留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效合成射流激励器研究进展及展望

陆逸然 王晋军

陆逸然, 王晋军. 高效合成射流激励器研究进展及展望. 力学进展, 2024, 54(1): 61-85 doi: 10.6052/1000-0992-23-038
引用本文: 陆逸然, 王晋军. 高效合成射流激励器研究进展及展望. 力学进展, 2024, 54(1): 61-85 doi: 10.6052/1000-0992-23-038
Lu Y R, Wang J J. Review and prospect on the efficient synthetic jet. Advances in Mechanics, 2024, 54(1): 61-85 doi: 10.6052/1000-0992-23-038
Citation: Lu Y R, Wang J J. Review and prospect on the efficient synthetic jet. Advances in Mechanics, 2024, 54(1): 61-85 doi: 10.6052/1000-0992-23-038

高效合成射流激励器研究进展及展望

doi: 10.6052/1000-0992-23-038
基金项目: 国家自然科学基金创新研究群体资助项目 (11721202) .
详细信息
    作者简介:

    王晋军, 1963年出生, 北京航空航天大学航空科学与工程学院教授, 教育部流体力学重点实验室主任. 主要从事飞行器复杂流场机理、流动控制等方面的研究, 在《Journal of Fluid Mechanics》《Physics of Fluids》《Science China Technological Sciences》等期刊发表论文300余篇. 是国家杰出青年科学基金获得者、教育部“长江学者”特聘教授、国家自然科学基金创新研究群体学术带头人

    通讯作者:

    jjwang@buaa.edu.cn

  • 中图分类号: O358

Review and prospect on the efficient synthetic jet

More Information
  • 摘要: 合成射流作为一种具有优越控制效果的主动流动控制技术, 在提升飞行器气动性能、减振降噪、强化元器件散热等领域具有重要的学术意义和应用价值. 经过30余年的研究, 人们建立了更准确的合成射流数学模型, 合成射流具有高卷吸能力的物理机理也得到不断深化. 进一步优化合成射流激励器, 提高控制效率成为了研究的重点. 本文主要从激励器结构型式、激励器结构参数以及激励信号三个方面, 总结了近年来在提高合成射流控制效果方面取得的研究进展, 并对未来的研究重点进行了展望.

     

  • 图  1  合成射流产生原理示意图 (根据Wang et al. 2010绘制)

    图  2  标准正弦激励信号示意图

    图  3  相同雷诺数合成射流与连续射流比较(a)射流半宽度$ b $沿流向分布; (b) 体积通量$ Q $沿流向分布 (Smith & Swift 2001). 其中, $ h $为合成射流出口宽度、$ {Q}_{0} $为出口体积通量

    图  4  实验与LEM得到的合成射流出口峰值速度随激励频率的变化. 蓝色三角、蓝色实线分别代表实验与LEM预测结果 (Gallas et al. 2003), 红色实线为Sharma (2007) LEM预测结果 (Chiatto et al. 2017)

    图  5  “脱落”过程中主涡环与其后射流剪切层分离示意图 (Lawson & Dawson 2013)

    图  6  不同出口直径$ d $工况下合成射流动量$ K $随冲程比$ L/d $变化规律 (a) x轴为对数坐标; (b) x轴为均匀坐标 (Xia & Mohseni 2015). 其中, $ {K}_{s} $为根据slug模型计算得到的动量通量

    图  7  连续射流CJ和合成射流SJ卷吸系数沿流向分布 (Xu et al. 2023)

    图  8  合成射流相位平均$ {\lambda }_{{\mathrm{ci}}} $云图 (Xu et al. 2023)

    图  9  Luo等 (2006) 提出的合成双射流DSJ激励器示意图

    图  10  双孔合成射流激励器示意图 (Palumbo & De luca 2021)

    图  11  单腔多出口合成射流激励器示意图 (Chaudhari et al. 2011)

    图  12  合成射流激励器结构型式对比图(a)合成双射流激励器 (He et al. 2019), (b) 双孔合成射流激励器 (Chiatto et al. 2018)

    图  13  合成射流激励器孔口边缘构型 (a)平直边缘, (b)圆弧边缘, (c) 尖峰边缘 (Lee & Goldstein 2002)

    图  14  不同孔口产生的合成射流涡环在流向$ x/{D}_{e}=1, 2, 4 $位置处演变过程(a)圆形孔口, (b) ~ (f)$ AR=1-5 $矩形孔口 (Wang et al. 2018). 其中, $ {D}_{e} $为孔口等效直径

    图  15  矩形出口合成射流涡环诱导流向涡结构$ {\lambda }_{{\mathrm{ci}}} $等值面图 (Wang et al. 2023)

    图  16  不同材料压电膜片合成射流激励器能量转换效率(a)PZT-5A压电膜片合成射流激励器, (b) PMN-PT压电膜片合成射流激励器 (Gungordu et al. 2023)

    图  17  激励信号幅值调制原理示意图 (根据Azzawi et al. 2021绘制)

    图  18  变吹吸比激励信号示意图. 红色实线为标准正弦信号, 绿色实线为提高吹吸比后的激励信号 (Zhang & Wang 2007)

    图  19  不同吹吸比合成射流涡对位置(a) ~ (b)$ k=2 $, (c) ~ (d)$ k=1 $, (e) ~ (f)$ k=0.5 $. (Zhang & Wang 2007)

    图  20  双频激励信号示意图. 蓝色虚线为标准正弦信号, 红色实线为叠加高频信号后的激励信号 (Lu et al. 2022b)

    图  21  双频信号中叠加的高频信号的幅值比对于 (a) 合成射流涡对运动轨迹, (b) 合成射流动量通量沿流向分布的影响 (Lu et al. 2022b)

    图  22  (a) 相同特征速度下三角信号、正弦信号、梯形信号与方波信号波形, (b) 相同特征速度下三角信号、双频信号与变吹吸比信号波形示意图 (Lu et al. 2023)

    图  23  (a) 不同波形激励信号产生合成射流相位平均涡量云图, (b) 典型激励信号产生合成射流动量通量沿流向分布, (c) 双频与变吹吸比激励信号产生合成射流动量通量沿流向分布 (Lu & Wang 2023)

  • [1] 罗振兵, 夏智勋. 2005. 合成射流技术及其在流动控制中应用的进展. 力学进展, 35(2): 14 (Luo Z B, Xia Z X. 2005. Advances in synthetic jet technology and applications in flow control. Advances in Mechanics, 35(2): 14).

    Luo Z B, Xia Z X. 2005. Advances in synthetic jet technology and applications in flow control. Advances in Mechanics, 35(2): 14
    [2] 明晓, 戴昌晖, 史胜熙. 1992. 声学整流效应的新现象. 力学学报, 24(1): 48-54. (Ming X, Dai C H, Shi S X. 1992. A new phenomenon of acoustic streaming. Acta Mech. Sin., 24(1): 48-54).

    Ming X, Dai C H, Shi S X. 1992. A new phenomenon of acoustic streaming. Acta Mech. Sin., 24(1): 48-54.
    [3] 王雷, 李哲, 冯立好. 2023. 合成射流激励器能量转换效率的参数影响规律及优化研究. 实验流体力学, 37 (4): 87-95 (Wang L, Li Z, Feng L H. 2023. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators. Journal of Experiments in Fluid Mechanics, 37 (4): 87-95).

    Wang L, Li Z, Feng L H. 2023. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators. Journal of Experiments in Fluid Mechanics, 37(4): 87-95
    [4] 张鉴源, 罗振兵, 彭文强, 等. 2023. 基于合成双射流的襟翼舵效增强技术研究. 实验流体力学, 37 (4): 76-86 (Zhang J Y, Luo Z B, Peng W Q, et al. 2023. Investigation on performance enhancement of flap based on dual synthetic jets. Journal of Experiments in Fluid Mechanics, 37 (4): 76-86).

    Zhang J Y, Luo Z B, Peng W Q, et al. 2023. Investigation on performance enhancement of flap based on dual synthetic jets. Journal of Experiments in Fluid Mechanics, 37(4): 76-86
    [5] 张攀峰, 王晋军, 冯立好. 2008. 零质量射流技术及其应用研究进展. 中国科学(E辑:技术科学), 38(3): 321-349. (Zhang P F, Wang J J, Feng L H. 2008. Review of zero-net-mass-flux jet and its application in separation flow control. Sci China Series E-Tech. Sci., 38(3): 321-349).

    Zhang P F, Wang J J, Feng L H. 2008. Review of zero-net-mass-flux jet and its application in separation flow control. Sci China Series E-Tech. Sci., 38(3): 321-349.
    [6] 庄逢甘, 黄志澄. 2003. 未来高技术战争对空气动力学创新发展的需求. 2003空气动力学前沿研究论文集, 73-79 (Zhuang F G, Huang Z C. 2003. The demand for innovative development of aerodynamics in future high-tech wars. 2003 Symposium on Frontier Research in Aerodynamics, 73-79).

    Zhuang F G, Huang Z C. 2003. The demand for innovative development of aerodynamics in future high-tech wars. 2003 Symposium on Frontier Research in Aerodynamics, 73-79
    [7] Arshad A, Jabbal M, Yan Y Y. 2020. Synthetic jet actuators for heat transfer enhancement - A critical review. Int. J. Heat Mass Trans., 146: 118815. doi: 10.1016/j.ijheatmasstransfer.2019.118815
    [8] Azzawi I D J, Jaworski A J, Mao X. 2021. An overview of synthetic jet under different clamping and amplitude modulation techniques. ASME. J. Heat Transfer, 143: 031501. doi: 10.1115/1.4049189
    [9] Bushnell D M, Wygnanski I. 2020. Flow control applications. National Aeronautics and Space Administration, Langley Research Center.
    [10] Cattafesta L N, Sheplak M. 2011. Actuators for active flow control. Annual Review of Fluid Mechanics, 43: 247-272. doi: 10.1146/annurev-fluid-122109-160634
    [11] Chaudhari M, Puranik B, Agrawal A. 2011. Multiple orifice synthetic jet for improvement in impingement heat transfer. Int. J. Heat Mass Trans., 54: 2056-2065. doi: 10.1016/j.ijheatmasstransfer.2010.12.023
    [12] Chiatto M, Capuano F, de Luca L. 2018. Numerical and experimental characterization of a double-orifice synthetic jet actuator. Meccanica, 53: 2883-2896. doi: 10.1007/s11012-018-0866-7
    [13] de Luca L, Girfoglio M, Coppola G. 2014. Modeling and experimental validation of the frequency response of synthetic jet actuators. AIAA J., 52: 1733-1748.
    [14] Chiatto M, Capuano F, Coppola G, de Luca L. 2017. LEM characterization of synthetic jet actuators driven by piezoelectric element: A Review. Sensors. 17 : 1216. doi: 10.2514/1.J052674
    [15] Feng L H, Wang J J. 2010a. Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J. Fluid Mech., 662: 232-259. doi: 10.1017/S0022112010003174
    [16] Feng L H, Wang J J, Pan C. 2010b. Effect of novel synthetic jet on wake vortex shedding modes of a circular cylinder. J. Fluid Struct., 26: 900-917. doi: 10.1016/j.jfluidstructs.2010.05.003
    [17] Fu H X, Cohen R E. 2000. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403 : 281-283.
    [18] Fukiba K, Ota K, Harashina Y. 2018. Heat transfer enhancement of a heated cylinder with synthetic jet impingement from multiple orifices. Int. Commun. Heat Mass, 99: 1-6. doi: 10.1016/j.icheatmasstransfer.2018.10.006
    [19] Gallas Q, Holman R, Nishida T, Carroll B, Sheplak M, Cattafesta L. 2003. Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J., 41: 240-247. doi: 10.2514/2.1936
    [20] Gil P, Strzelczyk P. 2016. Performance and efficiency of loudspeaker driven synthetic jet actuator. Experimental Thermal and Fluid Science, 76: 163-174. doi: 10.1016/j.expthermflusci.2016.03.020
    [21] Glezer A. 1988. The formation of vortex rings. Phys. Fluids, 31(12): 3532-3541. doi: 10.1063/1.866920
    [22] Glezer A, Amitay M. 2002. Synthetic jets. Annual Review of Fluid Mechanics, 34: 503-529. doi: 10.1146/annurev.fluid.34.090501.094913
    [23] Gungordu B, Jabbal M, Popov A A. 2023. Enhancing jet velocity and power conversion efficiency of piezoelectric synthetic jet actuators. AIAA J, 61: 4321-4331. doi: 10.2514/1.J062930
    [24] He W, Luo Z B, Deng X, Xia Z X. 2019. Experimental investigation on the performance of a novel dual synthetic jet actuator-based atomization device. Int. J. Heat Mass Trans., 142: 118406. doi: 10.1016/j.ijheatmasstransfer.2019.07.056
    [25] Holman R, Utturkar Y, Mittal R, Smith B L, Cattafesta L. 2005. A formation criterion for synthetic jets. AIAA J., 43(10): 2110-2116. doi: 10.2514/1.12033
    [26] Hong M H, Cheng S Y, Zhong S. 2020. Effect of geometric parameters on synthetic jet: A review. Physics of Fluids, 32(3): 031301. doi: 10.1063/1.5142408
    [27] Huber M, Zienert A, Weigel P, Schuller M, Berger H R, Schuster J, Otto T. 2021. Optimization of synthetic jet actuation by analytical modeling. Aircraft Engineering and Aerospace Technology, 93: 558-565. doi: 10.1108/AEAT-06-2019-0127
    [28] Ingard U, Labate S. 1950. Acoustic circulation effects and the nonlinear impedance of orifices. J. Acoust. Soc. Am., 22(2): 211-218. doi: 10.1121/1.1906591
    [29] Jain M, Puranik B, Agrawal A. 2011. A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow. Sensors and Actuators A:Physical, 165: 351-366. doi: 10.1016/j.sna.2010.11.001
    [30] Krieg M, Mohseni K. 2008. Thrust characterization of pulsatile vortex ring generators for locomotion of underwater robots. IEEE J. Oceanic Eng., 33: 123-132. doi: 10.1109/JOE.2008.920171
    [31] Lawson J M, Dawson J R. 2013. The formation of turbulent vortex rings by synthetic jets. Phys. Fluids, 25: 105113. doi: 10.1063/1.4825283
    [32] Lee C Y, Goldstein D B. 2002. Two-dimensional synthetic jet simulation. AIAA J., 40: 510-516. doi: 10.2514/2.1675
    [33] Li S, Luo Z B, Deng X, Liu Z. 2021. Experimental investigation on active control of flow around a finite-length square cylinder using dual synthetic Jet. J. Wind Eng. Ind. Aerod., 210: 104519. doi: 10.1016/j.jweia.2021.104519
    [34] Li S, Luo Z B, Deng X, Liu Z Y, Gao T X, Zhao Z J. 2022. Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator. Chinese J. Aeronaut., 35: 117-129.
    [35] Lockerby D A, Carpenter P W. 2004. Modeling and design of microjet actuators. AIAA J., 42(2): 220-227. doi: 10.2514/1.9091
    [36] Lu Y R, Qu Y, Wang J S, Wang J J. 2022a. Numerical investigation of flow over a two-dimensional square cylinder with a synthetic jet generated by a bi-frequency signal. Appl. Math. Mech. -Engl. Ed., 43: 1569-1584. doi: 10.1007/s10483-022-2919-6
    [37] Lu Y R, Wang J J. 2023. Numerical investigation of synthetic jets generated by various signals in quiescent ambient. Phys. Fluids, 35: 015107. doi: 10.1063/5.0129806
    [38] Lu Y R, Wang J S, Wang J J. 2022b. Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals. Acta Mech. Sin., 38: 321177. doi: 10.1007/s10409-021-09015-x
    [39] Luo Z B, Xia Z X, Liu B. 2006. New generation of synthetic jet actuators. AIAA J., 44: 2418-2420. doi: 10.2514/1.20747
    [40] Luo Z B, Zhao Z J, Liu J F, Deng X, Zheng M, Yang H, Chen Q Y, Li S Q. 2022. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test. Chinese J. Aeronaut., 35(8): 1-6. doi: 10.1016/j.cja.2021.08.015
    [41] Mane P, Mossi K, Rostami A, Bryant R, Castro N. 2007. Piezoelectric actuators as synthetic jets: cavity dimension effects. J. Intel. Mat. Sys. Struct., 18: 1175-1190.
    [42] Mangate L D, Chaudhari M B. 2016. Experimental study on heat transfer characteristics of a heat sink with multiple-orifice synthetic jet. Int. J. Heat Mass Trans, 103: 1181-1190. doi: 10.1016/j.ijheatmasstransfer.2016.08.058
    [43] McCormick D. 2000. Boundary layer separation control with directed synthetic jets. AIAA P., 2000-0519.
    [44] Palumbo A, de Luca L. 2021. Experimental and CFD characterization of a double-orifice synthetic jet actuator for flow control. Actuators, 10: 326. doi: 10.3390/act10120326
    [45] Riazi H, Ahmed N A. 2011. Numerical investigation on two-orifice synthetic jet actuators of varying orifice spacing, diameter. 29th AIAA applied aerodynamics conference, 2011-3171.
    [46] Rice T T, Taylor K, Amitay M. 2021. Pulse modulation of synthetic jet actuators for control of separation. Phys. Rev. Fluids, 6: 093902. doi: 10.1103/PhysRevFluids.6.093902
    [47] Rizzetta D P, Visbal M R, Stanek M J. 2015. Numerical Investigation of Synthetic Jet Flowfields. AIAA J., 37: 919-927.
    [48] Rusovici R, Lesieutre G A. 2004. Design of a single-crystal piezoceramic-driven synthetic-jet actuator. Smart Structures and Materials 2004 Conference. San Diego, CA2004, 276-283.
    [49] Service R F. 1997. Materials science: shape-changing crystals get shiftier. Science, 275 (5308): 1878-1878.
    [50] Shan R Q, Wang J J. 2010. Experimental Studies of the Influence of Parameters on Axisymmetric Synthetic Jets. Sensors and Actuators A-Physical, 157: 107-112. doi: 10.1016/j.sna.2009.11.006
    [51] Sharma R. 2007. Fluid-Dynamic-Based Analytical Model for Synthetic Jet Actuation. AIAA J., 45: 1841-1847. doi: 10.2514/1.25427
    [52] Shmilovich A, Yadlin Y, Vijgen P, Woszidlo R. 2023. Applications of Flow Control to Wing High-Lift Leading Edge Devices on a Commercial Aircraft, 2023 AIAA SciTech Forum, 23–27 January, National Harbor, Maryland.
    [53] Shuster J M, Smith D R. 2007. Experimental Study of the Formation and Scaling of a Round Synthetic Jet. Phys. Fluids, 19(4): 045109. doi: 10.1063/1.2711481
    [54] Smith B L, Glezer A. 1998. The formation and evolution of synthetic jets. Phys. Fluids, 10(9): 2281-2297. doi: 10.1063/1.869828
    [55] Smith B L, Swift G W. 2001. Synthetic Jet at Large Reynolds Number and Comparison to Continuous Jets. AIAA P., 2001-3030.
    [56] Tobalske B W, Dial K P. 1996. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J. Exp. Bio., 199: 263-280. doi: 10.1242/jeb.199.2.263
    [57] Utturkar Y, Holman R, Mittal R. 2003. A Jet Formation Criterion for Synthetic Jet Actuator. AIAA P., 2003-0636.
    [58] Walimbe P, Agrawal A, Cjaudhari M. 2021. Flow characteristics and novel applications of synthetic jets: A review. ASME. J. Heat Transfer., 143: 1-67.
    [59] Wang J J, Feng L H. 2019. Flow Control Techniques and Applications. Cambridge University Press.
    [60] Wang J J, Shan R Q, Zhang C, Feng L H. 2010. Experimental investigation of a novel two-dimensional synthetic jet. Eur. J. Mech. B-Fluid, 29: 342-350. doi: 10.1016/j.euromechflu.2010.05.001
    [61] Wang L, Feng L H, Wang J J, Li T. 2018. Characteristics and mechanism of mixing enhancement for noncircular synthetic jets at low reynolds number. Exp. Therm. Fluid Sci., 98: 731-743. doi: 10.1016/j.expthermflusci.2018.06.021
    [62] Wang L, Feng L H, Xu Y. 2023. Lagrangian analysis on structure evolution and mass transport of circular and noncircular turbulent synthetic jets. Acta Mech. Sin., 39: 322294. doi: 10.1007/s10409-022-22294-x
    [63] Watson M, Jaworski A J, Wood N J. 2003. A study of synthetic jets from rectangular, dual-circular orifices. Aeronaut. J., 107: 427-434. doi: 10.1017/S000192400001335X
    [64] Wiltse J, Glezer A. 1993. Manipulation of free shear flows using piezoelectric actuators. J. Fluid Mech., 249: 261-285. doi: 10.1017/S002211209300117X
    [65] William L S Ⅲ, Gregory S J, Mark D M. 2002. Flow control research at NASA Langley in support of high-lift augmentation. AIAA P., 2002-6006.
    [66] Xia X, Mohseni K. 2015. Far-field momentum flux of high-frequency axisymmetric synthetic jets. Phys. Fluids, 27: 115101. doi: 10.1063/1.4935011
    [67] Xu C Y, Long Y G, Wang J J. 2023. Entrainment mechanism of turbulent synthetic jet flow. J. Fluid Mech., 958: A31. doi: 10.1017/jfm.2023.102
    [68] Zhang P F, Wang J J. 2007. Novel signal wave pattern for efficient synthetic jet generation. AIAA J., 45: 1058-1065. doi: 10.2514/1.25445
  • 加载中
图(23)
计量
  • 文章访问数:  865
  • HTML全文浏览量:  392
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 录用日期:  2024-01-02
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回