Research progress in methods and applications of experimental mechanics using micro-Raman spectroscopy
-
摘要: 显微拉曼光谱是近十余年来实验力学领域迅速发展的一种实验应力分析新方法. 相比于大多数的光测力学方法, 显微拉曼能够实现对应力/应变相对直接的表征, 具有高空间分辨、高测试效率、无损非接触等特点, 适合于原位、在线、活体测量. 其对本征和非本征应力均敏感, 并能够开展多物理参量的协同表征, 是当前实验力学领域新方法研究的国际前沿之一, 也是微纳米力学实验分析的重要手段. 本文首先介绍了显微拉曼力学表征的实验原理, 随后论述了拉曼光谱用于力学研究的若干关键技术, 然后综述了基于显微拉曼实验的力学前沿研究进展, 最后讨论了显微拉曼光谱在实验固体力学领域的发展前景与方向. 本文通过对显微拉曼光谱力学实验方法最新理论、技术与应用进展的综述, 为从事微尺度、多尺度力学实验领域的科研工作者提供较为系统的信息参考, 同时为那些对微尺度光谱力学感兴趣的青年科研人员提供本领域系统全面的知识.Abstract: Micro-Raman spectroscopy (MRS) is a recently developed experimental method for stress analysis. It has the characteristics including high spatial resolution, high testing efficiency and collaborative measurement of multiple physical parameters. It is non-destructive and non-contact, and sensitive to both intrinsic and extrinsic stress, which makes MRS suitable for on-line, in-vito and even living experiments. Moreover, compared with most methods of photomechanics, MRS analyzes stress or strain by a relatively direct way. We illustrate the experimental theories of Raman-stress/strain analyses, and discourse upon several kernel techniques of MRS used in mechanical studies. Then, we summarize the research progress, and finally discuss its development prospects and directions, of MRS in solid mechanics and relative fields. We hope that this review provides a systematic reference for the experimental investigation of micro/nano/multi-scale mechanics using MRS, as well as a rapid and comprehensive understanding for young researchers interested in spectral mechanics.
-
Key words:
- Micro-Raman spectroscopy /
- Experimental Mechanics /
- Stress /
- Strain /
- Interfacial Mechanics /
- Spectral Mechanics
-
图 1 拉曼光谱力学分析的基本理论框架 (Qiu et al. 2018)
图 2 单向应力下背散射拉曼频移−应力关系标定实验. (a)(1 0 0)单晶硅 (de Wolf et al. 1996), (b) 单晶锗 (Gassenq et al. 2016)
图 3 (a) 晶体坐标系和样品坐标系示意图, (b) 随机晶面旋转过程示意图 (Qiu et al. 2018)
图 4 (a) Kevlar -29纤维施加应力前后拉曼G峰峰位, (b) Kevlar -29纤维的G峰拉曼频移随应力的变化 (Lei et al. 2010)
图 5 纤维增强材料四点弯矩形楔口局部应变场 (Qiu et al. 2013). (a) 试件与加载方式, (b) 拉曼扫描区域, (c) 实测εX应变场, (d) 实测εY应变场, (e) 实测γXY应变场
图 6 (a) 双层石墨烯2D拉曼峰的分峰分析 (Dou et al. 2018), (b) 全谱形分析用于研究石墨烯电极电化学诱导力学行为 (Song et al. 2022).
图 7 (a) 基于角度分辨拉曼的应力信息提取 (1 1 0) 单晶硅面内应力各分量, (b) 拉曼频移的实验结果与拟合曲线 (Ma et al. 2019), (c) 拟合迭代法流程图 (Ma et al. 2021b)
图 8 (a) 不同拉伸比下纤维素纳米晶体垂直偏振的角度分辨拉曼峰强度 (Chang et al. 2017), (b) 利用垂直偏振构型下Ag 1和Ag 2模的角度分辨拉曼峰强度识别黑磷晶向 (Li et al. 2021), (c) 利用无检偏构型下B2g模的角度分辨拉曼峰强度识别黑磷晶向 (Li et al. 2020)
图 9 (a) CeO2-δ薄膜拉曼光谱应力分析, 其中左为样品结构示意图, 中为样品的拉曼光谱 (其插图是2110 cm−1左右范围的放大光谱), 右为CeO2-δ晶格因氧空位产生的“化学应变”和外部应力产生的“物理应变”而改变的示意图 (Li et al. 2016); (b) Si衬底Bi2Te3薄膜的拉曼光谱应力分析, 其中左为样品与加载示意图, 右为样品在不同温度下的拉曼光谱 (Huang et al. 2021); (c)蓝宝石衬底分子束外延生长In2Se3薄膜应变的拉曼测量 (Li et al. 2020)
图 10 (a) TSV结构1到8横截面的拉曼频移扫描图像, (b) 由(a)中所示扫描图像合并为3D图像 (Kosemura & de Wolf 2015)
图 11 (a) 拉曼分析微机电系统中凹槽结构的残余应力场 (Wang et al. 2019), (b) 拉曼测量分析压阻式MEMS力传感器的残余应力场 (Meszmer et al. 2017)
图 12 (a) 电极微结构应变测量的原位拉曼实验系统, (b) 多层石墨烯电极在第三次嵌锂和脱锂过程中不同电位下的原位拉曼光谱, (c) 石墨烯电极脱嵌锂过程微结构演化示意图, (d) 不同充放电倍率下石墨烯电极微结构应力演化曲线 (Xie et al. 2019, Song et al. 2019, Song et al. 2022)
图 13 (a) 裂纹纤维桥接实验示意图 (Bennett & Young 1998), (b) 平纹织物单元内的纤维应变拉曼Mapping测试示意图 (Lei & Young 2001), (c) 内嵌短纤维拉伸碎断实验示意图 (Young et al. 2001)
图 14 拉伸载荷下碳纳米管纤维多尺度结构的承载与变形特性 (Li et al. 2012)
图 15 (a) 七个不同长度的石墨烯/PET试件示意图 (不按比例); (b) 实验装置示意图 (显微拉曼系统和石墨烯/PET试件, 不按比例); (c) PET基体的应力−应变曲线; (d) 加载过程中石墨烯中心点处的应变与PET应变的关系曲线, 其中曲线以下阴影区域分别表示黏附 (红色)、滑动 (白色) 和剥离 (蓝色) 阶段 (Xu et al. 2016)
图 16 (a) 使用显微拉曼分析三种循环载荷训练后与未循环的石墨烯/PET试件在界面脱粘后界面剪应力沿拉伸轴方向的分布, (b) 循环载荷训练改善界面贴合度的原子尺度和细观尺度示意图 (Du et al. 2018)
图 17 使用显微拉曼手段分析双层石墨烯层间切应力. (a) 气泡加载 (Wang G et al. 2017), (b) 基底加载 (Liu et al. 2022)
图 18 石墨烯/MoS2/PET异质结构拉伸载荷下的原位拉曼和荧光光谱分析 (Du et al. 2022). (a) 当衬底被拉伸至 2.5% 时异质结构中每一层的应变云图, (b) 633 nm 激光激发拉曼光谱定量表征上层石墨烯的应变, (c) 532 nm 激光荧光光谱定量表征下层MoS2的应变
表 1 单晶硅常用晶面在简单应力状态下的应力-频移因子 (Qiu et al. 2018)
晶面 σ (非零) κ (cm−1/GPa) (0 0 1) σ′1 ‒2.298 σ′2 ‒2.298 σ′1 = σ′2 ‒4.596 (1 1 0) σ′1 ‒2.587 σ′2 ‒1.712 σ′1 = σ′2 ‒4.298 (1 1 1) σ′1 ‒2.531 σ′2 ‒1.597 σ′1 = σ′2 ‒4.127 (1 1 −2) σ′1 ‒2.444 σ′2 ‒1.713 σ′1 = σ′2 ‒4.154 -
[1] 柴俊杰, 孟田, 常颖, 程翠丽, 仇巍. 2019. 用于光谱力学分析的显微拉曼外光路子系统. 实验力学, 34(04): 554-562 (Chai J J, Meng T, Chang Y, Cheng C L, Qiu W. 2019. External optical sub-system of micro Raman spectroscopy for mechanical experiment and analysis. Journal of Experimental Mechanics (in Chinese), 34(04): 554-562). Chai J J, Meng T, Chang Y, Cheng C L, Qiu W .2019 . External optical sub-system of micro Raman spectroscopy for mechanical experiment and analysis. Journal of Experimental Mechanics (in Chinese),34 (04 ):554 -562 [2] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. 2017. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 66(18): 186202 (Huang H, Zhang K, Wu M, Li H, Wang M J, Zhang S M, Chen J H, Wen M. 2017. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Phys Sin, 66(18): 186202). doi: 10.7498/aps.66.186202 Huang H, Zhang K, Wu M, Li H, Wang M J, Zhang S M, Chen J H, Wen M .2017 . Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Phys Sin,66 (18 ):186202 doi: 10.7498/aps.66.186202[3] 雷振坤, 仇巍, 亢一澜. 2015. 微尺度拉曼光谱实验力学. 北京: 科学出版社 (Lei Z K, Qiu W, Kang Y L. 2015. Micro-Raman spectrum and Experimental Mechanics. Beijing: Science Press).Lei Z K, Qiu W, Kang Y L. 2015. Micro-Raman spectrum and Experimental Mechanics. Beijing: Science Press [4] 马路路. 2020. 基于拉曼光谱的硅基半导体应力表征理论与实验应用. 博士学位论文 (Ma L L. 2020. Theory and experimental application of stress characterization for silicon-based semiconductors based on Raman spectroscopy. PhD thesis).Ma L L. 2020. Theory and experimental application of stress characterization for silicon-based semiconductors based on Raman spectroscopy. PhD thesis [5] 张飒, 梁丽苹. 2017. 压应力场下PLZT铁电陶瓷的原位Raman观测. 光谱学与光谱分析, 37(7): 2073-2078 (Zhang S, Liang L P. 2017. In-Situ Raman Observations for PLZT Ferroelectric Ceramics under Compressive Stresses. Spectrosc Spect Anal, 37(7): 2073-2078). Zhang S, Liang L P .2017 . In-Situ Raman Observations for PLZT Ferroelectric Ceramics under Compressive Stresses. Spectrosc Spect Anal,37 (7 ):2073 -2078 [6] 张银霞, 王健康, 郜伟, 王栋. 2019. 6H-SiC 单晶片划痕形貌与残余应力研究. 硅酸盐学报, 47: 964-971 (Zhang Y X, Wang J K, Gao W, Wang D. 2019. Morphology and Residual Stress of 6H-SiC Single Crystal Wafer Induced by Scratching. Journal of the Chinese Ceramic Society, 47: 964-971). Zhang Y X, Wang J K, Gao W, Wang D .2019 . Morphology and Residual Stress of 6H-SiC Single Crystal Wafer Induced by Scratching. Journal of the Chinese Ceramic Society,47 :964 -971 [7] 周绪荣, 秦志新, 鲁麟, 沈波, 桑立雯, 岑龙斌, 张国义, 俞大鹏, 张小平. 2008. 蓝宝石衬底上GaN/AlxGa(1-x)N超晶格插入层对AlxGa(1-x)N外延薄膜应变及缺陷密度的影响. 发光学报, 29(4): 701-706 (Zhou X R, Qin Z X, Lu L, Shen B, Sang L W, Cen L B, Zhang G Y, Yu D P, Zhang X P. 2008. The influence of GaN/AlxGa(1-x)N superlattice(SLs) interlayer(IL) on the strain and threading dislocations(TDs) density of AlxGa(1-x)N grown on GaN/Sapphire. Chin J Lumin, 29(4): 701-706). Zhou X R, Qin Z X, Lu L, Shen B, Sang L W, Cen L B, Zhang G Y, Yu D P, Zhang X P .2008 . The influence of GaN/AlxGa(1-x)N superlattice(SLs) interlayer(IL) on the strain and threading dislocations(TDs) density of AlxGa(1-x)N grown on GaN/Sapphire. Chin J Lumin,29 (4 ):701 -706 [8] Abiko K, Kato Y, Hohjo H, Kishida Y, Sudo E. 2019. Raman imaging of residual stress distribution in epoxy resin and metal interface. J Raman Spectrosc, 51(1): 193-200 [9] Ahmed F, Bayerlein K, Rosiwal S M, Göken M, Durst K. 2011. Stress evolution and cracking of crystalline diamond thin films on ductile titanium substrate: Analysis by micro-Raman spectroscopy and analytical modelling. Acta Mater, 59(14): 5422-5433 doi: 10.1016/j.actamat.2011.05.015 [10] Alhomoudi I A, Newaz G. 2009. Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films, 517: 4372-4378 doi: 10.1016/j.tsf.2009.02.141 [11] Alonso M I, Bailo E, Garriga M, Molero A, Vaccaro P O, Goni A R, Ruiz A, Alonso M. 2015. Composition and strain imaging of epitaxial in-plane SiGe alloy nanowires by micro-Raman spectroscopy. J Phys Chem C, 119(38): 22154-22163 doi: 10.1021/acs.jpcc.5b04301 [12] Anastassakis E, Pinczuk A, Burstein E, Pollak F H, Cardona M. 1970. Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Commun, 8(2): 133-138 doi: 10.1016/0038-1098(70)90588-0 [13] Anastassakis E, Cantarero A, Cardona M. 1990. Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys Rev B, 41(11): 7529 doi: 10.1103/PhysRevB.41.7529 [14] Anastassakis E. 1997. Selection rules of Raman scattering by optical phonons in strained cubic crystals. J Appl Phys, 82(4): 1582-1591 doi: 10.1063/1.365958 [15] Androulidakis C, Koukaras E N, Paterakis G, Trakakis G, Galiotis C. 2020. Tunable macroscale structural superlubricity in two-layer graphene via strain engineering. Nat Commun, 11(1): 1595 doi: 10.1038/s41467-020-15446-y [16] Androulidakis C, Koukaras E N, Poss M, Papagelis K, Galiotis C, Tawfick S. 2018. Strained hexagonal boron nitride: Phonon shift and Grüneisen parameter. Phys Rev B, 97: 241414 doi: 10.1103/PhysRevB.97.241414 [17] Barber H, Zhao Q, Wagner H D, Baillie C A. 2004. Characterization of E-glass–polypropylene interfaces using carbon nanotubes as strain sensors. Compos Sci Technol, 64(13-14): 1915-1919 doi: 10.1016/j.compscitech.2004.02.004 [18] Bennett J A, Young R J. 1998. The effect of fibre–matrix adhesion upon crack bridging in fibre reinforced composites. Compos Part A-Appl S, 29(9-10): 1071-1081 doi: 10.1016/S1359-835X(98)00045-1 [19] Bousige C, Balima F, Machon D, Pinheiro G S, Torres-Dias A, Nicolle J, Kalita D, Bendiab N, Marty L, Bouchiat V, Montagnac G, Souza Filho A G, Poncharal P, San-Miguel A. 2017. Biaxial Strain Transfer in Supported Graphene. Nano Lett, 17(1): 21-27 doi: 10.1021/acs.nanolett.6b02981 [20] Briggs R J, Ramdas A K. 1976. Piexospectroscopic study of the Raman spectrum of cadmium sulfide. Phys Rev B, 13(12): 5518-5529 doi: 10.1103/PhysRevB.13.5518 [21] Cai J, Raptis Y, Anastassakis E. 1993. Stabilized cubic zirconia: A Raman study under uniaxial stress. Appl Phys Lett, 62(22): 2781-2783 doi: 10.1063/1.109233 [22] Cappelli E, Esposito L, Pinzari F, Mattei G, Orlando S. 2002. Diamond nucleation and adhesion on sintered nitride ceramics. Diam Relat Mater, 11(10): 1731-1746 doi: 10.1016/S0925-9635(02)00135-8 [23] Cen H, Kang Y L, Lei Z K, Qin Q H, Qiu W. 2006. Micromechanics analysis of Kevlar-29 aramid fiber and epoxy resin microdroplet composite by Micro-Raman spectroscopy. Compos Struct, 75(1-4): 532-538 doi: 10.1016/j.compstruct.2006.04.015 [24] Chai J, Walker G, Wang L, Massoubre D, Iacopi A. 2016. Effect of SiC-on-Si template residual stress on GaN residual stress and crystal quality. Phys Status Solidi B, 253(5): 824-828 doi: 10.1002/pssb.201552626 [25] Chang H B, Luo J, Liu H, Davijani A B, Wang P H, Kumar S. 2017. Orientation and interfacial stress transfer of cellulose nanocrystal nanocomposite fibers. Polymer, 110: 228-234 doi: 10.1016/j.polymer.2017.01.015 [26] Chen J, de Wolf I. 2003. Study of damage and stress induced by backgrinding in Si wafers. Semicond Sci Tech, 18(4): 261-268 doi: 10.1088/0268-1242/18/4/311 [27] Chen L Q, Xin Z, Zhang T Y, Lin H Y, Lee S. 2000. Micro-Raman spectral analysis of the subsurface damage layer in machined silicon wafers. J Mater Res, 15(7): 1441-1444 doi: 10.1557/JMR.2000.0209 [28] de Wolf I. 1999. Stress measurements in Si microelectronics devices using Raman spectroscopy. J Raman Spectrosc, 30(10): 877-883. doi: 10.1002/(SICI)1097-4555(199910)30:10<877::AID-JRS464>3.0.CO;2-5 [29] de Wolf I, Jian C, Rasras M, Spengen W, Simons V. 1999. High-resolution stress and temperature measurements in semiconductor devices using micro-Raman spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering, 3897: 239-252 [30] de Wolf I, Maes H E, Jones S K. 1996. Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment. J Appl Phys, 79(9): 7148-7156 doi: 10.1063/1.361485 [31] Demangeot F, Frandon J, Renucci M A, Briot O, Gil B, Aulombard R L. 1996. Raman determination of phonon deformation potentials in α-GaN. Solid State Commun, 100(4): 207-210 doi: 10.1016/0038-1098(96)00410-3 [32] Deng W L, Qiu W, Li Q, Kang Y L, Guo J G, Li Y L, Han S S. 2014. Multi-Scale Experiments and Interfacial Mechanical Modeling of Carbon Nanotube Fiber. Exp Mech, 54: 3-10 doi: 10.1007/s11340-012-9706-1 [33] Dou W B, Xu C C, Guo J G, Du H Z, Qiu W, Xue T, Kang Y L, and Zhang Q. 2018. Interfacial mechanical properties of double-layer graphene with consideration of the effect of stacking mode. Acs Appl Mater Inter, 10(51): 44941-44949 doi: 10.1021/acsami.8b18982 [34] Du H Z, Kang Y L, Xu C C, Xue T, Qiu W, Xie H M. 2022. Measurement and characterization of interfacial mechanical properties of graphene/MoS2 heterostructure by Raman and photoluminescence (PL) spectroscopy. Opt Laser Eng, 149: 106825 doi: 10.1016/j.optlaseng.2021.106825 [35] Du H Z, Xue T, Xu C C, Kang Y L, Dou W B. 2018. Improvement of mechanical properties of graphene/substrate interface via regulation of initial strain through cyclic loading. Opt Laser Eng, 110: 356-363. doi: 10.1016/j.optlaseng.2018.04.026 [36] Dychalska A, Fabisiak K, Paprocki K, Dudkowiak A, Szybowicz M. 2015. Temperature dependence of stress in CVD diamond films studied by Raman spectroscopy. Mater Sci-Poland, 33(3): 620-626 doi: 10.1515/msp-2015-0064 [37] Eichhorn S J, Young R J. 2004. Composite micromechanics of hemp fibres and epoxy resin microdroplets. Compos Sci Technol, 64(5): 767-772 doi: 10.1016/j.compscitech.2003.08.002 [38] Feng G H, Li H J, Yao X Y, SunJ, Jia Y J. 2022. An optimized strategy toward multilayer ablation coating for SiC-coated carbon/carbon composites based on experiment and simulation. J Eur Ceram Soc, 42(9): 3802-3811. doi: 10.1016/j.jeurceramsoc.2022.03.050 [39] Fleck N, Hobson T D C, Savory C N, Buckeridge J, Veal T D, Correia M R, Scanlon D O, Durosea K, Jackel F. 2020. Identifying Raman modes of Sb2Se3 and their symmetries using angle-resolved polarised Raman spectra. Mater Chem A, 8: 8337 doi: 10.1039/D0TA01783C [40] Frogley M D, Zhao Q, Wagner H D. 2002. Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain. Phys Rev B, 65(11): 113413 doi: 10.1103/PhysRevB.65.113413 [41] Fu D H, He X Y, Ma L L, Xing H D, Meng T, Chang Y, Qiu W. 2020. The 2-axis stress component decoupling of {100} c-Si by using oblique backscattering micro-Raman spectroscopy. Sci China Phys Mech, 63(9): 51-57 [42] Ganesan S, Maradudin A A, Oitmaa J. 1970. A lattice theory of morphic effects in crystals of the diamond structure. Ann Phys-New York, 56(2): 556-594 doi: 10.1016/0003-4916(70)90029-1 [43] Gassenq A, Tardif S, Guilloy K, Dias G O, Pauc N, Duchemin I, Rouchon D, Hartmann J M, Widiez J, Escalante J, Niquet Y M, Geiger R, Zabel T, Sigg H, Faist J, Chelnokov A, Rieutord F, Reboud V, Calvo V. 2016. Accurate strain measurements in highly strained Ge microbridges. Appl Phys Lett, 108: 241902 doi: 10.1063/1.4953788 [44] Gogoi N, Bharadwaj J S, Agarwal P. 2019. Study of Laser Induced Micro-structural Changes in Reduced Graphene oxide. Current Trends in Renewable and Alternate Energy, 2091: 020023 [45] Guo Q L, Zhang M, Xue Z Y, Zhang J, Wang G, Chen D, Mu Z Q, Huang G S, Mei Y F, Di Z F, Wang X. 2015. Uniaxial and tensile strained germanium nanomembranes in rolled-up geometry by polarized Raman scattering spectroscopy. Aip Adv, 5(3): 037115 doi: 10.1063/1.4914916 [46] He R, Ma H L, Zheng J H, Han Y M, Lu Y M, Cai C B. 2017. Micro-structure changes induced by femtosecond laser on the surface of GaN multilayer film grown on Si substrate. Appl. Phys. A, 123: 679 doi: 10.1007/s00339-017-1307-5 [47] Hu L, Rauf A, Severin N, Sokolov I M. Rabe J P. 2019. Influence of interface hydration on sliding of graphene and molybdenum-disulfide single-layers. J Colloid Interf Sci, 540: 142-147 doi: 10.1016/j.jcis.2018.12.089 [48] Huang J J, Gui C M, Ding M, Wang H, Xu W B, Li J Q, Gao M, Guan H M. 2015. Effects of chemical stoichiometry on the structural properties of Si-rich oxide thin films. Thin Solid Films, 595: 79-83 doi: 10.1016/j.tsf.2015.10.040 [49] Huang S Y, Chen Y J, Luo Z, Xu X F. 2021. Temperature and strain effects in micro-Raman thermometry for measuring in-plane thermal conductivity of thin films. Nanosc Microsc Therm, 25(2): 1-1 [50] Jang C W, Kim J H, Lee D H, Shin D H, Kim S, Choi S H, Hwang E, Elliman R G. 2017. Effect of stopping-layer-assisted boron-ion implantation on the electrical properties of graphene: Interplay between strain and charge doping. Carbon, 118: 343-347 doi: 10.1016/j.carbon.2017.03.058 [51] Kaltsas G, Nassiopoulou A G, Siakavellas M, Anastassakis E. 1998. Stress effect on suspended polycrystalline silicon membranes fabricated by micromachining of porous silicon. Sensor Actuat A-Phys, 68(1-3): 429-434 doi: 10.1016/S0924-4247(98)00063-6 [52] Kang Y L, Qiu Y, Lei Z K, Hu M. 2005. An application of Raman spectroscopy on the measurement of residual stress in porous silicon. Opt Laser Eng, 43(8): 847-855 doi: 10.1016/j.optlaseng.2004.09.005 [53] Kim H K, Kim S I, Kim S, Lee N S, Shin H K, Lee C W. 2020. Relation between work function and structural properties of triangular defects in 4H-SiC epitaxial layer: Kelvin probe force microscopic and spectroscopic analyses. Nanoscale, 12: 8216-8229 doi: 10.1039/C9NR10126H [54] Kollins K, Przybyla C, Amer M S. 2018. Residual stress measurements in melt infiltrated SiC/SiC ceramic matrix composites using Raman spectroscopy. J Eur Ceram Soc, 38(7): 2784-2791 doi: 10.1016/j.jeurceramsoc.2018.02.013 [55] Kosemura D, de Wolf I. 2015. Three-dimensional micro-Raman spectroscopy mapping of stress induced in Si by Cu-filled through-Si vias. Appl Phys Lett, 106: 191901 doi: 10.1063/1.4921004 [56] Lee U, Han Y, Lee S, Kim J S, Lee Yo H, Kim U J, Son H B. 2019. Time evolution studies on strain and doping of graphene grown on a copper substrate using Raman spectroscopy. ACS nano, 14(1): 919-926 [57] Lei S Y, Young R J. 2001. Deformation of PBO/epoxy plain weave fabric laminae followed using Raman spectroscopy. Compos Part A-Appl S, 32(3): 499-509 [58] Lei Z K, Qin F Y, Fang Q C, Bai R X, Qiu W, Chen X. 2018. Full-field fabric stress mapping by micro Raman spectroscopy in a yarn push-out test. Appl Opt, 57(4): 924-930 doi: 10.1364/AO.57.000924 [59] Lei Z K, Wang Q, Kang Y L, Qiu W, Pan X M. 2010. Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 shingle fiber. Opt Laser Eng, 48(11): 1089-1095 doi: 10.1016/j.optlaseng.2009.12.008 [60] Lei Z K, Wang Q, Qiu W. 2013a. Micromechanics of fiber–crack interaction studied by micro-Raman spectroscopy: Bridging fiber. Opt Laser Eng, 51(4): 358-363 doi: 10.1016/j.optlaseng.2012.12.003 [61] Lei Z K, Wang Q, Qiu W. 2013b. Micromechanics of fiber–crack interaction studied by micro-Raman spectroscopy: Broken fiber. Opt Laser Eng, 51: 1085-1091 doi: 10.1016/j.optlaseng.2013.03.013 [62] Lei Z K, Wang Y F, Qin F Y, Qiu W, Bai R X, Chen X G. 2016. Multi-fiber strains measured by micro-Raman spectroscopy: Principles and experiments. Opt Laser Eng, 77: 8-17 doi: 10.1016/j.optlaseng.2015.07.005 [63] Li H, Wu J B, Ran F R, Lin M L, Liu X L, Zhao Y Y, Lu X, Xiong Q H, Zhang J, Huang W, Zhang H, Tan P H. 2017. Interfacial Interactions in van der Waals Heterostructures of MoS2 and Graphene. ACS Nano, 11(11): 11714-11723 doi: 10.1021/acsnano.7b07015 [64] Li H B, Zhang P C, Li G, Lu J B, Wu Q W, Gu Y J. 2016. Stress measurement for nonstoichiometric ceria films based on Raman spectroscopy. J Alloy Compd, 682: 132-137 doi: 10.1016/j.jallcom.2016.04.272 [65] Li Q, Qiu W, Tan H, Guo J G, Kang Y L. 2010. Micro-Raman spectroscopy stress measurement method for porous silicon film. Opt Laser Eng, 48(11): 1119-1125 doi: 10.1016/j.optlaseng.2009.12.020 [66] Li Q, Wang J S, Kang Y L, Li Y L, Qin Q H, Wang Z L, Zhong X H. 2012. Multi-scale study of the strength and toughness of carbon nanotube fiber materials. Mat Sci Eng A-Struct, 549: 118-122 doi: 10.1016/j.msea.2012.04.015 [67] Li Q, Wang Y, Li T T, Li W, Wang F F, Janotti A, Law S, Gu T Y. 2020. Chalcogenide Thin Films by Micro-Raman Spectroscopy. ACS Omega, 5: 8090-8096 doi: 10.1021/acsomega.0c00224 [68] Li R B, Shang Y C, Xing H D, Wang X J, Sun M Y, Qiu W. 2020. Orientation identification of the black phosphorus with different thickness based on B2g mode using a micro-Raman spectroscope under a nonanalyzer configuration. Materials, 13(23): 5572 doi: 10.3390/ma13235572 [69] Li R B, Sun M Y, Shang Y C, Xing H D, Wang X J, Qiu W. 2021. Crystalline orientation identification of multilayer black phosphorus based on the Ag1 and Ag2 Raman modes for an orthogonally polarized configuration. J Phys Chem C, 125(9): 5172-5179 doi: 10.1021/acs.jpcc.0c10936 [70] Li X L, Qiao X F, Han W P, LuY, Tan P H. 2015. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates. Nanoscale, 7(17): 8135-8141 doi: 10.1039/C5NR01514F [71] Li Y Y, Hu Z X, Lin S H, Lai S K, Ji W, Lau S P. 2016. Giant Anisotropic Raman Response of Encapsulated Ultrathin Black Phosphorus by Uniaxial Strain. Adv Funct Mater, 27: 1600986 [72] Li Z L, Young R J, Papageorgiou D G, Kinloch I A, Zhao X, Yang C, Hao S J. 2019. Interfacial stress transfer in strain engineered wrinkled and folded graphene. 2D Mater, 6(4): 045026. doi: 10.1088/2053-1583/ab3167 [73] Lin M L, Leng Y C, Cong X, Meng D, Wang J H, Li X L, Yu B L, Liu X L, Yu X F, Tan P H. 2020. Understanding angle-resolved polarized Raman scattering from black phosphorus at normal and oblique laser incidences. Sci Bull, 65(22): 1894-1900 doi: 10.1016/j.scib.2020.08.008 [74] Liu J L, Zhang X W, Zhang S, Zou Z X, Zhang Z L, Wu Z H, Xia Y, Li Q Y, Zhao P, Wang H T. 2021. Sequential growth and twisted stacking of chemical-vapor-deposited graphene. Nanoscale Advances, 3: 983-990 doi: 10.1039/D0NA00982B [75] Liu J L, Zhu C H, Zhang Z L, Ren Q C, Zhang X W, Zhang Y, Jin Y H, Qiu W, Wang H T, Zhao J H, Zhao P. 2022. Interlayer shear coupling in bilayer graphene. Npj 2D Mater Appl, 6: 38 doi: 10.1038/s41699-022-00314-8 [76] Liu S, Tang Q Q, Wu B B, Zhang F, Liu J Y, Fan C M, Lei L. 2021. Raman scattering from highly-stressed anvil diamond. Chin. Phys. B, 30(1): 016301 doi: 10.1088/1674-1056/abc7a7 [77] Loudon R. 1964. The Raman effect in crystals. Adv Phys, 13: 423-482 doi: 10.1080/00018736400101051 [78] Lu N, Zhang Y H, Qiu W. 2021. Comparison and Selection of Data Processing Methods for the Application of Cr3+ Photoluminescence Piezospectroscopy to Thermal Barrier Coatings. Coatings, 11(2): 181 doi: 10.3390/coatings11020181 [79] Lyon L A, Keating C D, Fox A P, Baker B E, Natan M J. 1998. Raman spectroscopy. Anal Chem, 70(12): 341R doi: 10.1021/a1980021p [80] Ma L L, Fan X J, Qiu W. 2019. Polarized Raman spectroscopy–stress relationship considering shear stress effect. Opt Lett, 44(19): 0146-9592 [81] Ma L L, Qiu W, Fan X J. 2021a. Stress/strain characterization in electronic packaging by micro-Raman spectroscopy: A review. Microelectron Reliab, 118: 114045 doi: 10.1016/j.microrel.2021.114045 [82] Ma L L, Zheng J X, Fan X J, Qiu W. 2021b. Determination of stress components in complex stress condition using micro-Raman spectroscopy. Opt Express, 29(19): 30319-30326 doi: 10.1364/OE.434235 [83] Ma W J, Liu L Q, Yang R, Zhang T H, Zhang Z, Song L, Ren Y, Shen J, Niu Z Q, Zhou W Y, Xie S S. 2010. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv Mater, 21: 603-608 [84] Manotas S, Agullo-Rueda F, Moreno J D, Ben-Hander F, Guerrero-Lemus R, Martinez-Duart J M. 2000. Determination of stress in porous silicon by micro-Raman spectroscopy. Phys Status Solidi A, 182(1): 245-248 doi: 10.1002/1521-396X(200011)182:1<245::AID-PSSA245>3.0.CO;2-W [85] Mao N N, Zhang S S, Wu J X, Tian H H, Wu J X, Xu H, Peng H L, Tong L M, Zhang J. 2018. Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Res, 11(6): 3154-3163 doi: 10.1007/s12274-017-1690-4 [86] Meszmer P, Rodriguez R D, Sheremet E, Zahn D R T, Wunderle B. 2017. Stress imaging in structural challenging MEMS with high sensitivity using micro-Raman spectroscopy. Microelectron Reliab, 79: 104-110 doi: 10.1016/j.microrel.2017.10.010 [87] Miyagawa H, Sato C, Ikegami K. 2001a. Mode II interlaminar fracture toughness of multidirectional carbon fiber reinforced plastics cracking on 0//0 interface by Raman spectroscopy. Mat Sci Eng A-Struct, 308(1): 200-208 [88] Miyagawa H, Sato C, Ikegami K. 2001b. Interlaminar fracture toughness of CFRP in Mode I and Mode II determined by Raman spectroscopy. Compos Part A-Appl S, 32(3): 477-486 [89] Miyagawa H, Sato C, Ikegami K. 2002. Mode I mesoscopic fracture toughness of CFRP by Raman coating method. Mech Mater, 34(3): 179-189 doi: 10.1016/S0167-6636(01)00103-X [90] Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N. 2009. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys Rev B, 79: 205433 doi: 10.1103/PhysRevB.79.205433 [91] Moradi R, Karimi-Sabet J, Shariaty-Niassar M, Koochaki M A. 2015. Preparation and Characterization of Polyvinylidene Fluoride/Graphene Superhydrophobic Fibrous Films. Polymers, 7: 1444-1463 doi: 10.3390/polym7081444 [92] Myers G A, Hazra S S, de Boer M P, Michaels C A, Stranick S J, Koseski R P, Cook R F, DelRio F W. 2014. Stress mapping of micromachined polycrystalline silicon devices via confocal Raman microscopy. Appl Phys Lett, 104: 191908 doi: 10.1063/1.4878616 [93] Nance J, Subhash G, Sankar B, Haftka R, Kim NH, Deck C, Oswald S. 2021. Measurement of Residual Stress in Silicon Carbide Fibers of Tubular Composites Using Raman Spectroscopy. Acta Mater, 217: 117164. doi: 10.1016/j.actamat.2021.117164 [94] Nafie L A. 2017. Recent advances in linear and non-linear Raman spectroscopy. Part XI. J Raman Spectrosc, 48(12): 1692-1717 doi: 10.1002/jrs.5310 [95] Naumis G G, Barraza-Lopez S, Oliva-Leyva M, Terrones H. 2017. Electronic and optical properties of strained graphene and other strained 2D materials: a review. Reports on Progress in Physics, 80(9): 096501 doi: 10.1088/1361-6633/aa74ef [96] Nguyen M H, Lim S Y, Taniguchi T, Wantanabe K, Cheong H. 2021. Interlayer interaction in 2H-MoTe2/hBN heterostructures. 2D Mater, 8: 045004 doi: 10.1088/2053-1583/ac1254 [97] Niherysh K A, Andzane J, Mikhalik M M, Zavadsky S M, Dobrokhotov P L, Lombardi F, Prischepa S L, Komissarov I V, Erts D. 2021. Correlation analysis of vibration modes in physical vapour deposited Bi2Se3 thin films probed by the Raman mapping technique. Nanoscale Adv, 3: 6395 doi: 10.1039/D1NA00390A [98] Nuytten T, Bogdanowicz J, Hantschel T, Schulze A, Favia P, Bender H, De Wolf I, Vandervorst W. 2017. Advanced Raman spectroscopy using nanofocusing of light. Adv Eng Mater, 19(8): 1600612 doi: 10.1002/adem.201600612 [99] Olego D, Cardona M. 1982. Pressure dependence of the optical phonons and transverse effective charge in 3C-SiC. Phys Rev B, 25(6): 3878-3888 doi: 10.1103/PhysRevB.25.3878 [100] Pezzotti G, Okai K, Zhu W. 2012. Stress tensor dependence of the polarized Raman spectrum of tetragonal barium titanate. J Appl Phys, 111(1): 013504 doi: 10.1063/1.3672833 [101] Pezzotti G, Zhu W. 2015. Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina. Phys Chem Chem Phys, 17: 2608-2627 doi: 10.1039/C4CP04244A [102] Qin F Y, Lei Z K, Ma Y, Fang Q C, Bai R X, Qiu W, Yan C, Feng Y. 2018. Stress transfer of single yarn drawing in soft fabric studied by micro Raman spectroscopy. Compos Part A-Appl S, 112: 134-141 doi: 10.1016/j.compositesa.2018.06.002 [103] Qiu W, Cheng C L, Liang R R, Zhao C W, Lei Z K, Zhao Y C, Ma L L, Xu J, Fang H J, Kang Y L. 2016. Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy. Acta Mech Sin, 32(5): 805-812 doi: 10.1007/s10409-016-0591-1 [104] Qiu W, He S S, Chang Y, Ma L L, Qu C Y. 2022. Error Analysis for Stress Component Characterization Based on Polarized Raman Spectroscopy. Exp Mech, 62: 1007-1015 [105] Qiu W, Kang Y L. 2014. Mechanical behavior study of microdevice and nanomaterials by Raman spectroscopy: A review. Chinese Sci Bull, 59(23): 2811-2824 doi: 10.1007/s11434-014-0401-8 [106] Qiu W, Kang Y L, Lei Z K, Qin Q H, Li Q, Wang Q. 2010. Experimental study of the Raman strain rosette based on the carbon nanotube strain sensor. J Raman Spectrosc, 41(10): 1216-1220 doi: 10.1002/jrs.2584 [107] Qiu W, Li Q, Lei Z K, Qin Q H, Deng W L, Kang Y L. 2013. The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy. Carbon, 53: 161-168 doi: 10.1016/j.carbon.2012.10.043 [108] Qiu W, Ma L L, Li Q, Xing H D, Cheng C L, Huang G Y. 2018. A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy. Acta Mech Sinica, 34(6): 1095-1107 doi: 10.1007/s10409-018-0797-5 [109] Rao R, Islam A E, Singh S, Berry R, Kawakami R K, Maruyama B, Katoch J. 2019. Spectroscopic evaluation of charge-transfer doping and strain in graphene/MoS2 heterostructures. Phys Rev B, 99(19): 195401 doi: 10.1103/PhysRevB.99.195401 [110] Rho H, Jackson H E, Weiss B L. 1999. Raman imaging of stress in a SiGe/Si photoelastic optical channel waveguide structure. Appl Phys Lett, 75(9): 1287-1289 doi: 10.1063/1.124670 [111] Rho H, Jackson H E, Weiss B L. 2001. Mapping of local stress distributions in SiGe/Si optical channel waveguide. J Appl Phys, 90(1): 276-282 doi: 10.1063/1.1376420 [112] Rodríguez-Aranda F J, Méndez-Lozoya J, González F J, Rodríıguez A G. 2017. Raman spectroscopy mapping of Si (001) surface strain induced by Ni patterned micro arrays. J Appl Phys, 122(12): 125703 doi: 10.1063/1.4985817 [113] Ruan S L, Gao P, Yang X G, Yu T X. 2003. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer, 44(19): 5643-5654 doi: 10.1016/S0032-3861(03)00628-1 [114] Ruan S L, Gao P, Yu T X. 2006. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer, 47(5): 1604-1611 doi: 10.1016/j.polymer.2006.01.020 [115] Saha S, Rice A, Ghosh A, Hasan S M N, You W, Ma T, Hunter A, Bissell L J, Bedford R, Crawford M, Arafin S. 2021. Comprehensive characterization and analysis of hexagonal boron nitride on sapphire. AIP Advances, 11: 055008 doi: 10.1063/5.0048578 [116] Sakakima H, Takamoto S, Murakami Y, Hatano A, Goryu A, Hirohata K, Izumi S. 2018. Development of a method to evaluate the stress distribution in 4H-SiC power devices. Jpn J Appl Phys, 57: 106602 doi: 10.7567/JJAP.57.106602 [117] Shafiq M, Subhash G. 2014. A novel technique for the determination of surface biaxial stress under external confinement using Raman spectroscopy. Exp Mech, 54(5): 763-774 doi: 10.1007/s11340-014-9851-9 [118] So C L, Young R J. 2001. Interfacial failure in poly (p-phenylene benzobisoxazole)(PBO)/epoxy single fibre pull-out specimens. Compos Part A-Appl S, 32(3): 445-455 [119] Song H B, Na R, Hong C Y, Zhang G, Li X F, Kang Y L, Zhang Q, Xie H M. 2022. In situ measurement and mechanism analysis of the lithium storage behavior of graphene electrodes. Carbon, 188: 146-154 doi: 10.1016/j.carbon.2021.11.066 [120] Song H B, Xie H M, Xu C C, Kang Y L, Li C W, Zhang Q. 2019 In Situ Measurement of Strain Evolution in the Graphene Electrode during Electrochemical Lithiation and Delithiation. J Phys Chem C, 123 (31): 18861-18869 [121] Spengen W M V, de Wolf I, Knechtel R. 2000. Experimental one- and two-dimensional mechanical stress characterization of silicon microsystems using micro-Raman spectroscopy. International Society for Optics and Photonics, 4175: 132-139 [122] Starman L A, Lott J A, Amer M S, Cowan W D, Busbee J D. 2003. Stress characterization of mems microbridges by micro-raman spectroscopy. Sensor Actuat A-Phys, 104(2): 107-116 doi: 10.1016/S0924-4247(02)00432-6 [123] Stievater T H, Rabinovich W S, Park D, Boos J B, Calhoun L C. 2005. Piezoelectricity in (100) III-V Semiconductors. Conference on Lasers and Electro-optics, 1-3: 2129-2131 [124] Tardif S, Pavlenko E, Quazuguel L, Boniface M, Maréchal M, Micha J, Gonon L, Mareau V, Gebel G, Guillemaud P B, Rieutord F, Lyonnard S. 2017. Operando Raman Spectroscopy and Synchrotron X-ray Diffraction of Lithiation/Delithiation in Silicon Nanoparticle Anodes. Acs Nano, 11(11): 11306-11316 doi: 10.1021/acsnano.7b05796 [125] Tingzon P M, Husay H A, Cabello N I, Eslit J J, Cook K, Kapraun J, S Armando, De Leon M T, Rosales M, Salvador A, C C H, Estacio E. 2022. Indirect stress and air-cavity displacement measurement of MEMS tunable VCSELs via micro-Raman and micro-photoluminescence spectroscopy. Semicond Sci Technol, 37: 035013 doi: 10.1088/1361-6641/ac4abc [126] Tsang J C, Mooney P M, Dacol F, Chu J O. 1994. Measurements of alloy composition and strain in thin Gex Si1−x layers. Appl. Phys, 75: 8098-8108 doi: 10.1063/1.356554 [127] Tsukada S, Fujii Y. 2020. Multivariate curve resolution for angle-resolved polarized Raman spectroscopy of ferroelectric crystals. Jpn J Appl Phys, 59: SKKA03 [128] Verma D, Prakash C, Tomar V. 2017. Interface Mechanics and its Correlation with Plasticity inPolycrystalline Metals, Polymer Composites, and Natural Materials. Procedia Engineering, 173: 1266-1274 doi: 10.1016/j.proeng.2016.12.152 [129] Wang G R, Dai Z H, Wang Y L, Tan P H, Liu L Q, Xu Z P, Wei Y G, Huang R, Zhang Z. 2017. Measuring interlayer shear stress in bilayer graphene. Phys Rev Lett, 119 (3): 036101 [130] Wang H T, Tan L S, Chor E F. 2004. Optical and electrical characterization of annealed silicon-implanted GaN. Semicond Sci Tech, 19: 142-146 doi: 10.1088/0268-1242/19/2/002 [131] Wang J Y, Luo X, Li S S, Verzhbitskiy I, Zhao W J, Wang S F, Quek S Y, Eda G. 2017. Determination of crystal axes in semimetallic T’-MoTe2 by polarized Raman spectroscopy. Adv Funct Mater, 27(14): 1604799 doi: 10.1002/adfm.201604799 [132] Wang X, Zhang Y, Liu S, Zhao Z. 2014. Depth profiling by raman spectroscopy of high-energy ion-irradiated silicon carbide. Nucl Instrum Meth B, 319: 55-61 doi: 10.1016/j.nimb.2013.10.017 [133] Wang Y L, Cong C X, Fei R X, Yang W H, Chen Y, Cao B C, Yang L, Yu T. 2015. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorous. Nano Res, 8(12): 3944-3953 doi: 10.1007/s12274-015-0895-7 [134] Wang Z Y, Si B J, Chen S, Jiao B B, Yan X L. 2019. A nondestructive raman spectra stress 2D analysis for the pressure sensor sensitive silicon membrane. Eng Fail Anal, 105: 1252-1261 doi: 10.1016/j.engfailanal.2019.06.089 [135] Wei Y H, Wei Z H, Zheng X M, Liu J X, Chen Y B, Su Y, Luo W, Peng G, Huang H, Cai W W, Deng C Y, Zhang X A, Qin S Q. 2021. Stress Effects on Temperature-Dependent In-Plane Raman Modes of Supported Monolayer Graphene Induced by Thermal Annealing. Nanomaterials, 11(10): 2751 doi: 10.3390/nano11102751 [136] Wood J R, Zhao Q, Wagner H D. 2001. Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy. Compos Part A-Appl S, 32(3-4): 391-399 doi: 10.1016/S1359-835X(00)00105-6 [137] Xie H M, Song H B, Guo J G, Kang Y L, Yang W, Zhang Q. 2019. In situ measurement of rate-dependent strain/stress evolution and mechanism exploration in graphene electrodes during electrochemical process. Carbon, 144: 342-350 doi: 10.1016/j.carbon.2018.12.033 [138] Xie H M, Han B, Song H B, Li X, Kang Y L, Zhang Q. 2021. In-situ measurements of electrochemical stress/strain fields and stress analysis during an electrochemical process. J Mech Phys Solids, 156: 104602 doi: 10.1016/j.jmps.2021.104602 [139] Xing H D, Wang X J, Xu C C, Du H Z, Li R B, Zhao Z H, Qiu W. 2023. Spectral mechanical investigation of the elastic interface between a MoS2/graphene heterostructure and a soft substrate. Carbon, 204: 566-574 doi: 10.1016/j.carbon.2023.01.014 [140] Xu C C, Xue T, Qiu W, Kang Y L. 2016. Size effect of the interfacial mechanical behavior of graphene on a stretchable substrate. Acs Appl Mater Inter, 8(4): 27099-27106 [141] Xu C C, Yao Q Z, Du H Z, Hong C Y, Xue T, Kang Y L, Li Q Y. 2021. Abnormal Raman Characteristics of Graphene Originating from Contact Interface Inhomogeneity. ACS appl mater inter, 13(18): 22040-22046 doi: 10.1021/acsami.1c03941 [142] Xu C C, Yang T H, Kang Y L, Li Q Y, Xue T, Liechti KM, Huang R, Qiu, W. 2019. Rate-dependent decohesion modes in graphene-sandwiched interfaces. Adv Mater Interfaces, 6(23): 1901217 doi: 10.1002/admi.201901217 [143] Xu B, Mao N N, Zhao Y, Tong L M, Zhang J. 2021. Polarized Raman spectroscopy for determining crystallographic orientation of low-dimensional materials. J Phys Chem Lett, 12(31): 7442-7452 doi: 10.1021/acs.jpclett.1c01889 [144] Xu W H, Lu D, Zhang T Y. 2001. Determination of residual stresses in Pb(Zr0.53Ti0.47)O3 thin films with Raman spectroscopy. Appl Phys Lett, 79(25): 4112-4114 doi: 10.1063/1.1426271 [145] Yan Y, Zhou X, Jin H, Li C Z, Ke X X, Tendeloo G V, Liu K H, Yu D P, Dressel M, Liao Z M. 2015. Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons. Acs Nano, 9(10): 10244-10251 doi: 10.1021/acsnano.5b04057 [146] Young R J, Day R J. 2010. Application of raman microscopy to the analysis of high modulus polymer fibres and composites. Polym Int, 21(1): 17-21 [147] Young R J, Lu D, Day R J. 2010. Raman spectroscopy of Kevlar fibres during deformation–Caveat emptor. Polym Int, 24(2): 71-76 [148] Young R J, Thongpin C, Stanford J L, Lovell P A. 2001. Fragmentation analysis of glass fibres in model composites through the use of Raman spectroscopy. Compos Part A-Appl S, 32(2): 253-269 doi: 10.1016/S1359-835X(00)00091-9 [149] Zeng Z D, Liu N, Zeng Q S, Lee S W, Mao W L, Cui Y. 2016. In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy, 22: 105-110 doi: 10.1016/j.nanoen.2016.02.005 [150] Zhang G W, Huang S Y, Chaves A, Song C Y, V. Ozcelik O, Low T, Yan H G. 2016. Infrared fingerprints of few-layer black phosphorus. Nat Commun, 8: 14071. [151] Zhang K, Xu Z W, Zhao J L, Wang H, Hao J M, Zhang S N, Cheng H J, Dong B. 2022. Anisotropies of angle-resolved polarized Raman response identifying in low miller index β-Ga2O3 single crystal. Appl Surf Sci, 581: 152426 doi: 10.1016/j.apsusc.2022.152426 [152] Zhang L N, Lu Z M, Song Y S, Zhao L, Bhatia B, Bagnall K R, Wang E N. 2019. Thermal expansion coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy. Nano lett, 19(7): 4745-4751 doi: 10.1021/acs.nanolett.9b01829 [153] Zhang Y H, Lu N, Qiu W. 2021. Optimal Data Processing Method for the Application of Eu3 + Photoluminescence Piezospectroscopy in Thermal Barrier Coatings. Coatings, 11(6): 678 doi: 10.3390/coatings11060678 [154] Zhang Y Y, Cheng R, Xie S, Xu S, Yu X, Zhang R, Zhao Y. 2017. Strain Engineering for Germanium-on-Insulator Mobility Enhancement with Phase Change Liner Stressors. Chinese Phys Lett, 34(10): 108101 doi: 10.1088/0256-307X/34/10/108101 [155] Zhao L, Jiang Z L, Zhang C, Jiang Z X. 2021. Development model and experimental characterization of residual stress of 3D printing PLA parts with porous structure. Appl Phys A, 127(2): 98 doi: 10.1007/s00339-020-04238-2 [156] Zhao P, Ouyang X P, Yu J F, Xu H S, Wang S S, Li Fang. 2021. Measurement of Residual Stress in YBa2Cu3O7x Thin Films by Raman Spectroscopy. J Low Temp Phy, 202(6861): 382-396 [157] Zhao Q, Frogley M D, Wagner H D. 2001. The use of carbon nanotubes to sense matrix stresses around a single glass fiber. Compos Sci Technol, 61(14): 2139-2143 doi: 10.1016/S0266-3538(01)00166-X [158] Zhao Q, Wagner H D. 2003. Two-dimensional strain mapping in model fiber-polymer composites using nanotube Raman sensing. Compos Part A-Appl S, 34(12): 1219-1225 doi: 10.1016/j.compositesa.2003.07.005 [159] Zhao Z W, Cheng X L, Xue F, He T, Wang T Y. 2017. Effect of annealing temperature on the stress and structural properties of Ge core fibre. J Cryst Growth, 473: 1-5 doi: 10.1016/j.jcrysgro.2017.04.036