留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天结构空间组装动力学与控制研究进展

吴志刚 蒋建平 邬树楠 李庆军 王兴 谭述君 邓子辰

吴志刚, 蒋建平, 邬树楠, 李庆军, 王兴, 谭述君, 邓子辰. 航天结构空间组装动力学与控制研究进展. 力学进展, 2024, 54(2): 344-390 doi: 10.6052/1000-0992-23-041
引用本文: 吴志刚, 蒋建平, 邬树楠, 李庆军, 王兴, 谭述君, 邓子辰. 航天结构空间组装动力学与控制研究进展. 力学进展, 2024, 54(2): 344-390 doi: 10.6052/1000-0992-23-041
Wu Z G, Jiang J P, Wu S N, Li Q J, Wang X, Tan S J, Deng Z C. Review on dynamics and control of space structure in the process of on-orbit assembly. Advances in Mechanics, 2024, 54(2): 344-390 doi: 10.6052/1000-0992-23-041
Citation: Wu Z G, Jiang J P, Wu S N, Li Q J, Wang X, Tan S J, Deng Z C. Review on dynamics and control of space structure in the process of on-orbit assembly. Advances in Mechanics, 2024, 54(2): 344-390 doi: 10.6052/1000-0992-23-041

航天结构空间组装动力学与控制研究进展

doi: 10.6052/1000-0992-23-041 cstr: 32046.14.1000-0992-23-041
基金项目: 国家自然科学基金(12372053, 12232015, 52005522, 11872381, 91748203)资助
详细信息
    作者简介:

    吴志刚, 教授, 博士生导师, 中山大学航空航天学院创院院长. 主要研究方向为航天器动力学与控制、空间机器人技术. 担任《宇航学报》等学术期刊编委, 中国宇航学会空间太阳能电站专委会委员、美国航空航天学会 (AIAA) 高级会员. 曾获国家科学技术进步二等奖和国防科学技术一等奖. 在《力学学报》《宇航学报》《航空学报》《AIAA Journal》《Journal of Guidance Control and Dynamics》等学术期刊上发表论文200余篇, 已出版专著3部

    邓子辰, 博士生导师, 西北工业大学航空学院/极端力学研究院教授, “复杂系统动力学与控制”工信部重点实验室主任, 教育部“长江学者特聘教授”. 近年来一直从事计算力学与控制理论交叉学科及其Hamilton动力系统的辛数值方法研究, 并有效地将研究成果应用于非线性系统动力学、柔性多体系统动力学、航天系统动力学、先进复合材料优化设计等领域. 先后主持40余项国家及省部级科研项目. 发表论文320余篇, 出版学术专著5部, 获省部级科技奖励5次. 目前主要学术兼职包括: 国务院学科评议组力学学科成员, 教育部力学专业指导委员会委员, 国际计算力学学会理事, 中国力学学会动力学与控制专业委员会副主任, 中国力学学会计算力学专业委员会副主任, 《固体力学学报》 (中文版), 《应用数学和力学》 (中文版) 副主编, 国内外10余个学术刊物的编委

    通讯作者:

    dweifan@nwpu.edu.cn

  • 中图分类号: V423.9

Review on dynamics and control of space structure in the process of on-orbit assembly

More Information
  • 摘要: 空间组装是建造空间站、大型卫星天线、大口径空间望远镜、空间太阳能电站等大型和超大型航天结构的重要手段. 然而, 航天结构组装过程将面临构型增长、参数变化、轨道-姿态-结构耦合、接触碰撞等复杂的动力学与控制问题, 给精准、高效、稳定完成组装任务带来挑战. 本文介绍了大型航天结构的动力学建模方法、超大型航天结构特殊的动力学现象、航天结构空间组装过程的动力学建模研究现状; 综述了航天结构在轨运行阶段的控制方法、空间组装过程的组装序列规划方法、姿态控制与振动抑制方法研究进展; 总结了航天结构组装过程动力学与控制地面模拟试验中的重力卸载、缩比模型设计与试验、非线性与不确定性试验等关键技术. 最后, 面向未来千米量级超大型航天结构空间组装需求, 针对组装过程中结构尺寸、质量和力学参数跃变等特性提出了当前研究工作中亟须解决的几类动力学与控制问题.

     

  • 图  1  超大型航天器概念. (a) 多旋转关节空间太阳能电站(侯欣宾 等 2015), (b) 自由漂浮空间太阳能电站(Chen et al. 2023), (c) 超大型太空反射镜(Viale et al. 2023), (d) 人工重力场航天器(Li et al. 2019a)

    图  2  大型航天结构空间组装过程. (a) 模块自组装过程(Chen & Wen 2018), (b) 机械臂组装天线结构的过程(Li et al. 2019c)

    图  3  大型空间望远镜设计方案与组装方案(Lee et al. 2016). (a) 总体设计方案, (b) 主反射镜组装流程, (c) 空间机器人组装主反射镜支撑桁架

    图  4  超大型空间太阳能电站空间组装方案(Cheng et al. 2016). (a) 发射与轨道转移阶段, (b) 在轨展开、机器人协同运输和协同组装阶段, (c) 多模块组装过程

    图  5  不同组装序列的结构一阶固有频率跃变现象(Wang et al. 2022)

    图  6  超大型航天结构空间组装过程轨道-姿态-结构耦合动力学分析示意图(符康琦 等 2023)

    图  7  空间太阳能电站的迭代学习控制示意图

    图  8  空间太阳能电站的“三体两级一体化”控制框架

    图  9  航天结构空间组装序列规划任务. (a) 结构基频最大化的组装序列, (b) 组装总路径最短的组装序列(刘谋怀 2022), (c) 组装机器人运动路径规划(罗建军 等 2021)

    图  10  组装过程中结构振动的分布式自适应神经网络协同控制

    图  11  组装过程的动力学与控制试验系统. (a) 带移动导轨的工业机械臂组装航天器的试验系统(Ma et al. 2012), (b)带移动基座的双臂机器人组装刚性模块的试验系统(Lee et al. 2016, Karumanchi et al. 2018), (c) 气浮双臂机器人协同组装柔性结构的试验系统(Boning & Dubowsky 2010)

    图  12  中山大学第一代大型柔性结构组装动力学地面试验装置(Lin et al. 2022)

  • [1] Bertram, 李庆忠. 1990. 用扩充的模态鉴定试验验证阿里安4有效载荷整流罩数学模型. 国外导弹与航天运载器, 12: 49-58 (Bertram, Li Q Z. 1990. Simulation model of Arian 4 satellite payload fairing with extended modal verification test. Foreign Missiles and Space Carriers, 12: 49-58).

    Bertram, Li Q Z. 1990. Simulation model of Arian 4 satellite payload fairing with extended modal verification test. Foreign Missiles and Space Carriers, 12: 49-58.
    [2] 蔡远文, 郭会, 李岩. 2009. 航天器在轨组装技术进展. 兵工自动化, 28: 6-8 + 14 (Cai Y W, Guo H, Li Y. 2009. Development of spacecraft on-orbit assembly technologies. Ordnance Industry Automation, 28: 6-8 + 14). doi: 10.3969/j.issn.1006-1576.2009.06.003

    Cai Y W, Guo H, Li Y. 2009. Development of spacecraft on-orbit assembly technologies. Ordnance Industry Automation, 28: 6-8 + 14. doi: 10.3969/j.issn.1006-1576.2009.06.003
    [3] 曹登庆, 初世明, 李郑发, 等. 2013. 空间可展机构非光滑力学模型和动力学研究. 力学学报, 45: 3-15 (Cao D Q, Chu S M, Li Z F, et al. 2013. Study on the non-smooth mechanical models and dynamics for space deployable mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 45: 3-15).

    Cao D Q, Chu S M, Li Z F, et al. 2013. Study on the non-smooth mechanical models and dynamics for space deployable mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 45: 3-15.
    [4] 曹登庆, 白坤朝, 丁虎. 等. 2019. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 51: 1-13 (Cao D Q, Bai K C, Ding H, et al. 2019. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 51: 1-13). doi: 10.6052/0459-1879-18-054

    Cao D Q, Bai K C, Ding H, et al. 2019. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 51: 1-13. doi: 10.6052/0459-1879-18-054
    [5] 曹登庆, 刘梅, 朱东方, 等. 2020. 空间可展桁架结构等效动力学模型研究进展与展望. 飞控与探测, 3: 8-17 (Cao D Q, Liu M, Zhu D F, et al. 2020. Research progress and prospect of equivalent dynamics model of space deployable truss structures. Flight Control & Detection, 3: 8-17).

    Cao D Q, Liu M, Zhu D F, et al. 2020. Research progress and prospect of equivalent dynamics model of space deployable truss structures. Flight Control & Detection, 3: 8-17.
    [6] 陈钢, 高贤渊, 赵治恺, 等. 2022. 空间机械臂智能规划与控制技术. 南京航空航天大学学报. 54 : 1-16 (Chen G, Gao X Y, Zhao Z K, et al. 2022. Review on intelligent planning and control technology of space manipulator. Journal of Nanjing University of Aeronautics and Astronautics. 54 : 1-16).

    Chen G, Gao X Y, Zhao Z K, et al. 2022. Review on intelligent planning and control technology of space manipulator. Journal of Nanjing University of Aeronautics and Astronautics. 54: 1-16.
    [7] 陈提. 2017. 柔性航天器状态一致与自主组装控制. 南京: 南京航空航天大学 (Chen T. 2017. State consensus and autonomous assembly for a team of flexible spacecraft. Nanjing: Nanjing University of Aeronautics and Astronautics).

    Chen T. 2017. State consensus and autonomous assembly for a team of flexible spacecraft. Nanjing: Nanjing University of Aeronautics and Astronautics.
    [8] 陈小前, 袁建平, 兆雯, 等. 2009. 航天器在轨服务技术(精). 北京: 中国宇航出版社.
    [9] 丁继锋, 高峰, 钟小平, 等. 2019. 在轨建造中的关键力学问题. 中国科学:物理学 力学 天文学, 49: 54-61 (Ding J F, Gao F, Zhong X P, et al. 2019. The key mechanical problems of on-orbit construction. Scientia Sinica (Physica, Mechanica and Astronomica), 49: 54-61).

    Ding J F, Gao F, Zhong X P, et al. 2019. The key mechanical problems of on-orbit construction. Scientia Sinica (Physica, Mechanica and Astronomica), 49: 54-61.
    [10] 丁继锋, 韩增尧, 马兴瑞. 2010. 大型复杂航天器结构有限元模型的验证策略研究. 宇航学报, 31: 547-555 (Ding J F, Han Z Y, Ma X R. 2010. Finite element model verification strategy of large complex spacecraft. Journal of Astronautics, 31: 547-555).

    Ding J F, Han Z Y, Ma X R. 2010. Finite element model verification strategy of large complex spacecraft. Journal of Astronautics, 31: 547-555.
    [11] 董富祥, 洪嘉振. 2009. 多体系统动力学碰撞问题研究综述. 力学进展, 39: 352-359 (Dong F X, Hong J Z. 2009. Review of impact problem for dynamics of multibody system. Advances in Mechanics, 39: 352-359).

    Dong F X, Hong J Z. 2009. Review of impact problem for dynamics of multibody system. Advances in Mechanics, 39: 352-359.
    [12] 杜树新, 陈新海. 1995. 大型柔性空间结构的分散鲁棒自适应控制. 西北工业大学学报, 13: 623-628 (Du S X, Chen X H. 1995. The control system design for large flexible space structure considering both system performances and integrity. Journal of Northwestern Polytechnical University, 13: 623-628).

    Du S X, Chen X H. 1995. The control system design for large flexible space structure considering both system performances and integrity. Journal of Northwestern Polytechnical University, 13: 623-628.
    [13] 段宝岩. 2017. 大型空间可展开天线的研究现状与发展趋势. 电子机械工程, 33: 1-14 (Duan B Y. 2017. The state-of-the-art and development trend of large space-borne deployable antenna. Electro-Mechanical Engineering, 33: 1-14). doi: 10.3969/j.issn.1008-5300.2017.04.001

    Duan B Y. 2017. The state-of-the-art and development trend of large space-borne deployable antenna. Electro-Mechanical Engineering, 33: 1-14. doi: 10.3969/j.issn.1008-5300.2017.04.001
    [14] 段宝岩. 2018. 空间太阳能发电卫星的几个理论与关键技术问题. 中国科学:技术科学, 48: 1207-1218 (Duan B Y. 2018. The main aspects of the theory and key technologies about Space Solar Power Satellite. Scientia Sinica (Technologica), 48: 1207-1218).

    Duan B Y. 2018. The main aspects of the theory and key technologies about Space Solar Power Satellite. Scientia Sinica (Technologica), 48: 1207-1218.
    [15] 符康琦, 张乐榕, 李庆军, 等. 2023. 超大型多模块结构组装过程动力学与姿态控制. 力学学报, 55 : doi: 10.6052/0459-1879-23-289 (Fu K Q, Zhang L R, Li Q J, et al. 2023. Dynamics and attitude control of the assembly process of ultra-large multi-module structures. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 :doi: 10.6052/0459-1879-23-289.
    [16] 龚浩然, 王博, 李庆军, 等. 2023. 太阳光压与地球阴影作用下的空间柔性梁结构振动分析与控制. 振动工程学报, 36: 988-995 (Gong H R, Wang B, Li Q J, et al. 2023. Vibration behavior and control of spatial flexible beam under the solar radiation pressure and earth shadow. Journal of Vibration Engineering, 36: 988-995).

    Gong H R, Wang B, Li Q J, et al. 2023. Vibration behavior and control of spatial flexible beam under the solar radiation pressure and earth shadow. Journal of Vibration Engineering, 36: 988-995.
    [17] 郭继峰, 王平, 崔乃刚. 2014. 空间在轨装配任务规划. 北京: 国防工业出版社.
    [18] 韩增尧, 马兴瑞. 2014. 卫星与运载火箭力学环境分析方法及试验技术. 北京: 科学出版社.
    [19] 贺尔铭, 陈新海. 1995. 空间结构高阶系统的子结构分散控制方法. 空间结构, 1: 46-52 (He E M, Chen X H. 1995. A substructure decentralized control method for high-order space structures. Spatial Structures, 1: 46-52).

    He E M, Chen X H. 1995. A substructure decentralized control method for high-order space structures. Spatial Structures, 1: 46-52.
    [20] 和兴锁, 邓峰岩, 王睿. 2010. 具有大范围运动和非线性变形的空间柔性梁的精确动力学建模. 物理学报, 3: 1428-1436 (He X S, Deng F Y, Wang R. 2010. Exact dynamic modeling of a spatial flexible beam with large overall motion and nonlinear deformation. Acta Physica Sinica, 3: 1428-1436).

    He X S, Deng F Y, Wang R. 2010. Exact dynamic modeling of a spatial flexible beam with large overall motion and nonlinear deformation. Acta Physica Sinica, 3: 1428-1436.
    [21] 侯欣宾, 王立, 张兴华, 等. 2015. 多旋转关节空间太阳能电站概念方案设计. 宇航学报, 36: 1332-1338 (Hou X B, Wang L, Zhang X H, et al. 2015. Concept design on Multi-Rotary Joints SPS. Journal of Astronautics, 36: 1332-1338). doi: 10.3873/j.issn.1000-1328.2015.11.016

    Hou X B, Wang L, Zhang X H, et al. 2015. Concept design on Multi-Rotary Joints SPS. Journal of Astronautics, 36: 1332-1338. doi: 10.3873/j.issn.1000-1328.2015.11.016
    [22] 侯欣宾, 王立, 张兴华. 2020. 空间太阳能电站概论. 北京: 中国宇航出版社.
    [23] 侯欣宾. 2023. 图解空间太阳能电站. 北京: 化学工业出版社
    [24] 胡海岩, 田强, 张伟, 等. 2013. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 43: 390-414 (Hu H Y, Tian Q, Zhang W, et al. 2013. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 43: 390-414). doi: 10.6052/1000-0992-13-045

    Hu H Y, Tian Q, Zhang W, et al. 2013. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 43: 390-414. doi: 10.6052/1000-0992-13-045
    [25] 胡庆雷, 马广富. 2006. 基于变结构/输入成形的航天器振动抑制方法. 哈尔滨工业大学学报, 38: 1769-1772 + 1777 (Hu Q L, Ma G F. 2006. Flexible spacecraft attitude maneuvering and vibration damping using variable structure control input shaping. Journal of Harbin Institute of Technology, 38: 1769-1772 + 1777). doi: 10.3321/j.issn:0367-6234.2006.10.040

    Hu Q L, Ma G F. 2006. Flexible spacecraft attitude maneuvering and vibration damping using variable structure control input shaping. Journal of Harbin Institute of Technology, 38: 1769-1772 + 1777. doi: 10.3321/j.issn:0367-6234.2006.10.040
    [26] 黄文虎, 曹登庆, 韩增尧. 2012. 航天器动力学与控制的研究进展与展望. 力学进展, 42: 367-394 (Huang W H, Cao D Q, Han Z Y. 2012. Advances and trends in dynamics and control of spacecrafts. Advances in Mechanics, 42: 367-394). doi: 10.6052/1000-0992-11-171

    Huang W H, Cao D Q, Han Z Y. 2012. Advances and trends in dynamics and control of spacecrafts. Advances in Mechanics, 42: 367-394. doi: 10.6052/1000-0992-11-171
    [27] 黄永安, 尹周平, 邓子辰, 等. 2009. 多体动力学的几何积分方法研究进展. 力学进展, 39: 44-57 (Huang Y A, Yin Z P, Deng Z C et al. 2009. Progress in geometric integration method for multibody dynamics. Advances in Mechanics, 39: 44-57).

    Huang Y A, Yin Z P, Deng Z C et al. 2009. Progress in geometric integration method for multibody dynamics. Advances in Mechanics, 39: 44-57.
    [28] 霍明英. 2011. 编队飞行卫星物理仿真系统设计及分析. 哈尔滨: 哈尔滨工业大学 (Huo M Y. 2011. The research of the satellite formation flying physical simulation system. Harbin: Harbin Institute of Technology).

    Huo M Y. 2011. The research of the satellite formation flying physical simulation system. Harbin: Harbin Institute of Technology.
    [29] 贾平. 2016. 国外在轨装配技术发展简析. 国际太空, 456: 61-64 (Jia P. 2016. Development analysis of foreign on-orbit assembly technologies. Space International, 456: 61-64).

    Jia P. 2016. Development analysis of foreign on-orbit assembly technologies. Space International, 456: 61-64.
    [30] 蒋建平, 李东旭. 2006. 带太阳帆板航天器刚柔耦合动力学研究. 航空学报, 27: 418-422 (Jiang J P, Li D X. 2006. Research on rigid-flexible coupling dynamics of spacecraft with solar panel. Acta Aeronautica et Astronautica Sinica, 27: 418-422). doi: 10.3321/j.issn:1000-6893.2006.03.013

    Jiang J P, Li D X. 2006. Research on rigid-flexible coupling dynamics of spacecraft with solar panel. Acta Aeronautica et Astronautica Sinica, 27: 418-422. doi: 10.3321/j.issn:1000-6893.2006.03.013
    [31] 阚子云, 彭海军, 陈飙松, 等. 2015. 开放式多体系统动力学仿真算法软件研发(Ⅱ) DAEs求解算法对比. 计算力学学报, 32: 707-715 + 721 (Kan Z Y, Peng H J, Chen B S, et al. 2015. Study of open simulation algorithm software for multibody system dynamics (II) comparison of algorithms for solving DAEs. Chinese Journal of Computational Mechanics, 32: 707-715 + 721).

    Kan Z Y, Peng H J, Chen B S, et al. 2015. Study of open simulation algorithm software for multibody system dynamics (II) comparison of algorithms for solving DAEs. Chinese Journal of Computational Mechanics, 32: 707-715 + 721.
    [32] 孔宪仁, 杨正贤, 张锦绣, 等. 2011. 刚柔耦合系统的输入成形控制. 哈尔滨工业大学学报, 43: 7-11 (Kong X R, Yang Z X, Zhang J X, et al. 2011. Input shaping control for rigid-flexible coupling systems. Journal of Harbin Institute of Technology, 43: 7-11). doi: 10.11918/j.issn.0367-6234.2011.01.002

    Kong X R, Yang Z X, Zhang J X, et al. 2011. Input shaping control for rigid-flexible coupling systems. Journal of Harbin Institute of Technology, 43: 7-11. doi: 10.11918/j.issn.0367-6234.2011.01.002
    [33] 李磊, 周军, 黄河, 等. 2015. 组合体航天器变拓扑过程中姿态稳定控制研究. 计算机仿真, 32: 80-83 + 187 (Li L, Zhou J, Huang H, et al. 2015. Attitude stabilization control of compound spacecraft in the process of changing topologies. Computer Simulation, 32: 80-83 + 187).

    Li L, Zhou J, Huang H, et al. 2015. Attitude stabilization control of compound spacecraft in the process of changing topologies. Computer Simulation, 32: 80-83 + 187.
    [34] 李培, 马沁巍, 宋燕平, 等. 2017. 大型空间环形桁架天线反射器展开动力学模拟与实验研究. 中国科学:物理学 力学 天文学, 47: 7-15 (Li P, Ma Q W, Song Y P, et al. 2017. Deployment dynamics simulation and ground test of a large space hoop truss antenna reflector. Scientia Sinica (Physica, Mechanica and Astronomica), 47: 7-15).

    Li P, Ma Q W, Song Y P, et al. 2017. Deployment dynamics simulation and ground test of a large space hoop truss antenna reflector. Scientia Sinica (Physica, Mechanica and Astronomica), 47: 7-15.
    [35] 李庆军. 2019. 基于辛算法的空间太阳能电站姿-轨-柔耦合动力学与控制. 西安: 西北工业大学 (Li Q J. 2019. Orbit-attitude-structure coupled dynamics and control of space solar power stations based on symplectic algorithms. Xi’an: Northwestern Polytechnical University).

    Li Q J. 2019. Orbit-attitude-structure coupled dynamics and control of space solar power stations based on symplectic algorithms. Xi’an: Northwestern Polytechnical University.
    [36] 李庆军, 邓子辰. 2018. 空间太阳能电站及其动力学与控制研究进展. 哈尔滨工业大学学报, 50: 1-19 (Li Q J, Deng Z C. 2018. Review on space solar power stations and their dynamics and control. Journal of Harbin Institute of Technology, 50: 1-19). doi: 10.11918/j.issn.0367-6234.201711143

    Li Q J, Deng Z C. 2018. Review on space solar power stations and their dynamics and control. Journal of Harbin Institute of Technology, 50: 1-19. doi: 10.11918/j.issn.0367-6234.201711143
    [37] 李庆军, 邓子辰, 王艳, 等. 2019. 空间太阳能电站的准对日定向姿态. 宇航学报, 40: 29-40 (Li Q J, Deng Z C, Wang Y, et al. 2019. Quasi-Sun-Pointing Oriented Attitude for Solar Power Satellites. Journal of Astronautics, 40: 29-40).

    Li Q J, Deng Z C, Wang Y, et al. 2019. Quasi-Sun-Pointing Oriented Attitude for Solar Power Satellites. Journal of Astronautics, 40: 29-40.
    [38] 林来兴. 2007. 四十年空间交会对接技术的发展. 航天器工程, 16: 70-78 (Lin L X. 2007. Development of space rendezvous and docking technology in past 40 years. Spacecraft Engineering, 16: 70-78). doi: 10.3969/j.issn.1673-8748.2007.04.013

    Lin L X. 2007. Development of space rendezvous and docking technology in past 40 years. Spacecraft Engineering, 16: 70-78. doi: 10.3969/j.issn.1673-8748.2007.04.013
    [39] 刘铖, 田强, 胡海岩. 2010. 基于绝对节点坐标的多柔体系统动力学高效计算方法. 力学学报, 42: 1197-1205 (Liu C, Tian Q, Hu H Y. 2010. Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate. Chinese Journal of Theoretical and Applied Mechanics, 42: 1197-1205).

    Liu C, Tian Q, Hu H Y. 2010. Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate. Chinese Journal of Theoretical and Applied Mechanics, 42: 1197-1205.
    [40] 刘付成, 朱东方, 黄静. 2017. 空间飞行器动力学与控制研究综述. 上海航天, 34: 1-29 (Liu F C, Zhu D F, Huang J. 2017. Review of dynamics and control study of spacecraft. Aerospace Shanghai, 34: 1-29).

    Liu F C, Zhu D F, Huang J. 2017. Review of dynamics and control study of spacecraft. Aerospace Shanghai, 34: 1-29.
    [41] 刘福寿. 2015. 大型空间结构动力学等效建模与振动控制研究. 南京: 南京航空航天大学 (Liu F S. 2015. Dynamic equivalent modeling and vibration control of large space structures. Nanjing: Nanjing University of Aeronautics and Astronautics).

    Liu F S. 2015. Dynamic equivalent modeling and vibration control of large space structures. Nanjing: Nanjing University of Aeronautics and Astronautics.
    [42] 刘丽兰, 刘宏昭, 吴子英, 等. 2008. 机械系统中摩擦模型的研究进展. 力学进展, 38: 201-213 (Liu L L, Liu H Z, Wu Z Y et al. 2008. An overview of friction models in mechanicalsystems. Advances in Mechanics, 38: 201-213).

    Liu L L, Liu H Z, Wu Z Y et al. 2008. An overview of friction models in mechanicalsystems. Advances in Mechanics, 38: 201-213.
    [43] 刘谋怀, 邬树楠, 周威亚, 等. 2020. 面向结构基频最大化的空间组装序列规划. 第四届可展开空间结构学术会议, 哈尔滨, Dec 25-27 (Liu M H, Wu S N, Zhou W Y, et al. 2020. Space assembly sequence planning for structural fundamental frequency maximization. The 4th Academic Conference of Space Deployable Structure, Harbin, Dec 25-27).

    Liu M H, Wu S N, Zhou W Y, et al. 2020. Space assembly sequence planning for structural fundamental frequency maximization. The 4th Academic Conference of Space Deployable Structure, Harbin, Dec 25-27.
    [44] 刘谋怀. 2022. 空间太阳能电站在轨组装序列规划研究. 大连: 大连理工大学 (Liu M H. 2022. Research on on-orbit assembly sequence planning of space solar power station. Dalian: Dalian University of Technology).

    Liu M H. 2022. Research on on-orbit assembly sequence planning of space solar power station. Dalian: Dalian University of Technology.
    [45] 刘宇飞, 侯欣宾, 王立, 等. 2017. 太空发电站大型柔性结构控制系统设计. 载人航天, 23: 440-447 (Liu Y F, Hou X B, Wang L, et al. 2017. Design of control system for huge flexible structures in space solar power station. Manned Spaceflight, 23: 440-447).

    Liu Y F, Hou X B, Wang L, et al. 2017. Design of control system for huge flexible structures in space solar power station. Manned Spaceflight, 23: 440-447.
    [46] 刘宇飞, 王立, 周璐, 等. 2018. 空间太阳能电站分级分体式控制方式初探. 宇航计测技术, 38: 84-90 (Liu Y F, Wang L, Zhou L, et al. 2018. Discussion on the multi-level multi-body control of space solar power station. Journal of Astronautic Metrology and Measurement, 38: 84-90). doi: 10.12060/j.issn.1000-7202.2018.03.14

    Liu Y F, Wang L, Zhou L, et al. 2018. Discussion on the multi-level multi-body control of space solar power station. Journal of Astronautic Metrology and Measurement, 38: 84-90. doi: 10.12060/j.issn.1000-7202.2018.03.14
    [47] 刘玉亮, 邬树楠, 张开明. 2018. 重力姿轨耦合效应引起的太阳能电站轨道共振. 航空学报, 39: 222194 (Liu Y L, Wu S N, Zhang K M. 2018. Resonance in the orbital motion of solar power station due to gravitational orbit-attitude coupling. Acta Aeronauticaet Astronautica Sinica, 39: 222194). doi: 10.7527/S1000-6893.2018.22194

    Liu Y L, Wu S N, Zhang K M. 2018. Resonance in the orbital motion of solar power station due to gravitational orbit-attitude coupling. Acta Aeronauticaet Astronautica Sinica, 39: 222194. doi: 10.7527/S1000-6893.2018.22194
    [48] 刘玉亮. 2019. 重力梯度作用下空间太阳能电站的在轨动力学特性. 大连: 大连理工大学 (Liu Y L. 2019. Dynamics of on-orbit space solar power station with gravity gradient effects. Dalian: Dalian University of Technology).

    Liu Y L. 2019. Dynamics of on-orbit space solar power station with gravity gradient effects. Dalian: Dalian University of Technology.
    [49] 罗建军, 王嘉文, 王明明, 等. 2021. 机器人在轨构建空间桁架结构的装配序列规划方法. 宇航学报, 42: 437-449 (Luo J J, Wang J W, Wang M M, et al. 2021. Sequence planning method for robotic on-orbit assemly of space truss structure. Journal of Astronautics, 42: 437-449). doi: 10.3873/j.issn.1000-1328.2021.04.004

    Luo J J, Wang J W, Wang M M, et al. 2021. Sequence planning method for robotic on-orbit assemly of space truss structure. Journal of Astronautics, 42: 437-449. doi: 10.3873/j.issn.1000-1328.2021.04.004
    [50] 罗杰, 谢兰川, 张云, 等. 2016. 大型空间桁架天线振动控制及作动器位置优化. 装备环境工程, 13: 112-116 (Luo J, Xie L C, Zhang Y, et al. 2016. Vibration control of large space truss antenna and optimization of actuator position. Equipment Environmental Engineering, 13: 112-116).

    Luo J, Xie L C, Zhang Y, et al. 2016. Vibration control of large space truss antenna and optimization of actuator position. Equipment Environmental Engineering, 13: 112-116.
    [51] 孟光, 周徐斌, 苗军. 2016. 航天重大工程中的力学问题. 力学进展, 46: 267-322 (Meng G, Zhou X B, Miao J. 2016. Mechanical problems in momentous projects of aerospace engineering. Advances in Mechanics, 46: 267-322). doi: 10.6052/1000-0992-15-018

    Meng G, Zhou X B, Miao J. 2016. Mechanical problems in momentous projects of aerospace engineering. Advances in Mechanics, 46: 267-322. doi: 10.6052/1000-0992-15-018
    [52] 苗双全, 丛炳龙, 刘向东. 2013. 基于输入成形的挠性航天器自适应滑模控制. 航空学报, 34: 1906-1914 (Miao S Q, Cong B L, Liu X D. 2013. Adaptive sliding mode control of flexible spacecraft on input shaping. Acta Aeronautica et Astronautica Sinica, 34: 1906-1914). doi: 10.7527/S1000-6893.2013.0322

    Miao S Q, Cong B L, Liu X D. 2013. Adaptive sliding mode control of flexible spacecraft on input shaping. Acta Aeronautica et Astronautica Sinica, 34: 1906-1914. doi: 10.7527/S1000-6893.2013.0322
    [53] 穆瑞楠. 2020. 超大空间结构在轨耦合动力学特性与姿态控制. 大连: 大连理工大学 (Mu R N. 2020. Coupling dynamic characteristic and attitude control of super large space structures on orbit. Dalian: Dalian University of Technology).

    Mu R N. 2020. Coupling dynamic characteristic and attitude control of super large space structures on orbit. Dalian: Dalian University of Technology.
    [54] 彭云, 杨军刚, 肖勇, 等. 2018. 重力对大型环形可展天线展开动力学的影响研究. 工程力学, 35: 226-234 (Peng Y, Yang J G, Xiao Y, et al. 2018. Gravity effect on deployment dynamics of astromesh. Engineering Mechanics, 35: 226-234). doi: 10.6052/j.issn.1000-4750.2016.12.0992

    Peng Y, Yang J G, Xiao Y, et al. 2018. Gravity effect on deployment dynamics of astromesh. Engineering Mechanics, 35: 226-234. doi: 10.6052/j.issn.1000-4750.2016.12.0992
    [55] 曲春成. 2014. 空间机械臂地面微重力模拟系统研究与实现. 哈尔滨: 哈尔滨工业大学 (Qu C C. 2014. Research and implementation of ground microgravity simulation system of space robotic arm. Harbin: Harbin Institute of Technology).

    Qu C C. 2014. Research and implementation of ground microgravity simulation system of space robotic arm. Harbin: Harbin Institute of Technology.
    [56] 戎保, 芮筱亭, 王国平, 等. 2011. 多体系统动力学研究进展. 振动与冲击, 30: 178-187 (Rong B, Rui X T, Wang G P, et al. 2011. Developments of studies on multibody system dynamics. Journal of Vibration And Shock, 30: 178-187). doi: 10.3969/j.issn.1000-3835.2011.04.037

    Rong B, Rui X T, Wang G P, et al. 2011. Developments of studies on multibody system dynamics. Journal of Vibration And Shock, 30: 178-187. doi: 10.3969/j.issn.1000-3835.2011.04.037
    [57] 荣吉利, 崔硕, 石文静, 等. 2021. 大型空间电站在轨展开与组装动力学与控制. 宇航学报, 42: 295-304 (Rong J L, Cui S, Shi W J, et al. 2021. On-orbit deployment and assembly dynamics and control of large space power station. Journal of Astronautics, 42: 295-304). doi: 10.3873/j.issn.1000-1328.2021.03.004

    Rong J L, Cui S, Shi W J, et al. 2021. On-orbit deployment and assembly dynamics and control of large space power station. Journal of Astronautics, 42: 295-304. doi: 10.3873/j.issn.1000-1328.2021.03.004
    [58] 沈晓凤, 曾令斌, 靳永强, 等. 2017. 在轨组装技术研究现状与发展趋势. 载人航天, 23: 228-235 (Shen X F, Zeng L B, Jin Y Q, et al. 2017. Status and prospect of on-orbit assembly technology. Manned Spaceflight, 23: 228-235). doi: 10.3969/j.issn.1674-5825.2017.02.016

    Shen X F, Zeng L B, Jin Y Q, et al. 2017. Status and prospect of on-orbit assembly technology. Manned Spaceflight, 23: 228-235. doi: 10.3969/j.issn.1674-5825.2017.02.016
    [59] 沈晓鹏, 刘艳, 胡雪平, 等. 2015. 空间站转位组建方案研究. 载人航天, 21: 450-455 + 467 (Shen X P, Liu Y, Hu X P, et al. 2015. Study on transfer construction scheme of space station. Manned Spaceflight, 21: 450-455 + 467). doi: 10.3969/j.issn.1674-5825.2015.05.004

    Shen X P, Liu Y, Hu X P, et al. 2015. Study on transfer construction scheme of space station. Manned Spaceflight, 21: 450-455 + 467. doi: 10.3969/j.issn.1674-5825.2015.05.004
    [60] 史加贝, 刘铸永, 洪嘉振. 2017. 柔性多体动力学的共旋坐标法. 力学季刊, 38: 197-214 (Shi J B, Liu Z Y, Hong J Z. 2017. The co-rotational formulation for flexible multibody dynamics. Chinese Quarterly of Mechanics, 38: 197-214).

    Shi J B, Liu Z Y, Hong J Z. 2017. The co-rotational formulation for flexible multibody dynamics. Chinese Quarterly of Mechanics, 38: 197-214.
    [61] 苏晨. 2019. 大型空间桁架结构在轨构建动力学建模与振动控制研究. 哈尔滨: 哈尔滨工业大学 (Su C. 2019. Research on dynamic modeling and vibration control of large space truss structure on-orbit construction. Harbin: Harbin Institute of Technology).

    Su C. 2019. Research on dynamic modeling and vibration control of large space truss structure on-orbit construction. Harbin: Harbin Institute of Technology.
    [62] 孙加亮, 田强, 胡海岩. 2019. 多柔体系统动力学建模与优化研究进展. 力学学报, 51: 1565-1586 (Sun J L, Tian Q, Hu H Y. 2019. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 51: 1565-1586). doi: 10.6052/0459-1879-19-212

    Sun J L, Tian Q, Hu H Y. 2019. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 51: 1565-1586. doi: 10.6052/0459-1879-19-212
    [63] 田强. 2009. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用. 武汉: 华中科技大学 (Tian Q. 2009. Flexible multibody dynamics research and application based on the absolute nodal coordinate method. Wuhan: Huazhong University of Science & Technology).

    Tian Q. 2009. Flexible multibody dynamics research and application based on the absolute nodal coordinate method. Wuhan: Huazhong University of Science & Technology.
    [64] 田强, 刘铖, 李培, 等. 2017. 多柔体系统动力学研究进展与挑战. 动力学与控制学报, 15: 385-405 (Tian Q, Liu C, Li P, et al. 2017. Advances and challenges in dynamics of flexible multibody systems. Journal of Dynamics and Control, 15: 385-405). doi: 10.6052/1672-6553-2017-039

    Tian Q, Liu C, Li P, et al. 2017. Advances and challenges in dynamics of flexible multibody systems. Journal of Dynamics and Control, 15: 385-405. doi: 10.6052/1672-6553-2017-039
    [65] 万小平, 杨军刚, 宋燕平, 等. 2017. 大型环形桁架天线柔性包带展开动力学仿真与实验研究. 中国科学: 物理学 力学 天文学, 47 : 104605 (Wan X P, Yang J G, Song Y P, et al. 2017. Simulation and experiment research on flexible belt deployment dynamics of a large hoop truss antenna. Scientia Sinica (Physica, Mechanica and Astronomica), 47 : 104605).

    Wan X P, Yang J G, Song Y P, et al. 2017. Simulation and experiment research on flexible belt deployment dynamics of a large hoop truss antenna. Scientia Sinica (Physica, Mechanica and Astronomica), 47: 104605.
    [66] 王恩美, 邬树楠, 王晓明, 等. 2018. 大型卫星太阳能帆板的分布式振动控制. 航空学报, 39: 209-219 (Wang E M, Wu S N, Wang X M, et al. 2018. Distributed vibration control for large satellite solar panels. Acta Aeronautica et Astronautica Sinica, 39: 209-219).

    Wang E M, Wu S N, Wang X M, et al. 2018. Distributed vibration control for large satellite solar panels. Acta Aeronautica et Astronautica Sinica, 39: 209-219.
    [67] 王恩美, 邬树楠, 吴志刚. 2020. 在轨组装空间结构面向主动控制的动力学建模. 力学学报, 52: 805-816 (Wang E M, Wu S N, Wu Z G. 2020. Active-control-oriented dynamic modelling for on-orbit assembly space structure. Chinese Journal of Theoretical and Applied Mechanics, 52: 805-816). doi: 10.6052/0459-1879-19-375

    Wang E M, Wu S N, Wu Z G. 2020. Active-control-oriented dynamic modelling for on-orbit assembly space structure. Chinese Journal of Theoretical and Applied Mechanics, 52: 805-816. doi: 10.6052/0459-1879-19-375
    [68] 王恩美. 2020. 大型空间结构在轨组装阶段的分布式振动控制. 大连: 大连理工大学 (Wang E M. 2020. Distributed vibration control for large space structure during on-orbit assembly. Dalian: Dalian University of Technology).

    Wang E M. 2020. Distributed vibration control for large space structure during on-orbit assembly. Dalian: Dalian University of Technology.
    [69] 王庚祥, 马道林, 刘 洋, 等. 2022. 多体系统碰撞动力学中接触力模型的研究进展. 力学学报, 54: 3239-3266 (Wang G X, Ma D L, Liu Y, et al. 2022. Research progress of contact force models in the collision mechanics of multibody system. Chinese Journal of Theoretical and Applied Mechanics, 54: 3239-3266). doi: 10.6052/0459-1879-22-266

    Wang G X, Ma D L, Liu Y, et al. 2022. Research progress of contact force models in the collision mechanics of multibody system. Chinese Journal of Theoretical and Applied Mechanics, 54: 3239-3266. doi: 10.6052/0459-1879-22-266
    [70] 王国平. 2006. 多体系统动力学数值解法. 计算机仿真, 23: 86-89 (Wang G P. 2006. Numerical algorithms of multibody system dynamics. Computer Simulation, 23: 86-89). doi: 10.3969/j.issn.1006-9348.2006.02.026

    Wang G P. 2006. Numerical algorithms of multibody system dynamics. Computer Simulation, 23: 86-89. doi: 10.3969/j.issn.1006-9348.2006.02.026
    [71] 王立, 侯欣宾. 2014. 空间太阳能电站的关键技术及发展建议. 航天器环境工程, 32: 343-350 (Wang L, Hou X B. 2014. Key technologies and some suggestions for the development of space solar power station. Spacecraft Environment Engineering, 32: 343-350). doi: 10.3969/j.issn.1673-1379.2014.04.001

    Wang L, Hou X B. 2014. Key technologies and some suggestions for the development of space solar power station. Spacecraft Environment Engineering, 32: 343-350. doi: 10.3969/j.issn.1673-1379.2014.04.001
    [72] 王明明, 罗建军, 袁建平, 等. 2021. 空间在轨装配技术综述. 航空学报, 42: 47-61 (Wang M M, Luo J J, Yuan J P, et al. 2021. ln-orbit assembly technology: Review. Acta Aeronautica et Astronautica Sinica, 42: 47-61).

    Wang M M, Luo J J, Yuan J P, et al. 2021. ln-orbit assembly technology: Review. Acta Aeronautica et Astronautica Sinica, 42: 47-61.
    [73] 王琪, 庄方方, 郭易圆, 等. 2013. 非光滑多体系统动力学数值算法的研究进展. 力学进展, 43: 101-111 (Wang Q, Zhuang F F, Guo Y Y, et al. 2013. Advances in the research on numerical methods for non-smooth dynamics of multibody systems. Advances in Mechanics, 43: 101-111). doi: 10.6052/1000-0992-12-024

    Wang Q, Zhuang F F, Guo Y Y, et al. 2013. Advances in the research on numerical methods for non-smooth dynamics of multibody systems. Advances in Mechanics, 43: 101-111. doi: 10.6052/1000-0992-12-024
    [74] 王启生, 蒋建平, 李庆军, 等. 2022a. 空间机器人组装超大型结构的动力学分析. 应用数学和力学, 43 : 835-845 (Wang Q S, Jiang J P, Li Q J, et al. 2022a. Dynamic analyses of the assembling process of ultra-large structures with space robots. Applied Mathematics and Mechanics, 43 : 835-845).

    Wang Q S, Jiang J P, Li Q J, et al. 2022a. Dynamic analyses of the assembling process of ultra-large structures with space robots. Applied Mathematics and Mechanics, 43: 835-845.
    [75] 王启生, 蒋建平, 李庆军, 等. 2022b. 机器人组装超大型结构的姿-轨-柔耦合动力学仿真. 上海航天(中英文), 39 : 32-38 + 44 (Wang Q S, Jiang J P, Li Q J, et al. 2022b. Orbit-attitude-structure coupled dynamic simulation for ultra-large structure assembled by robot. Aerospace Shanghai (Chinese and English), 39 : 32-38 + 44).

    Wang Q S, Jiang J P, Li Q J, et al. 2022b. Orbit-attitude-structure coupled dynamic simulation for ultra-large structure assembled by robot. Aerospace Shanghai (Chinese and English), 39: 32-38 + 44.
    [76] 王兴, 蒋建平, 吴志刚. 2023a. 面向超大型航天结构的虚实融合地面试验系统及方法: 202310356641. X. 2023-04-06.
    [77] 王兴, 赵子恒, 江国期, 等. 2023b. 一种量化大柔性模块组装过程不确定性的试验装置及方法: 202310511771.6. 2023-07-25.
    [78] 王泽宇, 邹元杰, 焦安超, 等. 2015. 某遥感卫星平台的微振动试验研究. 航天器环境工程, 32 : 278-85 (Wang Z Y, Zou Y J, Jiao A C, et al. 2015. The jitter measurement and analysis for a remote sensing satellite platform. Spacecraft Environment Engineering, 32 : 278-285).

    Wang Z Y, Zou Y J, Jiao A C, et al. 2015. The jitter measurement and analysis for a remote sensing satellite platform. Spacecraft Environment Engineering, 32: 278-285.
    [79] 王贞. 2012. 实时混合试验的控制和时间积分算法. 哈尔滨: 哈尔滨工业大学 (Wang Z. 2012. Control and time integration algorithms for real-time hybrid simulation. Harbin: Harbin Institute of Technology).

    Wang Z. 2012. Control and time integration algorithms for real-time hybrid simulation. Harbin: Harbin Institute of Technology.
    [80] 吴锋, 高强, 钟万勰. 2014. 基于祖冲之类方法的多体动力学方程保能量保约束积分. 计算机辅助工程, 23: 64-68 (Wu F, Gao Q, Zhong W X. 2014. Energy and constraint preservation integration for multibody equations based on Zu Chongzhi method. Computer Aided Engineering, 23: 64-68).

    Wu F, Gao Q, Zhong W X. 2014. Energy and constraint preservation integration for multibody equations based on Zu Chongzhi method. Computer Aided Engineering, 23: 64-68.
    [81] 吴锋, 钟万勰. 2015. 基于祖冲之类方法具有保辛性. 计算力学学报, 32: 447-450 (Wu F, Zhong W X. 2015. The Zu-type method is symplectic. Chinese Journal of Computational Mechanics, 32: 447-450). doi: 10.7511/jslx201504001

    Wu F, Zhong W X. 2015. The Zu-type method is symplectic. Chinese Journal of Computational Mechanics, 32: 447-450. doi: 10.7511/jslx201504001
    [82] 邬树楠, 叶哲, 初未萌, 等. 2023. 超大型空间结构在轨组装过程中的姿态自适应控制. 中国宇航学会空间太阳能电站专业委员会2023年学术交流会, 扬州 (Wu S N, Ye Z, Chu W M, et al. 2023. Attitude adaptive control during on-orbit assembly of super-large space structures. 2023 Academic Conference of the Space Solar Power Station Professional Committee of Chinese Society of Astronautics, Yangzhou).

    Wu S N, Ye Z, Chu W M, et al. 2023. Attitude adaptive control during on-orbit assembly of super-large space structures. 2023 Academic Conference of the Space Solar Power Station Professional Committee of Chinese Society of Astronautics, Yangzhou.
    [83] 吴坛辉, 洪嘉振, 刘铸永. 2013. 非线性几何精确梁理论研究综述. 中国科技论文, 8: 1126-1130 (Wu T H, Hong J Z, Liu Z Y. 2013. Advances of geometrically exact 3D beam theory. China Sciencepaper, 8: 1126-1130). doi: 10.3969/j.issn.2095-2783.2013.11.012

    Wu T H, Hong J Z, Liu Z Y. 2013. Advances of geometrically exact 3D beam theory. China Sciencepaper, 8: 1126-1130. doi: 10.3969/j.issn.2095-2783.2013.11.012
    [84] 解永春, 张昊, 胡海霞, 等. 2022. 我国载人航天工程交会对接控制技术发展. 航天器工程, 31: 130-138 (Xie Y C, Zhang H, Hu H X, et al. 2022. Control technology development of rendezvous and docking for China manned space program. Spacecraft Engineering, 31: 130-138). doi: 10.3969/j.issn.1673-8748.2022.06.016

    Xie Y C, Zhang H, Hu H X, et al. 2022. Control technology development of rendezvous and docking for China manned space program. Spacecraft Engineering, 31: 130-138. doi: 10.3969/j.issn.1673-8748.2022.06.016
    [85] 熊健, 龚程, 韦兴宇, 等. 2022. 可组装轻质空间结构技术研究进展. 宇航学报, 43: 1429-1443 (Xiong J, Gong C, Wei X Y, et al. 2022. Research progress on space assembled and lightweight structure technologies. Journal of Astronautics, 43: 1429-1443). doi: 10.3873/j.issn.1000-1328.2022.11.001

    Xiong J, Gong C, Wei X Y, et al. 2022. Research progress on space assembled and lightweight structure technologies. Journal of Astronautics, 43: 1429-1443. doi: 10.3873/j.issn.1000-1328.2022.11.001
    [86] 徐方暖, 王博, 邓子辰, 等. 2017. 基于四元数方法的绳系机器人姿态控制. 应用数学和力学, 38: 1309-1318 (Xu F N, Wang B, Deng Z C, et al. 2017. Attitude control of targets captured by tethered space robots based on the quaternion theory. Applied Mathematics and Mechanics, 38: 1309-1318).

    Xu F N, Wang B, Deng Z C, et al. 2017. Attitude control of targets captured by tethered space robots based on the quaternion theory. Applied Mathematics and Mechanics, 38: 1309-1318.
    [87] 徐永利, 李潇男, 刘勇, 等. 2020. 空间机械臂地面竖直方向重力补偿控制系统设计. 机器人, 42: 191-198 (Xu Y L, Li X N, Liu Y, et al. 2020. Design of the gravity compensation control system in the vertical direction on the ground for space manipulator. Robot, 42: 191-198).

    Xu Y L, Li X N, Liu Y, et al. 2020. Design of the gravity compensation control system in the vertical direction on the ground for space manipulator. Robot, 42: 191-198.
    [88] 闫业毫, 和兴锁, 邓峰岩. 2016. 空间柔性梁的刚-柔耦合动力学特性分析与仿真. 西北工业大学学报, 3: 480-484 (Yan Y H, He X S, Deng F Y. 2016. Analyzing and imitation of dynamic properties for rigid-flexible coupling systems of a spatial flexible beam. Journal of Northwestern Polytechnical University, 3: 480-484). doi: 10.3969/j.issn.1000-2758.2016.03.019

    Yan Y H, He X S, Deng F Y. 2016. Analyzing and imitation of dynamic properties for rigid-flexible coupling systems of a spatial flexible beam. Journal of Northwestern Polytechnical University, 3: 480-484. doi: 10.3969/j.issn.1000-2758.2016.03.019
    [89] 杨胜丽, 吴志刚, 孟得山, 等. 2023. 机器人在轨组装结构的耦合动力学与步态优化. 力学学报, 55: 1548-1558 (Yang S L, Wu Z G, Meng D S, et al. 2023. Coupled dynamics and gait optimization of the spatial structure of robot walking assembly. Chinese Journal of Theoretical and Applied Mechanics, 55: 1548-1558). doi: 10.6052/0459-1879-23-135

    Yang S L, Wu Z G, Meng D S, et al. 2023. Coupled dynamics and gait optimization of the spatial structure of robot walking assembly. Chinese Journal of Theoretical and Applied Mechanics, 55: 1548-1558 doi: 10.6052/0459-1879-23-135
    [90] 叶哲. 2022. 空间太阳能电站姿态动力学建模与分布式控制. [ 硕士论文 ]. 大连: 大连理工大学 (Ye Z. 2022. Attitude dynamics and distributed control of space solar power station. [Master Thesis]. Dalian: Dalian University of Technology).

    Ye Z. 2022. Attitude dynamics and distributed control of space solar power station. [Master Thesis]. Dalian: Dalian University of Technology.
    [91] 余瑶, 文浩, 陈提. 2017. 中心刚体-柔性梁应变反馈多目标优化控制. 动力学与控制学报, 15: 356-362 (Yu Y, Wen H, Chen T. 2017. Multi-objective optimal control of a flexible hub-beam with strain feedback. Journal of Dynamics and Control, 15: 356-362). doi: 10.6052/1672-6553-2017-012

    Yu Y, Wen H, Chen T. 2017. Multi-objective optimal control of a flexible hub-beam with strain feedback. Journal of Dynamics and Control, 15: 356-362. doi: 10.6052/1672-6553-2017-012
    [92] 余瑶. 2017. 柔性航天器部件自主运送动力学及控制. 南京: 南京航空航天大学 (Yu Y. 2017. Dynamics and control research on autonomously transporting elements of flexible spacecraft. Nanjing: Nanjing University of Aeronautics and Astronautics).

    Yu Y. 2017. Dynamics and control research on autonomously transporting elements of flexible spacecraft. Nanjing: Nanjing University of Aeronautics and Astronautics.
    [93] 岳程斐, 陆浪, 吴云华, 等. 2023. 在轨集群操控关键技术研究进展与展望. 宇航学报, 44: 817-828 (Yue C F, Lu L, Wu Y H, et al. 2023. Research progress and prospect of the key technologies for on-orbit spacecraft swarm manipulation. Journal of Astronautics, 44: 817-828). doi: 10.3873/j.issn.1000-1328.2023.06.002

    Yue C F, Lu L, Wu Y H, et al. 2023. Research progress and prospect of the key technologies for on-orbit spacecraft swarm manipulation. Journal of Astronautics, 44: 817-828. doi: 10.3873/j.issn.1000-1328.2023.06.002
    [94] 臧旭, 唐国安, 郭其威, 等. 2017. 航天器大型柔性附件地面模态试验与性能评价研究. 载人航天, 23: 556-563 (Zang X, Tang G A, Guo Q W, et al. 2017. Ground modal test and performance evaluation of large flexible accessories in spacecraft. Manned Spaceflight, 23: 556-563). doi: 10.3969/j.issn.1674-5825.2017.04.020

    Zang X, Tang G A, Guo Q W, et al. 2017. Ground modal test and performance evaluation of large flexible accessories in spacecraft. Manned Spaceflight, 23: 556-563. doi: 10.3969/j.issn.1674-5825.2017.04.020
    [95] 张开明. 2021. 空间太阳能电站的姿态动力学建模与鲁棒控制. 大连: 大连理工大学 (Zhang K M. 2021. Attitude dynamic modeling and robust control of space solar power station. Dalian: Dalian University of Technology).

    Zhang K M. 2021. Attitude dynamic modeling and robust control of space solar power station. Dalian: Dalian University of Technology.
    [96] 张雄, 王天舒. 2007. 计算动力学. 北京: 清华大学出版社.
    [97] 张志刚. 2015. 多体系统中大变形柔性梁的建模及动力学仿真. 大连: 大连理工大学 (Zhang Z G. 2015. Modeling and dynamic simulation oflarge deformation flexiblebeams in multibody systems. Dalian: Dalian University of Technology).

    Zhang Z G. 2015. Modeling and dynamic simulation oflarge deformation flexiblebeams in multibody systems. Dalian: Dalian University of Technology.
    [98] 赵维加, 潘振宽. 1995. 多体系统动力学微分/代数方程组的一类缩并算法. 纺织高校基础科学学报, 8: 234-239 (Zhao W J, Pan Z K. 1995. A new coordinate reduction method for the numerical analysis of differential/algebraic equations in dynamics of multibody systems. Basic Sciences Journal of Textile Universities, 8: 234-239).

    Zhao W J, Pan Z K. 1995. A new coordinate reduction method for the numerical analysis of differential/algebraic equations in dynamics of multibody systems. Basic Sciences Journal of Textile Universities, 8: 234-239.
    [99] 赵志刚, 赵阳, 葛卫平, 等. 2013. 空间站机械臂转位系统动力学建模及特性分析. 中国空间科学技术, 33: 22-29 (Zhao Z G, Zhao Y, Ge W P, et al. 2013. Dynamic modeling and characteristics analysis for manipulator transformation system of the space station. Chinese Space Science and Technology, 33: 22-29). doi: 10.3780/j.issn.1000-758X.2014.02.003

    Zhao Z G, Zhao Y, Ge W P, et al. 2013. Dynamic modeling and characteristics analysis for manipulator transformation system of the space station. Chinese Space Science and Technology, 33: 22-29. doi: 10.3780/j.issn.1000-758X.2014.02.003
    [100] 钟红恩, 周凤岐, 周军. 2003. 大型挠性空间结构的分散PD控制. 航天控制, 2003: 22-26 + 38 (Zhong H E, Zhou F Q, Zhou J. 2003. The decentralized PD control of large flexible space structure. Aerospace Control, 2003: 22-26 + 38). doi: 10.3969/j.issn.1006-3242.2003.01.004

    Zhong H E, Zhou F Q, Zhou J. 2003. The decentralized PD control of large flexible space structure. Aerospace Control, 2003: 22-26 + 38. doi: 10.3969/j.issn.1006-3242.2003.01.004
    [101] 钟万勰, 吴锋. 2016. 力-功-能-辛-离散−祖冲之方法论. 大连: 大连理工大学出版社.
    [102] 周荻, 范继祥. 2012. 绳系太阳能发电卫星姿态机动的主动振动控制. 宇航学报, 33: 605-611 (Zhou D, Fan J X. 2012. Active vibration control of tethered solar power satellite during attitude maneuvering. Journal of Astronautics, 33: 605-611).

    Zhou D, Fan J X. 2012. Active vibration control of tethered solar power satellite during attitude maneuvering. Journal of Astronautics, 33: 605-611.
    [103] 周荻, 范继祥. 2013. 绳系太阳能发电卫星姿态机动的边界控制. 振动工程学报, 26: 41-47 (Zhou D, Fan J X. 2013. Boundary control in the attitude maneuvering of tethered space solar power satellite. Journal of Vibration Engineering, 26: 41-47). doi: 10.3969/j.issn.1004-4523.2013.01.007

    Zhou D, Fan J X. 2013. Boundary control in the attitude maneuvering of tethered space solar power satellite. Journal of Vibration Engineering, 26: 41-47. doi: 10.3969/j.issn.1004-4523.2013.01.007
    [104] 周晓涛, 王栋, 马小飞. 2019. 空间可展开结构中壳膜结构的建模分析研究综述. 空间电子技术, 16: 15-25 (Zhou X T, Wang D, Ma X F. 2019. A review of modeling analysis of shell membrane structures in spatially expandable structures. Space Electronic Technology, 16: 15-25). doi: 10.3969/j.issn.1674-7135.2019.03.003

    Zhou X T, Wang D, Ma X F. 2019. A review of modeling analysis of shell membrane structures in spatially expandable structures. Space Electronic Technology, 16: 15-25. doi: 10.3969/j.issn.1674-7135.2019.03.003
    [105] Adetoro O B, Cardoso R P R. 2021. On the mechanical dynamic similitude of solid continuum. International Journal of Impact Engineering, 154: 103876. doi: 10.1016/j.ijimpeng.2021.103876
    [106] Angeletti F, Gasbarri P, Sabatini M. 2019. Optimal design and robust analysis of a net of active devices for micro-vibration control of an on-orbit large space antenna. Acta astronautica, 164: 241-253. doi: 10.1016/j.actaastro.2019.07.028
    [107] Ascher U M, Petzold L R. 1991. Projected implicit Runge-Kutta methods for differential-algebraic equations. SIAM Journal on Numerical Analysis, 28: 1097-1120. doi: 10.1137/0728059
    [108] Ashley H. 1967. Observations on the dynamic behavior of large flexible bodies in orbit. AIAA Journal, 5: 460-469. doi: 10.2514/3.4002
    [109] Badawy A, McInnes C R. 2008. On-orbit assembly using superquadric potential fields. Journal of Guidance, Control, and Dynamics, 31: 30-43. doi: 10.2514/1.28865
    [110] Balas M J. 1979. Direct velocity feedback control of large space structures. Journal of Guidance, Control, and Dynamics, 2: 252-253. doi: 10.2514/3.55869
    [111] Balas M J. 1982. Trends in large space structure control theory: fondest hopes, wildest dreams. IEEE Transactions on Automatic Control, 27: 522-535. doi: 10.1109/TAC.1982.1102953
    [112] Bathe K J. 2007. Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Computers & Structures, 85: 437-445.
    [113] Baumgarte J W. 1972. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering, 1: 1-16. doi: 10.1016/0045-7825(72)90018-7
    [114] Bonetti F, McInnes C R. 2018. Space-enhanced terrestrial solar power for equatorial regions. Journal of Spacecraft and Rockets, 56: 33-43.
    [115] Boning P, Dubowsky S. 2010. Coordinated control of space robot teams for the on-orbit construction of large flexible space structures. Advanced Robotics, 24: 303-323. doi: 10.1163/016918609X12619993300665
    [116] Brogliato B, Kövecses J, Acary V. 2020. The contact problem in Lagrangian systems with redundant frictional bilateral and unilateral constraints and singular mass matrix. The all-sticking contacts problem. Multibody System Dynamics, 48: 151-192. doi: 10.1007/s11044-019-09712-1
    [117] Cao K, Li S, She Y C, et al. 2021. Dynamics and on-orbit assembly strategies for an orb-shaped solar array. Acta Astronautica, 178: 881-893. doi: 10.1016/j.actaastro.2020.10.030
    [118] Çelik O, Viale A, Oderinwale T, et al. 2022. Enhancing terrestrial solar power using orbiting solar reflectors. Acta Astronautica, 195: 276-286. doi: 10.1016/j.actaastro.2022.03.015
    [119] Chang S Y. 1998. A time integration pseudodynamic algorithm. The 11th European Conference on Earthquake Engineering, Paris, France.
    [120] Chen T, Wen H. 2018. Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer. Acta Astronautica, 147: 86-96. doi: 10.1016/j.actaastro.2018.03.027
    [121] Chen T, Wen H, Hu H Y, et al. 2017. Quasi-time-optimal controller design for a rigid-flexible multibody system via absolute coordinate-based formulation. Nonlinear Dynamics, 88: 623-633. doi: 10.1007/s11071-016-3265-4
    [122] Chen T, Wen H, Hu H Y, et al. 2016. Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly. Acta Astronautica, 121: 271-281. doi: 10.1016/j.actaastro.2015.11.004
    [123] Chen X J, Yuan R H, Zhu J X, et al. 2023. Conceptual design and orbit-attitude coupled analyses of free-drift solar power satellite. Advances in Space Research, 71: 5413-5430. doi: 10.1016/j.asr.2023.02.039
    [124] Cheng Z A, Hou X B, Zhang X H, et al. 2016. In-orbit assembly mission for the space solar power station. Acta Astronautica, 129: 299-308. doi: 10.1016/j.actaastro.2016.08.019
    [125] Chobotov V. 1963. Gravity-gradient excitation of a rotating cable-counterweight space station in orbit. Journal of Applied Mechanics, Transactions ASME, 30: 547-554. doi: 10.1115/1.3636616
    [126] Chung J T, Hulbert G M. 1993. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. Journal of Applied Mechanics, 60: 371-375. doi: 10.1115/1.2900803
    [127] Clohessy H, Wiltshire S. 1960. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences, 27: 653-658. doi: 10.2514/8.8704
    [128] Coutinho C P, Baptista A J, Dias Rodrigues J. 2016. Reduced scale models based on similitude theory: A review up to 2015. Engineering Structures, 119: 81-94. doi: 10.1016/j.engstruct.2016.04.016
    [129] Culbertson P, Bandyopadhyay S, Schwager M. 2019. Multi-robot assembly sequencing via discrete optimization. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
    [130] Dibold M, Gerstmayr J, Irschik H. 2009. A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems. Journal of Computational and Nonlinear Dynamics, 4: 021006. doi: 10.1115/1.3079825
    [131] DOE/NASA. 1980. The final proceedings of the solar power satellite program review. Springfield.
    [132] Donatiello D, Dipaola A. 2012. Preliminary study on a vibration suppression system for a large flexible space structure. Milan: Polytechnic University of Milan.
    [133] Dong H, Akella M R. 2017. Autonomous rendezvous and docking of spacecraft under 6-DOF motion constraints. IEEE 56th Annual Conference on Decision and Control. 4527-4532.
    [134] Dorsey J T, Watson J J. 2016. Space assembly of large structural system architectures (SALSSA). AIAA Space and Astronautics Forum and Exposition, Long Beach, United States, September 13-16.
    [135] Elrod B D. 1972. A quasi-inertial attitude mode for orbiting spacecraft. Journal of Spacecraft and Rockets, 9: 889-895. doi: 10.2514/3.30407
    [136] Fanson J L, Caughey T K. 1990. Positive position feedback control for large space structures. AIAA Journal, 28: 717-724. doi: 10.2514/3.10451
    [137] Flores P. 2022. Contact mechanics for dynamical systems: a comprehensive review. Multibody System Dynamics, 54: 1-51. doi: 10.1007/s11044-021-09801-0
    [138] Flores-Abad A, Ma O, Pham K. 2014. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 68: 1-26. doi: 10.1016/j.paerosci.2014.03.002
    [139] Fu K J, Zhao Z H, Ren G X, et al. 2019. From multiscale modeling to design of synchronization mechanisms in mesh antennas. Acta Astronautica, 159: 156-165. doi: 10.1016/j.actaastro.2019.03.056
    [140] Fujii H, Watanabe T, Kojima H, et al. 2003. Control of attitude and vibration of a tethered space solar power satellite. AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics.
    [141] Fung T C. 1998. Complex-time-step Newmark methods with controllable numerical dissipation. International Journal for Numerical Methods in Engineering, 41: 65-93. doi: 10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F
    [142] Gallardo D, Bevilacqua R. 2011. Six degrees of freedom experimental platform for Testing Autonomous Satellites Operations. Proceedings of the 8th International ESA GNC Conference.
    [143] Gao Y, Wu S N, Li Q J. 2022. Attitude control of a flexible solar power satellite using self-tuning iterative learning control. Transactions of Nanjing University of Aeronautics and Astronautics, 4 : 389-399.
    [144] García-Vallejo D, Mayo J, Escalona J L, et al. 2004. Efficient evaluation of the elastic forces and the jacobian in the absolute nodal coordinate formulation. Nonlinear Dynamics, 35: 313-329. doi: 10.1023/B:NODY.0000027747.41604.20
    [145] Gasbarri P, Monti R, Angelis D, et al. 2012. Second order effects of the flexibility on the control of a spacecraft full-coupled model. Advances in the Astronautical Sciences, 145: 1097-1115.
    [146] Gasbarri P, Monti R, De Angelis C, et al. 2014a. Effects of uncertainties and flexible dynamic contributions on the control of a spacecraft full-coupled model. Acta Astronautica, 94: 515-526. doi: 10.1016/j.actaastro.2012.08.018
    [147] Gasbarri P, Monti R, Sabatini M. 2014b. Very large space structures: non-linear control and robustness to structural uncertainties. Acta Astronautica, 93: 252-265. doi: 10.1016/j.actaastro.2013.07.022
    [148] Gawthrop P J, Neild S A, Gonzalez-Buelga A, et al. 2009. Causality in real-time dynamic substructure testing. Mechatronics, 19: 1105-1115. doi: 10.1016/j.mechatronics.2008.02.005
    [149] Glaser P. 1968. Power from the sun: its future. Science, 162: 857-861. doi: 10.1126/science.162.3856.857
    [150] Glumov V M, Krutova I N, Sukhanov V M. 2003. A method of constructing the mathematical model of a discretely developing large space structure. Automation and Remote Control, 64: 1527-1543. doi: 10.1023/A:1026001120674
    [151] Glumov V M, Krutova I N, Sukhanov V M. 2004. Fuzzy logic-based adaptive control system for in-orbit assembly of large space structures. Automation and Remote Control, 65: 1618-1634. doi: 10.1023/B:AURC.0000044271.14689.17
    [152] Glumov V M, Rutkovskii V Y, Sukhanov V M. 2007. Formation of the control strategy for the large space structure assembled in orbit. Automation and Remote Control, 68: 2113-2127. doi: 10.1134/S0005117907120028
    [153] Goh C J, Caughey T K. 1985. On the stability problem caused by finite actuator dynamics in the collocated control of large space structures. International Journal of Control, 41: 787-802. doi: 10.1080/0020718508961163
    [154] Goldsmith W, Frasier J T. 1961. Impact: the theory and physical behavior of colliding solids. Journal of Applied Mechanics, 28: 639.
    [155] Graf O F. 1977. Orbital motion of the solar power satellite. Analytical and Computational Mathematics Inc. , Technical Report N78-1548, Houston, Texas.
    [156] Gralla E L, De Weck O. 2012. On-orbit assembly strategies for next-generation space exploration. The 57th International Astronautical Congress.
    [157] Hairer E. 2000. Symmetric projection methods for differential equations on manifolds. BIT Numerical Mathematics, 40: 726-734. doi: 10.1023/A:1022344502818
    [158] Hogstrom K, Backes P G, Burdick J, et al. 2014. A robotically-assembled 100-meter space telescope. The 65th International Astronautical Congress, Toronto, Canada. IAC-14-C2.2. 6.
    [159] Houghton N M, Fulton J, Mazarr A, et al. 2020. Utilizing in-space assembly to add artificial gravity capabilities to Mars exploration mission vehicles. AIAA SciTech Forum. Orlando.
    [160] Hu H Y, Chen T, Wen H, et al. 2017b. Autonomous Assembly of a Team of Flexible Spacecraft. The 9th European Nonlinear Dynamics Conference, Budapest, Hungary.
    [161] Hu J F, Wang L P, Yang J G. 2023. The pretension design of cable mesh considering the large deformation of ring truss. International Journal of Aerospace Engineering, 2023: 1282797.
    [162] Hu Q, Jia Y H, Xu S J. 2013. Simple adaptive control for vibration suppression of space structures using control moment gyroscopes as actuators. AIAA Guidance, Navigation, and Control Conference. Boston, MA.
    [163] Hu Q, Su L, Cao Y G, et al. 2018b. Decentralized simple adaptive control for large space structures. Journal of Sound and Vibration, 427: 95-119. doi: 10.1016/j.jsv.2018.04.033
    [164] Hu W P, Deng Z C. 2023. A review of dynamic analysis on space solar power station. Astrodynamics, 7: 115-130. doi: 10.1007/s42064-022-0144-2
    [165] Hu W P, Li Q J, Jiang X H, et al. 2017a. Coupling dynamic behaviors of spatial flexible beam with weak damping. International Journal for Numerical Methods in Engineering, 111: 660-675. doi: 10.1002/nme.5477
    [166] Hu W P, Song M Z, Deng Z C. 2018a. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system. Journal of Sound Vibration, 412: 58-73. doi: 10.1016/j.jsv.2017.09.032
    [167] Hunt K, Crossley F. 1975. Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied Mechanics, 42: 440-445. doi: 10.1115/1.3423596
    [168] Hussein B A, Shabana A A. 2011. Sparse matrix implicit numerical integration of the Stiff differential/algebraic equations: Implementation. Nonlinear Dynamics, 65: 369-382. doi: 10.1007/s11071-010-9898-9
    [169] Hyland D C, Junkins J L, Longman R W. 1993. Active control technology for large space structures. Journal of Guidance, Control, and Dynamics, 16: 801-821. doi: 10.2514/3.21087
    [170] Ishijima Y, Tzeranis D, Dubowsky S. 2005. The on-orbit maneuvering of large space flexible structures by free-flying robots. The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Munich, Germany.
    [171] Ishimura K, and Higuchi K. 2007. Coupling between structural deformation and attitude motion of large planar space structures suspended by multi-tethers. Acta Astronautica, 60: 691-710. doi: 10.1016/j.actaastro.2006.10.002
    [172] Izzo D, Pettazzi L, Ayre M. 2005. Mission concept for autonomous on-orbit assembly of a large reflector in space. The 56th International Astronautical Congress.
    [173] Jiang G Q, Jiang J P, Yang G, et al. 2023. Orbit-attitude-structure coupled modelling method in local translational coordinate frame for multibody systems. International Journal of Non-Linear Mechanics, 157: 104562. doi: 10.1016/j.ijnonlinmec.2023.104562
    [174] Jiang J P, Li D X. 2010. Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures. Smart Materials and Structures, 19: 085020. doi: 10.1088/0964-1726/19/8/085020
    [175] Jin Q B, Huang J. 2018. Active vibration control of large space flexible slewing truss using cable actuator with input saturation. International Journal of Robust and Nonlinear Control, 28: 504-518. doi: 10.1002/rnc.3884
    [176] Joshi S M, Maghami E, Kelkar A G. 1995. Design of dynamic dissipative compensators for flexible space structures. IEEE Transactions on Aerospace and Electronic Systems, 31: 1314-1324. doi: 10.1109/7.464345
    [177] Joshi S M. 1983. Control systems synthesis for a large flexible space antenna. Acta Astronautica, 10: 365-380. doi: 10.1016/0094-5765(83)90087-5
    [178] Joshi S M. 1986. Robustness properties of collocated controllers for flexible spacecraft. Journal of Guidance, Control, and Dynamics, 9: 85-91. doi: 10.2514/3.20071
    [179] Karumanchi S, Edelberg K, Nash J, et al. 2018. Payload-centric autonomy for in-space robotic assembly of modular space structures. Journal of Field Robotics, 35: 1005-1021. doi: 10.1002/rob.21792
    [180] Kerley D. 2010. Distributed control of a segmented telescope mirror. Victoria: University of Victoria.
    [181] Khude N, Stanciulescu I, Melanz D, et al. 2013. Efficient parallel simulation of large flexible body systems with multiple contacts. Journal of Computational and Nonlinear Dynamics, 8: 041003. doi: 10.1115/1.4023915
    [182] Krishna R, Bainum P M. 1984. Effect of solar radiation disturbance on a flexible beam in orbit. AIAA Journal, 22: 677-682. doi: 10.2514/3.8654
    [183] Kumar V K, Bainum P W. 1980. Dynamics of a flexible body in orbit. Journal of Guidance, Control, and Dynamics, 3: 90-92. doi: 10.2514/3.55952
    [184] Lee N, Backes P G, Burdick J, et al. 2016. Architecture for in-space robotic assembly of a modular space telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2: 041207. doi: 10.1117/1.JATIS.2.4.041207
    [185] Leomanni M, Quartullo R, Bianchini G, et al. 2022. Variable-horizon guidance for autonomous rendezvous and docking to a tumbling target. Journal of Guidance, Control, and Dynamics, 45: 846-858. doi: 10.2514/1.G006340
    [186] Li D X, Liu W, Jiang J P, et al. 2011. Placement optimization of actuator and sensor and decentralized adaptive fuzzy vibration control for large space intelligent truss structure. Science China Technological Sciences, 54: 853-861. doi: 10.1007/s11431-011-4333-0
    [187] Li D L, Zhong L, Zhu W, et al. 2022b. A survey of space robotic technologies for on-orbit assembly. Space:Science and Technology, 2022: 1-13.
    [188] Li K, Tian Q, Shi J W, et al. 2019c. Assembly dynamics of a large space modular satellite antenna. Mechanism and Machine Theory, 142: 103601. doi: 10.1016/j.mechmachtheory.2019.103601
    [189] Li Q J, Deng Z C, Zhang K, et al. 2018a. Precise attitude control of multirotary-joint solar-power satellite. Journal of Guidance, Control, and Dynamics, 41: 1435-1442. doi: 10.2514/1.G003309
    [190] Li Q J, Deng Z C, Zhang K, et al. 2018b. Unified modeling method for large space structures using absolute nodal coordinate. AIAA Journal, 56: 4146-4157. doi: 10.2514/1.J057117
    [191] Li Q J, Deng Z C. 2019. Coordinated orbit-attitude-vibration control of a Sun-facing solar power satellite. Journal of Guidance, Control, and Dynamics, 42: 1863-1869. doi: 10.2514/1.G004202
    [192] Li Q J, Sun T T, Li J H, et al. 2019b. Gravity-gradient-induced transverse deformations and vibrations of a sun-facing beam. AIAA Journal, 57: 5491-5502. doi: 10.2514/1.J058534
    [193] Li Q J, Wei Y, Deng Z C, et al. 2021. Switched iterative learning attitude and structural control for solar power satellites. Acta Astronautica, 182: 100-109. doi: 10.1016/j.actaastro.2021.02.011
    [194] Li Q J, Wei Y, Wu Z G, et al. 2022a. Novel orbit-attitude combination mode for solar power satellites to reduce mass and fuel. Chinese Journal of Aeronautics, 35: 132-142. doi: 10.1016/j.cja.2022.01.022
    [195] Li W J, Cheng D Y, Liu X G, et al. 2019a. On-orbit service (OOS) of spacecraft: a review of engineering developments. Progress in Aerospace Sciences, 108: 32-120. doi: 10.1016/j.paerosci.2019.01.004
    [196] Lin C R, Zhao Z H, Wang Z Y, et al. 2022. Quantifying uncertainties in nonlinear dynamics of a modular assembly using the resonance decay method. Actuators, 11: 350. doi: 10.3390/act11120350
    [197] Liu C, Tian Q, Yan D, et al. 2013. Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Computer Methods in Applied Mechanics and Engineering, 258: 81-95. doi: 10.1016/j.cma.2013.02.006
    [198] Liu X, Cai G P, Peng F J, et al. 2018b. Dynamic model and active vibration control of a membrane antenna structure. Journal of Vibration and Control, 24: 4282-4296. doi: 10.1177/1077546317722898
    [199] Liu Y L, Wu S N, Radice G, et al. 2018a. Gravity-gradient effects on flexible solar power satellites. Journal of Guidance, Control, and Dynamics, 41: 773-778.
    [200] Liu Y L, Wu S N, Zhang K M, et al. 2017a. Gravitational orbit-attitude coupling dynamics of a large solar power satellite. Aerospace Science and Technology, 62: 46-54. doi: 10.1016/j.ast.2016.11.030
    [201] Liu Y L, Wu S N, Zhang K M, et al. 2017b. Parametrical excitation model for rigid-flexible coupling system of solar power satellite. Journal of Guidance, Control, and Dynamics, 40: 2674-2681. doi: 10.2514/1.G002739
    [202] Liu Y Y, Zhou J. 2009. Fuzzy attitude control for flexible satellite during orbit maneuver. 2009 International Conference on Mechatronics and Automation, 1239-1243.
    [203] Looze D P, Athans M, Eterno J S. 1985. Decentralized control of sequentially assembled large space structures. 1985 24th IEEE Conference on Decision and Control, 1844-1851.
    [204] Luo K, Hu H Y, Liu C, et al. 2017. Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Computer Methods in Applied Mechanics and Engineering, 324: 573-594. doi: 10.1016/j.cma.2017.06.029
    [205] Luo Y J, Xu M L, Yan B, et al. 2015. PD control for vibration attenuation in hoop truss structure based on a novel piezoelectric bending actuator. Journal of Sound and Vibration, 339: 11-24. doi: 10.1016/j.jsv.2014.11.003
    [206] Luo Y Z, Zhang J, Tang G J. 2014. Survey of orbital dynamics and control of space rendezvous. Chinese Journal of Aeronautics, 27: 1-11. doi: 10.1016/j.cja.2013.07.042
    [207] Ma O, Flores-Abad A, Boge T. 2012. Use of industrial robots for hardware-in-the-loop simulation of satellite rendezvous and docking. Acta Astronautica, 81: 335-347. doi: 10.1016/j.actaastro.2012.08.003
    [208] Mahin S A, Shing P B. 1985. Pseudodynamic method for seismic testing. Journal of Structural Engineering-asce, 111: 1482-1503. doi: 10.1061/(ASCE)0733-9445(1985)111:7(1482)
    [209] Malla R, Lin C J. 2002. Dynamics of flexible structures in orbit under jet impingement loading. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado.
    [210] Mcgowan P E, Edighoffer H E, Wallace J W. 1990. Development of an experimental space station model for structural dynamics research. NASA, NASA-TM-102601.
    [211] McInnes C R. 1995. Distributed control of maneuvering vehicles for on-orbit assembly. Journal of Guidance, Control, and Dynamics, 18: 1204-1206. doi: 10.2514/3.21526
    [212] McNally I J, Scheeres D J, Radice G. 2014. Attitude dynamics of large geosynchronous solar power satellites. AIAA/AAS Astrodynamics Specialist Conference. American Institute of Aeronautics and Astronautics.
    [213] McNally I, Scheeres D, Radice G. 2015. Locating large solar power satellites in the geosynchronous Laplace plane. Journal of Guidance, Control, and Dynamics, 38: 489-505. doi: 10.2514/1.G000609
    [214] Meng D S, Lu W N, Xu W F, et al. 2018. Vibration suppression control of free-floating space robots with flexible appendages for autonomous target capturing. Acta Astronautica, 151: 904-918 doi: 10.1016/j.actaastro.2018.07.044
    [215] Moreau J J. 1988. Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth Mechanics and Applications. International Centre for Mechanical Sciences, vol 302. Springer, Vienna.
    [216] Moshtaghzadeh M, Izadpanahi E, Mardanpour P. 2021. Stability analysis of an origami helical antenna using geometrically exact fully intrinsic nonlinear composite beam theory. Engineering Structures, 234: 111894. doi: 10.1016/j.engstruct.2021.111894
    [217] Mu R N, Tan S J, Wu Z G, et al. 2018. Coupling dynamics of super large space structures in the presence of environmental disturbances. Acta Astronautica, 148: 385-395. doi: 10.1016/j.actaastro.2018.05.022
    [218] Mukherjee R, Siegler N, Thronson H. 2019. The future of space astronomy will be built: Results from the in-space astronomical telescope (iSAT) assembly design study. 70th International Astronautical Congress (IAC). Washington D. C. , United States.
    [219] Nanjangud A, Blacker P C, Young A, et al. 2019. Robotic architectures for the on-orbit assembly of large space telescopes. The 15th advanced space technologies in robotics and automation (ASTRA) 2019 symposium, Noordwijk, Netherlands.
    [220] Negrut D, Rampalli R, Ottarsson G, et al. 2007. On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. Journal of Computational and Nonlinear Dynamics, 2: 73-85. doi: 10.1115/1.2389231
    [221] Newmark N M. 1959. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85: 67-94.
    [222] Ni Z Y, Wu C C, Wu S N. 2022a. Recursive identification of inertia tensor parameters of space solar power satellite based on distributed placement of attitude sensors. Aerospace Science and Technology, 130: 107872. doi: 10.1016/j.ast.2022.107872
    [223] Ni Z Y, Wu S N, Wu C C. 2022b. Time-varying frequency parameter identification of space solar power satellites based on an improved recursive subspace algorithm and optimal sensor placement. Aerospace Science and Technology, 128: 107754. doi: 10.1016/j.ast.2022.107754
    [224] Nurre G S, Ryan R S, Scofield H N, et al. 1984. Dynamics and control of large space structures. Journal of Guidance, Control, and Dynamics, 7: 514-526. doi: 10.2514/3.19890
    [225] Otsuka K, Makihara K, Sugiyama H. 2022. Recent advances in the absolute nodal coordinate formulation: literature review from 2012 to 2020. Journal of Computational and Nonlinear Dynamics, 17: 080803. doi: 10.1115/1.4054113
    [226] Peng Y, Zhao Z H, Zhou M, et al. 2017. Flexible multibody model and the dynamics of the deployment of mesh antennas. Journal of Guidance, Control, and Dynamics, 40: 1499-1510. doi: 10.2514/1.G000361
    [227] Pfeiffer F. 2003. The idea of complementarity in multibody dynamics. Archive of Applied Mechanics, 72: 807-816. doi: 10.1007/s00419-002-0256-3
    [228] Qian Z J, Jin C Q, Zhang D G. 2017. Multiple frictional impact dynamics of threshing process between flexible tooth and grain kernel. Computers and Electronics in Agriculture, 141: 276-285. doi: 10.1016/j.compag.2017.07.022
    [229] Quinn R D, Yunis I S. 1993. Control/structure interactions of Space Station solar dynamic modules. Journal of guidance, control, and dynamics, 16: 623-629. doi: 10.2514/3.21059
    [230] Reissner E. 1972. On one-dimensional finite-strain theory: the plane problem. Journal of Applied Mathematics and Physics, 23: 795-804.
    [231] Reissner E. 1979. On lateral buckling of end-loaded cantilever beams. Journal of Applied Mathematics and Physics, 30: 31-40.
    [232] Rembala R, Ower C. 2009. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience. Acta Astronautica, 65: 912-920. doi: 10.1016/j.actaastro.2009.03.064
    [233] Rhodes M D, Will R W, Quach C C. 1995. Verification tests of automated robotic assembly of space truss structures. Journal of Spacecraft and Rockets, 32: 686-696. doi: 10.2514/3.26670
    [234] Robb B, McRobb M, Bailet G, et al. 2022a. Distributed magnetic attitude control for large space structures. Acta Astronautica, 198: 587-605. doi: 10.1016/j.actaastro.2022.06.045
    [235] Robb B, McRobb M, Bailet G, et al. 2022b. 3D-printed, electrically conductive structures for magnetic attitude control. Acta Astronautica, 200: 448-461. doi: 10.1016/j.actaastro.2022.08.006
    [236] Romero I. 2008. A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody System Dynamics, 20: 51-68. doi: 10.1007/s11044-008-9105-7
    [237] Safonov M G, Chiang R Y, Flashner H. 1991. H(infinity) robust control synthesis for a large space structure. Journal of Guidance, Control, and Dynamics, 14: 513-520. doi: 10.2514/3.20670
    [238] Sato D, Yamada N, Tanaka K. 2015. Thermal characterization of hybrid photovoltaic module for the conversion of sunlight into microwave in Solar Power Satellite. IEEE 42nd Photovoltaic Specialists Conference. New Orleans, LA, USA.
    [239] Shabana A A. 1997. Flexible multibody dynamics: Review of past and recent developments. Multibody System Dynamics, 1: 189-222. doi: 10.1023/A:1009773505418
    [240] Shabana A A. 2013. Dynamics of multibody systems. Cambridge: Cambridge University Press.
    [241] Shan M H, Guo J, Gill E. 2017. Deployment dynamics of tethered-net for space debris removal. Acta Astronautica, 132: 293-302. doi: 10.1016/j.actaastro.2017.01.001
    [242] Sharma A, Kumar R, Vaish R, et al. 2015. Active vibration control of space antenna reflector over wide temperature range. Composite Structures, 128: 291-304. doi: 10.1016/j.compstruct.2015.03.062
    [243] She Y C, Li S, Du B, et al. 2018. On-orbit assembly mission planning considering topological constraint and attitude disturbance. Acta Astronautica, 152: 692-704. doi: 10.1016/j.actaastro.2018.09.014
    [244] Shen Z X, Li H J, Liu X N, et al. 2017. Thermal shock induced dynamics of a spacecraft with a flexible deploying boom. Acta Astronautica, 141: 123-131. doi: 10.1016/j.actaastro.2017.10.004
    [245] Shirasawa Y, Mori O, Miyazaki Y, et al. 2013. Analysis of membrane dynamics using multi-particle model for solar sail demonstrator “IKAROS”. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
    [246] Simo J C. 1985. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering, 49: 55-70. doi: 10.1016/0045-7825(85)90050-7
    [247] Simo J C, Vu-Quoc L. 1986. A three-dimensional finite-strain rod model. Part II: Computational aspects. Computer Methods in Applied Mechanics and Engineering, 58: 79-116. doi: 10.1016/0045-7825(86)90079-4
    [248] Sincarsin G B, Hughes P C. 1983. Gravitational orbit-attitude coupling for very large spacecraft. Celestial Mechanics, 31: 143-161. doi: 10.1007/BF01686816
    [249] Singer N C, Seering W P. 1990. Preshaping command inputs to reduce system vibration. Journal of Dynamic Systems Measurement and Control, 112: 76-82. doi: 10.1115/1.2894142
    [250] Soderlund A, Phillips S. 2023. Hybrid systems approach to autonomous rendezvous and docking of an underactuated satellite. Journal of Guidance, Control, and Dynamics, 46: 1901-1918. doi: 10.2514/1.G006813
    [251] Somov Y I, Butyrin S A, Matrosov V M, et al. 1999. Ultra-precision attitude control of a large low-orbital space telescope. Control Engineering Practice, 7: 1127-1142. doi: 10.1016/S0967-0661(99)00084-2
    [252] Sun X, Xu M, Zhong R. 2017. Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation. Acta Astronautica, 139: 266-277. doi: 10.1016/j.actaastro.2017.07.020
    [253] Terkovics N, Neild S A, Lowenberg M H, et al. 2016. Substructurability: The effect of interface location on a real-time dynamic substructuring test. Proceedings Mathematical, Physical, and Engineering Sciences, 472.
    [254] Tzeranis D, Ishijima Y, Dubowsky S. 2005. Manipulation of large flexible structural modules by space robots mounted on flexible structures. The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Munich, Germany.
    [255] Ulutas B, Kerley D, Dunn J, et al. 2012. Distributed H∞ control of dynamically coupled segmented telescope mirrors: Design and simulation. Mechatronics, 22: 121-135. doi: 10.1016/j.mechatronics.2011.12.003
    [256] Velde W E V, He J. 1983. Design of space structure control systems using on-off thrusters. Journal of Guidance, Control, and Dynamics, 6: 53-60. doi: 10.2514/3.19802
    [257] Viale A, Celik O, Oderinwale T, et al. 2023. A reference architecture for orbiting solar reflectors to enhance terrestrial solar power plant output. Advances in Space Research, 72: 1304-1348. doi: 10.1016/j.asr.2023.05.037
    [258] Wang E M, Wu S N, Wu Z G, et al. 2019. Distributed adaptive vibration control for solar power satellite during on-orbit assembly. Aerospace Science and Technology, 94: 105378. doi: 10.1016/j.ast.2019.105378
    [259] Wang E M, Wu S N, Wu Z G. 2022. Dynamic multi-constrained assembly sequence planning of large space structures considering structural vibration. Acta Astronautica, 195: 27-40. doi: 10.1016/j.actaastro.2022.02.021
    [260] Wang E M, Wu S N, Xun G B, et al. 2021. Active vibration suppression for large space structure assembly: A distributed adaptive model predictive control approach. Journal of Vibration and Control, 27: 365-377. doi: 10.1177/1077546320926864
    [261] Wang G, Qi Z H, Xu J S. 2020. A high-precision co-rotational formulation of 3D beam elements for dynamic analysis of flexible multibody systems. Computer Methods in Applied Mechanics and Engineering, 360: 112701. doi: 10.1016/j.cma.2019.112701
    [262] Wang X, Hill T L, Neild S A, et al. 2018. Model updating strategy for structures with localised nonlinearities using frequency response measurements. Mechanical Systems and Signal Processing, 100: 940-961. doi: 10.1016/j.ymssp.2017.08.004
    [263] Watson J J, Collins T J, Bush H G. 2002. A history of astronaut construction of large space structures at NASA Langley Research Center. IEEE Aerospace Conference.
    [264] Watson J J, Heard W J, Bush H G, et al. 1988. Results of EVA/Mobile transporter space station truss assembly tests. NASA Langley Technical Report Server.
    [265] Wei Y, Deng Z C, Li Q J, et al. 2016. Projected Runge-Kutta methods for constrained Hamiltonian systems. Applied Mathematics and Mechanics, 37: 1077-1094. doi: 10.1007/s10483-016-2119-8
    [266] Wei Y, Li Q J, Xu F N. 2021. Orbit-attitude-vibration coupled dynamics of tethered solar power satellite. Advances in Space Research, 67: 393-400. doi: 10.1016/j.asr.2020.09.036
    [267] West-Vukovich G, Davison E, Hughes P. 1984. The decentralized control of large flexible space structures. IEEE Transactions on Automatic Control, 29: 866-879. doi: 10.1109/TAC.1984.1103392
    [268] Wie B. 2016. Space vehicle dynamics and control. Second Edition. Reston: AIAA Inc.
    [269] Wie B, Roithmayr C M. 2005. Attitude and orbit control of a very large geostationary solar power satellite. Journal of Guidance, Gontrol, and Dynamics, 28: 439-451. doi: 10.2514/1.6813
    [270] Wu G, He X, Pai P F. 2011. Geometrically exact 3D beam element for arbitrary large rigid-elastic deformation analysis of aerospace structures. Finite Elements in Analysis and Design, 47: 402-412. doi: 10.1016/j.finel.2010.11.008
    [271] Wu J, Zhao Z H, Ren G X. 2013. Multibody analysis of the force in deploying booms. Journal of Guidance, Control, and Dynamics, 36: 1881-1886. doi: 10.2514/1.60296
    [272] Wu S N, Zhang K M, Peng H J, et al. 2016. Robust optimal sun-pointing control of a large solar power satellite. Acta Astronautica, 127: 226-234. doi: 10.1016/j.actaastro.2016.05.019
    [273] Wu S N, Zhou W Y. 2023. Vibration control for large space truss structure assembly using a distributed adaptive neural network approach. Acta Astronautica, 212: 29-40. doi: 10.1016/j.actaastro.2023.07.034
    [274] Xu W F, Meng D S, Chen Y Q, et al. 2014. Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft. Multibody System Dynamics, 32: 357-401. doi: 10.1007/s11044-013-9389-0
    [275] Xue Z H, Liu J G, Wu C C, et al. 2021. Review of in-space assembly technologies. Chinese Journal of Aeronautics, 34: 21-47. doi: 10.1016/j.cja.2020.09.043
    [276] Yang C, Hou X B, Wang L. 2017. Thermal design, analysis and comparison on three concepts of space solar power satellite. Acta Astronautica, 137: 382-402. doi: 10.1016/j.actaastro.2017.05.004
    [277] Yang G, Zhang L R, Yu S, et al. 2023. Influences of space perturbations on robotic assembly process of ultra-large structures. Nonlinear Dynamics, 111: 10025-10048. doi: 10.1007/s11071-023-08395-w
    [278] Yang S J, Wen H, Hu H Y, et al. 2020. Coordinated motion control of a dual-arm space robot for assembling modular parts. Acta Astronautica, 177: 627-638. doi: 10.1016/j.actaastro.2020.08.006
    [279] Yuan T T, Liu Z Y, Zhou Y H, et al. 2020. Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment. Multibody System Dynamics, 50: 1-24. doi: 10.1007/s11044-020-09737-x
    [280] Zhang D Y, Luo J J, Yuan J P. 2018. Dynamics modeling and attitude control of spacecraft flexible solar array considering the structure of the hinge rolling. Acta Astronautica, 153: 60-70. doi: 10.1016/j.actaastro.2018.09.021
    [281] Zhang J, Wang T S. 2013. Coupled attitude-orbit control of flexible solar sail for displaced solar orbit. Journal of Spacecraft and Rockets, 50: 675-685. doi: 10.2514/1.A32369
    [282] Zhang K M, Wu S N, Liu Y L, et al. 2019a. Optimal attitude sensors placement for a solar power satellite considering control-structure interaction. AIAA Journal, 57: 4593-4598. doi: 10.2514/1.J058570
    [283] Zhang K M, Wu S N, Wu Z G. 2019b. Robust enhanced control strategy of a solar power satellite using multiple sensors. Journal of Guidance, Control, and Dynamics, 43: 338-346.
    [284] Zhang K M, Wu S N, Wu Z G. 2021. Multibody dynamics and robust attitude control of a MW-level solar power satellite. Aerospace Science and Technology, 111: 106575. doi: 10.1016/j.ast.2021.106575
    [285] Zhao Y, Zhang J R, Zhang Y, et al. 2017. Gravitational force and torque on a solar power satellite considering the structural flexibility. Acta Astronautica, 140: 322-337. doi: 10.1016/j.actaastro.2017.08.029
    [286] Zhao Z H, Fu K J, Li M, et al. 2020. Gravity compensation system of mesh antennas for in-orbit prediction of deployment dynamics. Acta Astronautica, 167: 1-13. doi: 10.1016/j.actaastro.2019.10.021
    [287] Zheng X D, Zhang F, Wang Q. 2018. Modeling and simulation of planar multibody systems with revolute clearance joints considering stiction based on an LCP method. Mechanism and Machine Theory, 130: 184-202. doi: 10.1016/j.mechmachtheory.2018.08.017
    [288] Zhou W Y, Zhang K M, Wu S N, et al. 2022. Distributed cooperative control for vibration suppression of a flexible satellite. Aerospace Science and Technology, 128: 107750. doi: 10.1016/j.ast.2022.107750
    [289] Zhou W Y, Wu S N, Yang J Z. 2023. Modular Dynamic Modeling for On-Orbit Assembly of Large-Scale Space Structures. International Journal of Aerospace Engineering, 2023: 6659124.
  • 加载中
图(12)
计量
  • 文章访问数:  2069
  • HTML全文浏览量:  286
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 录用日期:  2024-02-04
  • 网络出版日期:  2024-02-11
  • 刊出日期:  2024-06-26

目录

    /

    返回文章
    返回