured materials. Philosophical Transactions of the Royal Society A, 381: 20220386. doi: 10.1098/rsta.2022.0386
    [154] Wang L, Zhu S-P, Luo C, et al. 2023c. Physics-guided machine learning frameworks for fatigue life prediction of AM materials. International Journal of Fatigue, 172: 107658. doi: 10.1016/j.ijfatigue.2023.107658
    [155] Wang Q, Khan M K, Bathias C. 2012. Current understanding of ultra-high cycle fatigue. Theoretical and Applied Mechanics Letters, 2(3): 031002. doi: 10.1063/2.1203102
    [156] Wang R-Z, Gu H-H, Zhu S-P, et al. 2022. A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures. Reliability Engineering & System Safety, 225: 108523. doi: 10.1016/j.ress.2022.108523
    [157] Wang R-Z, Zhang X-C, Tu S-T, et al. 2016. A modified strain energy density exhaustion model for creep–fatigue life prediction. International Journal of Fatigue, 90: 12-22. doi: 10.1016/j.ijfatigue.2016.03.005
    [158] Wang T, Wen J-F, Liao P-P, et al. 2021. A study of ultra-low cycle fatigue failure based on a fracture strain energy model. International Journal of Fatigue, 146: 106149. doi: 10.1016/j.ijfatigue.2021.106149
    [159] Wei X, Zhang C, Han S, et al. 2022. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network. International Journal of Fatigue, 163: 107050. doi: 10.1016/j.ijfatigue.2022.107050
    [160] Xie R-K, Zhong X-C, Qin S-H, et al. 2023. Predicting multiaxial fatigue life of FGH96 superalloy based on machine learning models by considering failure process and loading paths. International Journal of Fatigue, 175: 107730. doi: 10.1016/j.ijfatigue.2023.107730
    [161] Yan F, Song K, Liu Y, et al. 2020. Predictions and mechanism analyses of the fatigue strength of steel based on machine learning. Journal of Materials Science, 55(31): 15334-15349. doi: 10.1007/s10853-020-05091-7
    [162] Yan J, Zhou J, Zhang J, et al. 2024. AP-GAN-DNN based creep fracture life prediction for 7050 aluminum alloy. Engineering Fracture Mechanics, 303: 110096. doi: 10.1016/j.engfracmech.2024.110096
    [163] Yan X-L, Zhang X-C, Tu S-T, et al. 2015. Review of creep–fatigue endurance and life prediction of 316 stainless steels. International Journal of Pressure Vessels and Piping, 126-127: 17-28. doi: 10.1016/j.ijpvp.2014.12.002
    [164] Yang J, Kang G, Kan Q. 2022a. A novel deep learning approach of multiaxial fatigue life-prediction with a self-attention mechanism characterizing the effects of loading history and varying temperature. International Journal of Fatigue, 162: 106851. doi: 10.1016/j.ijfatigue.2022.106851
    [165] Yang J, Kang G, Kan Q. 2022b. Rate-dependent multiaxial life prediction for polyamide-6 considering ratchetting: Semi-empirical and physics-informed machine learning models. International Journal of Fatigue, 163: 107086. doi: 10.1016/j.ijfatigue.2022.107086
    [166] Yang J, Kang G, Liu Y, et al. 2021. A novel method of multiaxial fatigue life prediction based on deep learning. International Journal of Fatigue, 151: 106356. doi: 10.1016/j.ijfatigue.2021.106356
    [167] Yang S, De Jesus A M P, Meng D, et al. 2024. Very high-cycle fatigue behavior of steel in hydrogen environment: State of the art review and challenges. Engineering Failure Analysis, 166: 108898. doi: 10.1016/j.engfailanal.2024.108898
    [168] Ye D, Wang Z. 2001. A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue. International Journal of Fatigue, 23: 679-687. doi: 10.1016/S0142-1123(01)00027-5
    [169] Zamrik S, Frishmuth R. 1973. The effects of out-of-phase biaxial-strain cycling on low-cycle fatigue. Experimental Mechanics, 13(5): 204-208. doi: 10.1007/BF02322654
    [170] Zhan Z, Ao N, Hu Y, et al. 2022. Defect-induced fatigue scattering and assessment of additively manufactured 300M-AerMet100 steel: An investigation based on experiments and machine learning. Engineering Fracture Mechanics, 264: 108352. doi: 10.1016/j.engfracmech.2022.108352
    [171] Zhan Z, He X, Tang D, et al. 2023. Recent developments and future trends in fatigue life assessment of additively manufactured metals with particular emphasis on machine learning modeling. Fatigue & Fracture of Engineering Materials & Structures, 46(12): 4425-4464.
    [172] Zhang M, Sun C-N, Zhang X, et al. 2019. High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. International Journal of Fatigue, 128: 105194. doi: 10.1016/j.ijfatigue.2019.105194
    [173] Zhang S, Wang L, Zhu S-P, et al. 2024. Physics-informed neural network for creep-fatigue life prediction of Inconel 617 and interpretation of influencing factors. Materials & Design, 245: 106149. doi: 10.1016/j.matdes.2024.113267
    [174] Zhang X-C, Gong J-G, Xuan F-Z. 2021a. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions. International Journal of Fatigue, 148: 106236. doi: 10.1016/j.ijfatigue.2021.106236
    [175] Zhang X-C, Gong J-G, Xuan F-Z. 2021b. A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures. Engineering Fracture Mechanics, 258: 108130. doi: 10.1016/j.engfracmech.2021.108130
    [176] Zhao X, Ru D, Wang P, et al. 2021. Fatigue life prediction of a supercritical steam turbine rotor based on neural networks. Engineering Failure Analysis, 127: 105435. doi: 10.1016/j.engfailanal.2021.105435
    [177] Zhao Y, Xiang Y, Tang K. 2024. Machine learning-based fatigue life prediction of lamellar titanium alloys: A microstructural perspective. Engineering Fracture Mechanics, 303: 110106. doi: 10.1016/j.engfracmech.2024.110106
    [178] Zheng Z, Zhan M, Fu M W. 2022. Microstructural and geometrical size effects on the fatigue of metallic materials. International Journal of Mechanical Sciences, 218: 107058. doi: 10.1016/j.ijmecsci.2021.107058
    [179] Zhong B, Wang Y, Wei D, et al. 2017. A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection. International Journal of Fatigue, 102: 241-251. doi: 10.1016/j.ijfatigue.2017.04.013
    [180] Zhong X-C, Xie R-K, Qin S-H, et al. 2022. A process-data-driven BP neural network model for predicting interval-valued fatigue life of metals. Engineering Fracture Mechanics, 276: 108918. doi: 10.1016/j.engfracmech.2022.108918
    [181] Zhou K, Sun X, Shi S, et al. 2021. Machine learning-based genetic feature identification and fatigue life prediction. Fatigue & Fracture of Engineering Materials & Structures, 44(9): 2524-2537.
    [182] Zhu S-P, Hao Y Z, de Oliveira Correia J A F, et al. 2019. Nonlinear fatigue damage accumulation and life prediction of metals: A comparative study. Fatigue and Fracture of Engineering Materials and Structures, 42(6): 1271-1282. doi: 10.1111/ffe.12937
    [183] Zhou T, Jiang S, Han T, et al. 2023. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network. International Journal of Fatigue, 166 107234.
    [184] Zhu S-P, Niu X, Keshtegar B, et al. 2023. Machine learning-based probabilistic fatigue assessment of turbine bladed disks under multisource uncertainties. International Journal of Structural Integrity, 14(6): 1000-1024. doi: 10.1108/IJSI-06-2023-0048
    [185] Zhu Y, Hu Z, Luo J, et al. 2024. Probabilistic fatigue life prediction using multi-layer perceptron with maximum entropy algorithm. International Journal of Fatigue, 187: 108445. doi: 10.1016/j.ijfatigue.2024.108445
  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  86
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 录用日期:  2024-12-02
  • 网络出版日期:  2024-12-12

目录

    /

    返回文章
    返回