留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速飞行器减阻降热研究进展

潘利生 郝亨隆 姚子康 郭媛 慕浩凡 李敏 魏小林

潘利生, 郝亨隆, 姚子康, 郭媛, 慕浩凡, 李敏, 魏小林. 高速飞行器减阻降热研究进展. 力学进展, 2023, 53(4): 793-818 doi: 10.6052/1000-0992-23-021
引用本文: 潘利生, 郝亨隆, 姚子康, 郭媛, 慕浩凡, 李敏, 魏小林. 高速飞行器减阻降热研究进展. 力学进展, 2023, 53(4): 793-818 doi: 10.6052/1000-0992-23-021
Pan L S, Hao H L, Yao Z K, Guo Y, Mu H F, Li M, Wei X L. Current status of research on reducing drag and cooling of high-speed aircraft. Advances in Mechanics, 2023, 53(4): 793-818 doi: 10.6052/1000-0992-23-021
Citation: Pan L S, Hao H L, Yao Z K, Guo Y, Mu H F, Li M, Wei X L. Current status of research on reducing drag and cooling of high-speed aircraft. Advances in Mechanics, 2023, 53(4): 793-818 doi: 10.6052/1000-0992-23-021

高速飞行器减阻降热研究进展

doi: 10.6052/1000-0992-23-021
详细信息
    作者简介:

    潘利生, 中国科学院力学研究所副研究员, 长期从事热能的高效传递、转化与利用研究. 聚焦CO2热力循环体系, 提出了自冷凝CO2跨临界动力循环、CO2跨临界热力循环综合储能系统和飞行器CO2综合热管理系统. 先后主持国家自然科学基金项目3项、北京市自然科学基金项目1项, 获得授权发明专利20余项, 发表学术论文70余篇

    通讯作者:

    panlisheng@imech.ac.cn

  • 中图分类号: V37

Current status of research on reducing drag and cooling of high-speed aircraft

More Information
  • 摘要: 降低飞行阻力、探索更高效的热防护系统是研发高速飞行器过程中至关重要的课题. 目前, 国内外学者在飞行器减阻降热的机理及应用技术方面进行了大量研究, 取得了丰富的成果. 本文系统地梳理了在高速飞行器减阻降热领域的研究进展, 阐述了主动热防护机理的研究结果, 介绍了应用于高速飞行器的前沿减阻降热技术, 并简述了基于余热利用的整体热防护系统的发展情况. 基于对研究现状的分析, 归纳总结了高速飞行器减阻降热技术的发展趋势与实际研究需求; 最后针对这些实际研究需求, 提出了一些研究思路上的建议.

     

  • 图  1  飞行器气动热(Glass 2008). (a) 前缘热流随飞行速度变化, (b) 马赫数7.8时飞行器各部位温度 (℃)

    图  2  二维切向气膜物理模型(Stollery 1965)

    图  3  结合可压缩混合层与湍流边界层区物理模型(Kanda et al. 1994)

    图  4  主动减阻降热方法(卓长飞 等 2014)

    图  5  减阻杆头部横向射流纹影图( Jiang et al. 2009)

    图  6  逆向射流实验模型(Shang et al. 2001)

    图  7  Hyper-X前体吹气模型( Berry et al. 2008)

    图  8  不同逆向射流总压比时流场纹影(Sriram & Jagadeesh 2009)

    图  9  等离子体逆向喷流实验中球头受控流场演化(马正雪 等 2022)

    图  10  MHD原理示意图(梁伟 等 2021)

    图  11  典型主动热防护法示意图

    图  12  超燃冲压发动机再生冷却示意图(袁鑫 等2017)

    图  13  射流预冷工作原理图(陆禹铭 2022)

    图  14  前缘发汗冷却结构与液态水发汗冷却实验过程(Wang et al. 2014, Shen et al. 2016)

    图  15  综合热管理系统(唐玫 等 2022)

    图  16  Qin等建立的热能利用系统(Qin et al. 2010)

    图  17  带回热的超临界布雷顿循环一体化系统(姜培学 等 2021)

    图  18  热电发电机制(Cheng et al. 2018)

    图  19  新型热管理系统(Guo et al. 2023)

  • [1] 陈加政, 胡国暾, 樊国超, 陈伟芳. 2021. 等离子体合成射流对钝头激波的控制与减阻. 航空学报, 42: 124773 (Chen J Z, Hu G T, Fan G C, Chen W F. 2021. Bow shock wave control and drag reduction by plasma synthetic jet. Acta Aeronautica et Astronautica Sinica, 42: 124773).

    Chen J Z, Hu G T, Fan G C, Chen W F. 2021. Bow shock wave control and drag reduction by plasma synthetic jet. Acta Aeronautica et Astronautica Sinica, 42: 124773.
    [2] 陈于, 马麟, 白羽林. 2014. 水平管内气液两相流型及换热的研究进展. 制冷, 33: 39-44 (Chen Y, Ma L, Bai Y L. 2014. Research on flow patterns and condensation heat transfer inside horizontal tubes. Refrigeration, 33: 39-44).

    Chen Y, Ma L, Bai Y L. 2014. Research on flow patterns and condensation heat transfer inside horizontal tubes. Refrigeration, 33: 39-44.
    [3] 高峰, 袁修干. 2009. 高性能战斗机燃油热管理系统. 北京航空航天大学学报, 35: 1353-1356 (Gao F, Yuan X G. 2009. Fuel the mal management system of hgh performance fighter aircraft. Journal of Beijing University of Aeronautics and Astronautics, 35: 1353-1356).

    Gao F, Yuan X G. 2009. Fuel the mal management system of hgh performance fighter aircraft. Journal of Beijing University of Aeronautics and Astronautics, 35: 1353-1356.
    [4] 过增元. 2000. 对流换热的物理机制及控制: 速度场与热流场的协同 科学通报, 45 : 2118-2122 (Guo Z Y. 2000. The physical mechanism and control of convective heat transfer: The synergy between velocity field and heat flux field. Chinese Science Bulletin, 45 : 2118-2122).

    Guo Z Y. 2000. The physical mechanism and control of convective heat transfer: The synergy between velocity field and heat flux field. Chinese Science Bulletin, 45: 2118-2122.
    [5] 韩路阳, 王斌, 蒲亮, 陈青, 郑海滨. 2022. 能量沉积减阻技术机理及相关问题研究进展. 航空学报, 43: 026032 (Han L Y, Wang B, Pu L, Chen Q, Zheng H B. 2022. Research progress on mechanism and related problems of energy deposition drag reduction technology. Acta Aeronautica et Astronautica Sinica, 43: 026032).

    Han L Y, Wang B, Pu L, Chen Q, Zheng H B. 2022. Research progress on mechanism and related problems of energy deposition drag reduction technology. Acta Aeronautica et Astronautica Sinica, 43: 026032.
    [6] 侯燕, 陶毓伽, 淮秀兰. 2012. 多喷嘴喷雾场数值模拟分析. 工程热物理学报, 33: 1362-1366 (Hou Y, Tao Y J, Hai X L. 2012. numerical simulation and analysis of multi-nozzle spray cooling. Journal of Engineering Thermophysics, 33: 1362-1366).

    Hou Y, Tao Y J, Hai X L. 2012. numerical simulation and analysis of multi-nozzle spray cooling. Journal of Engineering Thermophysics, 33: 1362-1366.
    [7] 胡峰, 张海, 王慧杰. 2022. 有机混合工质对航空发动机射流预冷效果的数值研究. 热能动力工程, 37: 31-37 (Hu F, Zhang H, Wang H J. 2022. Numerical study on the effect of organic mixed working mediumon mass injection and pre compressor cooling of aero Engine. Journal of Engineering for Thermal Energy and Power, 37: 31-37).

    Hu F, Zhang H, Wang H J. 2022. Numerical study on the effect of organic mixed working mediumon mass injection and pre compressor cooling of aero Engine. Journal of Engineering for Thermal Energy and Power, 37: 31-37.
    [8] 胡皓玮, 胥蕊娜, 姜培学. 2021. 多孔介质流动沸腾微观模型实验研究. 工程热物理学报, 42: 424-429 (Hu H W, Xu R N, Jiang P X. 2021. Experimental investigation of flow boiling in porous media with micromodels. Journal of Engineering Thermophysics, 42: 424-429).

    Hu H W, Xu R N, Jiang P X. 2021. Experimental investigation of flow boiling in porous media with micromodels. Journal of Engineering Thermophysics, 42: 424-429.
    [9] 贾利梅. 2020. 小管径水平圆管管外冷凝传热数值分析. 流体机械, 48: 84-88 (Jia L M. 2020. Numerical analysis of condensation heat transfer for small diameter horizontal circular tubes. Fluid Machinery, 48: 84-88).

    Jia L M. 2020. Numerical analysis of condensation heat transfer for small diameter horizontal circular tubes. Fluid Machinery, 48: 84-88.
    [10] 姜培学, 张富珍, 胥蕊娜, 祝银海. 2021. 高超声速飞行器发动机热防护与发电一体化系统. 航空动力学报, 36: 1-7 (Jiang P X, Zhang F Z, Xu R N, Zhu Y H. 2021. Integrated thermal protection and power generation system of hypersonic vehicle engine. Journal of Aerospace Power, 36: 1-7).

    Jiang P X, Zhang F Z, Xu R N, Zhu Y H. 2021. Integrated thermal protection and power generation system of hypersonic vehicle engine. Journal of Aerospace Power, 36: 1-7.
    [11] 姜维, 杨云军, 陈河梧. 2011. 带减阻杆高超声速飞行器外形气动特性研究. 实验流体力学, 25: 28-32 (Jiang W, Yang Y J, Chen H Y. 2011. Investigations on aerodynamics of the spike -tipped hypersonic vehicles. Journal of Experiments in Fluid Mechanics, 25: 28-32).

    Jiang W, Yang Y J, Chen H Y. 2011. Investigations on aerodynamics of the spike -tipped hypersonic vehicles. Journal of Experiments in Fluid Mechanics, 25: 28-32.
    [12] 焦予秦, 程玉庆, 金承信. 2008. 机翼喷流增升机理的风洞试验研究. 实验流体力学, 22: 20-24 (Jiao Y Q, Cheng Y Q, Jin C X. 2008. Wind tunnel experimental research on lift-enhancingmechanism of jet on wing of aircraft. Journal of Experiments in Fluid Mechanics, 22: 20-24).

    Jiao Y Q, Cheng Y Q, Jin C X. 2008. Wind tunnel experimental research on lift-enhancingmechanism of jet on wing of aircraft. Journal of Experiments in Fluid Mechanics, 22: 20-24.
    [13] 李刚团, 李继保, 周人治. 2006. 涡轮-冲压组合发动机技术发展浅析. 燃气涡轮试验与研究, 19: 57-62 (Li G T, Li B R, Zhou R Z. 2006. Development study on turbine based combined cycle enginetechnology. Gas Turbine Experiment and Research, 19: 57-62).

    Li G T, Li B R, Zhou R Z. 2006. Development study on turbine based combined cycle enginetechnology. Gas Turbine Experiment and Research, 19: 57-62.
    [14] 李丽荣, 刘妮, 黄千卫. 2015, 倾斜式喷雾冷却研究进展. 制冷技术, 35 : 52-56, 60 (Li L R, Liu N, Huang Q W. 2015. Research progress on inclined spray cooling. Chinese Journal of Refrigeration Technology, 35 : 52-56, 60).

    Li L R, Liu N, Huang Q W. 2015. Research progress on inclined spray cooling. Chinese Journal of Refrigeration Technology, 35: 52-56, 60.
    [15] 李新春, 王中伟. 2016. 高超声速飞行器的热电技术热管理系统参数. 国防科技大学学报, 38: 43-47 (Li X C, Wang Z W. 2016. Parametric of an integrated thermoelectric generation thermal management system for hypersonic vehicle. Journal of National University of Defense Technology, 38: 43-47).

    Li X C, Wang Z W. 2016. Parametric of an integrated thermoelectric generation thermal management system for hypersonic vehicle. Journal of National University of Defense Technology, 38: 43-47.
    [16] 梁伟, 金华, 孟松鹤, 杨强, 曾庆轩, 许承海. 2021. 高超声速飞行器新型热防护机制研究进展. 宇航学报, 42: 409-424 (Liang W, Jin H, Meng S H, Yang Q, Zeng Q X, Xu C H. 2021. Research progress on new thermal protection mechanism of hypersonic vehicles. Journal of Astronautics, 42: 409-424).

    Liang W, Jin H, Meng S H, Yang Q, Zeng Q X, Xu C H. 2021. Research progress on new thermal protection mechanism of hypersonic vehicles. Journal of Astronautics, 42: 409-424.
    [17] 刘嘉航, 吕哲, 周艳文, 黄士罡, 陈浩, 徐能. 2022. 热障涂层先进陶瓷材料研究进展. 表面技术, 51: 42-52 (Liu J H, Lv Z, Zhou Y W, Huang S G, Chen H, Xu N. 2022. Research Progress of Advanced Ceramic Materials for Thermal Barrier Coatings. Surface Technology, 51: 42-52).

    Liu J H, Lv Z, Zhou Y W, Huang S G, Chen H, Xu N. 2022. Research Progress of Advanced Ceramic Materials for Thermal Barrier Coatings. Surface Technology, 51: 42-52.
    [18] 陆禹铭. 2022. 喷水射流预冷对航空发动机进气温度的影响研究. 硕士论文. 哈尔滨: 哈尔滨工程大学 (Lu Y M. 2022. Investigation on the Effect of Pre-cooling by Water Injection on Inlet Air Temperature of Aero-Engine. MA thesis. Harbin: Harbin Engineering University).

    Lu Y M. 2022. Investigation on the Effect of Pre-cooling by Water Injection on Inlet Air Temperature of Aero-Engine. MA thesis. Harbin: Harbin Engineering University.
    [19] 马秀萍, 郭亚林, 张祎. 2018. 轻质烧蚀防热材料研究进展. 航天制造技术, 1: 2-6, 11 (Ma X P, Guo Y L, Zhang Y. 2018. Progression of lightweight ablative thermal protection materials. Aerospace Manufacturing Technology, 1: 2-6, 11).

    Ma X P, Guo Y L, Zhang Y. 2018. Progression of lightweight ablative thermal protection materials. Aerospace Manufacturing Technology, 1: 2-6, 11.
    [20] 马正雪, 罗振兵, 赵爱红. 2022. 高超声速流场等离子体合成射流逆向喷流特性研究. 航空学报, 43: 727747 (Ma Z X, Luo Z B, Zhao A H. 2022. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field. Acta Aeronautica et Astronautica Sinica, 43: 727747).

    Ma Z X, Luo Z B, Zhao A H. 2022. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field. Acta Aeronautica et Astronautica Sinica, 43: 727747.
    [21] 庞丽萍, 邹凌宇, 阿嵘. 2019, 高速运载器燃油热管理系统优化. 北京航空航天大学学报, 45 : 252-258 (Pang L P, Zou L Y, A R. 2019. Optimization of fuel heat management system for high-speed aircraft. Journal of Beijing University of Aeronautics and Astronautics, 45 : 252-258).

    Pang L P, Zou L Y, A R. 2019. Optimization of fuel heat management system for high-speed aircraft. Journal of Beijing University of Aeronautics and Astronautics, 45: 252-258.
    [22] 唐玫, 吉洪湖, 胡娅萍. 2022. 超声速飞行器综合热管理系统优化设计. 推进技术, 43: 50-60 (Tang M, Ji H H, Hu Y P. 2022. Optimal design of comprehensive thermal management system for supersonic vehicle. Journa l of Propulsion Technology, 43: 50-60).

    Tang M, Ji H H, Hu Y P. 2022. Optimal design of comprehensive thermal management system for supersonic vehicle. Journa l of Propulsion Technology, 43: 50-60.
    [23] 司春强, 邵双全, 田长青, 刘小朋, 肖杨. 2012. 润滑油对喷雾冷却性能影响. 制冷技术, 32: 42-45 (Si C Q, Shao S Q, Tian C Q, Liu X P, Xiao Y. 2012. The influence of lubricating oil on the performance of spray cooling. Chinese Journal of Refrigeration Technology, 32: 42-45).

    Si C Q, Shao S Q, Tian C Q, Liu X P, Xiao Y. 2012. The influence of lubricating oil on the performance of spray cooling. Chinese Journal of Refrigeration Technology, 32: 42-45.
    [24] 孙学舟, 李志辉, 吴俊林, 马强. 2020. 再入气动环境类电池帆板材料微观响应变形行为分子动力学模拟研究. 载人航天, 26: 459-468 (Sun X Z, Li Z H, Wu J L, Ma Q. 2020. Molecular dynamic simulation of microscopic response deform behaviors of battery-like sailboard material under re-entry aerothermodynamic environment. Manned Spaceflight, 26: 459-468).

    Sun X Z, Li Z H, Wu J L, Ma Q. 2020. Molecular dynamic simulation of microscopic response deform behaviors of battery-like sailboard material under re-entry aerothermodynamic environment. Manned Spaceflight, 26: 459-468.
    [25] 王建, 孙冰, 魏玉坤. 2008. 超声速气膜冷却数值模拟. 航空动力学报, 23: 865-870 (Wang J, Sun B, Wei Y K. 2008. Numerical simulation of supersonic gaseous film cooling. Journal of Aerospace Power, 23: 865-870).

    Wang J, Sun B, Wei Y K. 2008. Numerical simulation of supersonic gaseous film cooling. Journal of Aerospace Power, 23: 865-870.
    [26] 王林, 罗振兵, 夏智勋. 2012. 合成双射流控制翼型分离流动的数值研究. 空气动力学学报, 3: 353-357, 372 (Wang L, Luo Z B, Xia Z X. 2012. Numerical simulation of separated flow control on anairfoil using dual synthetic jets. Acta Aerodynamica Sinica, 3: 353-357,372).

    Wang L, Luo Z B, Xia Z X. 2012. Numerical simulation of separated flow control on anairfoil using dual synthetic jets. Acta Aerodynamica Sinica, 3: 353-357,372.
    [27] 王佩广, 刘永绩, 王浚. 2007. 高超声速飞行器综合热管理系统方案探讨. 中国工程科学, 9: 44-48 (Wang P G, Liu Y J, Wang J. 2007. Discussion on integrated environment control/thermal management system concepts for hypersonic vehicle. Engineering Science, 9: 44-48).

    Wang P G, Liu Y J, Wang J. 2007. Discussion on integrated environment control/thermal management system concepts for hypersonic vehicle. Engineering Science, 9: 44-48.
    [28] 吴云, 李应红. 2015. 等离子体流动控制研究进展与展望. 航空学报, 36: 381-405 (Wu Y, Li Y H. 2015. Progress and outlook of plasma flow control. Acta Aeronautica et Astronautica Sinica, 36: 381-405).

    Wu Y, Li Y H. 2015. Progress and outlook of plasma flow control. Acta Aeronautica et Astronautica Sinica, 36: 381-405.
    [29] 谢宁宁. 2012. 喷雾冷却及其换热强化的实验与理论研究. 博士论文. 北京: 中国科学院工程热物理研究所 (Xie N N. 2012. Experimental and Theoretical Study on Spray Cooling and Its Heat Transfer Enhancement. PhD dissertation. Beijing: Institution of Engineering Thermophysics, Chinese Academy of Sciences).

    Xie N N. 2012. Experimental and Theoretical Study on Spray Cooling and Its Heat Transfer Enhancement. PhD dissertation. Beijing: Institution of Engineering Thermophysics, Chinese Academy of Sciences.
    [30] 杨海洋, 刘昌国, 赵婷. 2017. 液体火箭发动机液膜冷却分析模型. 哈尔滨: 首届中国空天推进技术论坛论文集 (Yang H Y, Liu C G, Zao T. 2017. Analysis model of liquid film cooling for liquid rocket engines. Harbin: Proceedings of the First China Aerospace Propulsion Technology Forum).

    Yang H Y, Liu C G, Zao T. 2017. Analysis model of liquid film cooling for liquid rocket engines. Harbin: Proceedings of the First China Aerospace Propulsion Technology Forum.
    [31] 杨薇, 孙冰. 2011. 液膜再生复合冷却中液膜传热特性. 航空动力学报, 26: 2015-2020 (Yang W, Sun B. 2011. Thermal characteristics of liquid film in a filmregenerative cooling system. Journal of Aerospace Power, 26: 2015-2020).

    Yang W, Sun B. 2011. Thermal characteristics of liquid film in a filmregenerative cooling system. Journal of Aerospace Power, 26: 2015-2020.
    [32] 姚子康. 2023. 基于CO2的飞行器降温减阻技术优化方法及特性. 硕士论文. 北京: 中国科学院力学研究所 (Yao Z K 2023. Optimization Method and Characteristics of Aircraft Cooling and Drag Reduction Technology Based on CO2. MA thesis. Beijing: University of Chinese Academy of Sciences).

    Yao Z K 2023. Optimization Method and Characteristics of Aircraft Cooling and Drag Reduction Technology Based on CO2. MA thesis. Beijing: University of Chinese Academy of Sciences.
    [33] 袁鑫, 寇志海, 赵国昌, 李彬彬, 曾文, 李广超. 2017. 矩形通道超临界再生冷却技术研究综述. 飞航导弹, 5: 18-23 (Yuan X, Kou Z H, Zhao G C, Li B B, Zeng W, Li G C. 2017. Review of Research on Supercritical Regenerative Cooling Technology in Rectangular Channels. Aerodynamic Missile Journal, 5: 18-23).

    Yuan X, Kou Z H, Zhao G C, Li B B, Zeng W, Li G C. 2017. Review of Research on Supercritical Regenerative Cooling Technology in Rectangular Channels. Aerodynamic Missile Journal, 5: 18-23.
    [34] 张旭东, 李铮, 董昊, 高思源, 纪祖赑, 黎凯昕, 白光辉. 2022. 高超声速流场等离子体逆向喷流减阻特性. 航空学报, 43 : 727727 (Zhang X D, Li Z, Dong H, Gao S Y, Ji Z B, Li K X, Bai G H. 2012. Drag reduction characteristics of opposing plasma synthetic jet in hypersonic flow. Acta Aeronautica et Astronautica Sinica, 43 : 727727).

    Zhang X D, Li Z, Dong H, Gao S Y, Ji Z B, Li K X, Bai G H. 2012. Drag reduction characteristics of opposing plasma synthetic jet in hypersonic flow. Acta Aeronautica et Astronautica Sinica, 43: 727727.
    [35] 张亚东, 张伟, 秦朔. 2020. 喷雾冷却换热机理研究进展. 制冷技术, 40: 34-41, 53 (Zhang Y D, Zhang W, Qin S. 2020. Research progress of spray cooling heat transfer mechanism. Chinese Journal of Refrigeration Technology, 40: 34-41, 53).

    Zhang Y D, Zhang W, Qin S. 2020. Research progress of spray cooling heat transfer mechanism. Chinese Journal of Refrigeration Technology, 40: 34-41, 53.
    [36] 张雨龙, 翁维康, 韩华, 任航. 2017. 阵列微喷射流冷板传热及压降特性实验研究. 制冷技术, 37: 27-32 (Zhang Y L, Weng W K, Han H, Ren H. 2017. Experimental investigation on heat transfer and pressure drop characteristics of liquid cooling plate with array of micro jets. Chinese Journal of Refrigeration Technology, 37: 27-32).

    Zhang Y L, Weng W K, Han H, Ren H. 2017. Experimental investigation on heat transfer and pressure drop characteristics of liquid cooling plate with array of micro jets. Chinese Journal of Refrigeration Technology, 37: 27-32.
    [37] 郑星, 冯黎明, 张云天等, 刘远树, 薛瑞. 2021. 超声速边界层燃烧减阻技术研究进展. 固体火箭技术, 44: 438-447 (Zheng X, Feng L M, Zhang Y T, Liu Y S, Xue R. 2021. Review of supersonic boundary layer combustion forskin friction drag reduction technology. Journal of Solid Rocket Technology, 44: 438-447).

    Zheng X, Feng L M, Zhang Y T, Liu Y S, Xue R. 2021. Review of supersonic boundary layer combustion forskin friction drag reduction technology. Journal of Solid Rocket Technology, 44: 438-447.
    [38] 卓长飞, 武晓松, 封锋. 2014. 超声速流动中底部排气形式对减阻性能的影响. 航空学报, 35: 2144-2155 (Zhuo C F, Wu X S, Feng F. 2014. Effect of Base Bleed Type on Drag ReductionPerformance in Supersonic Flow. Acta Aeronautica et Astronautica Sinica, 35: 2144-2155).

    Zhuo C F, Wu X S, Feng F. 2014. Effect of Base Bleed Type on Drag ReductionPerformance in Supersonic Flow. Acta Aeronautica et Astronautica Sinica, 35: 2144-2155.
    [39] Ambrosini W, Manfredini A, Mariotti F, Oriolo F, Vigni P. 1995. Heat transfer from a plate cooled by a water film withcounter current air flow. Nuclear Technology, 112: 227-237. doi: 10.13182/NT95-A35176
    [40] Ames W F, Hartnett J P, Laganelli A L. 1968. Transpiration cooling in a laminar boundary layer with solid wall upstream effects. AIAA, 6: 193-197. doi: 10.2514/3.4477
    [41] Alqadi I, Khalid M, Hafez S. 2013. Airfoil performance studies with a trailing edge jet flap. Canadian Aeronautics & Space Journal, 60: 23-35.
    [42] Berenson P J, Schuster J R, Soliman M. 1968. A General Heat Transfer Correlation for Annular Flow Condensation. Asme Journal of Heat Transfer, 10: 267-276.
    [43] Berry S, Nowak R, Horvath T. 2008. Boundary Layer Control for Hypersonic Airbreathing Vehicles. AIAA Fluid Dynamics Conference & Exhibit.
    [44] Bromley, Leroy A. 1952. Effect of Heat Capacity of Condensate. Industrial & Engineering Chemistry, 44: 2966-2969.
    [45] Cheng K, Qin J, Lv Y G. 2018. Performance assessment of multi-stage thermoelectric generators on hypersonic vehicles at a large temperature difference. Applied Thermal Engineering Design Processes Equipment Economics, 130: 1598-1609.
    [46] Donoughe P L, Livingood J N B. 1954. Exact solutions of laminar-boundary-layer equations with constant property values for porous wall with variable temperature. Technical Report Archive & Image Library.
    [47] Duong A H, Corke T C, Thomas F O. 2021. Characteristics of dragreduced turbulent boundary layers with pulsed-direct-current plasma actuation. Journal of Fluid Mechanics, 915: A113. doi: 10.1017/jfm.2021.167
    [48] Duraisamy K, Baeder J. 2013. Control of Tip-Vortex Structure Using Steady and Oscillatory Blowing. Applied Aerodynamics Conference, 21: 23-26.
    [49] Faulkner R. The Evolution of the HySet Hydrocarbon Fueled Scramjet Engine. AIAA-2003-7005.
    [50] Foreest A, Sippel M, Gulhan A, Esser B. 2009. Transpiration cooling using liquid water. Journal of Thermophysics and Heat Transfer, 23: 693-702. doi: 10.2514/1.39070
    [51] George O, Nowak R, Holden M, Baker N. 1990. Experimental results for film cooling in 2-D supersonic flow including coolant delivery pressure, geometry, and incident shock effects. 28th Aerospace Sciences Meeting. Reston VA: AIAA.
    [52] Glass D E. 2008. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.
    [53] Gregorig R, Kern J, Turek K. 1974. Improved correlation of film condensation data based on a more rigorous application of similarity parameters. Wä rme - und Stoffübertragung, 7: 1-13.
    [54] Guo L, Pang L P, Yang X D, Zhao J Q, Ma D S. 2023, A power and thermal management system for long endurance hypersonic vehicle. Chinese Journal of Aeronautics, 36: 29-40.

    Guo L, Pang L P, Yang X D, Zhao J Q, Ma D S. 2023, A power and thermal management system for long endurance hypersonic vehicle. Chinese Journal of Aeronautics, 36 : 29-40.
    [55] Guo L, Pang L P, Zhao J Q, Yang X D. 2022. Optimization of power and thermal management system of hypersonic vehicle with finite heat sink of fuel. Energies, 15 .
    [56] Guo Y, Zhou Z, Jia J, Zhou S. 2009. Optimal heat transfercriterion and inclination angle effects on non-boilingregime spray cooling. Semiconductor Thermal Measurement and Management Symposium, 2009. SEMI-THERM 2009. 25th Annual IEEE.
    [57] Han Q X, He X M, Tan H Y. 1998. Experimental study on film-cooling with supersonic injection. Journal of Nanjing University of Aeronautics and Astronautics, 30: 491-495.
    [58] Howell J, Oberstone J, Stechman R. 2011. Design criteria for film cooling for small liquid propellantrocket engines. Journal of Spacecraft and Rockets, 6: 97-102.
    [59] Hu H W, Jiang P X, Ouyang X L, Zhao C, Xu R N. 2020. A modifiedenergy equation model for flow boiling in porous media and itsapplication to transpiration cooling at low pressures withtransient effect. International Journal of Heat and MassTransfer, 158: 119745. doi: 10.1016/j.ijheatmasstransfer.2020.119745
    [60] Jacob D, Darrell S, James L R. 2016. Modeling fuelfilm cooling on rocket engine walls. AIAA-2016-2149.
    [61] Jiang Z L, Liu Y F, Han G L. 2009. Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles. Acta Mechanica Sinica, 25: 417-419. doi: 10.1007/s10409-009-0252-8
    [62] Kanda T, Masuya G, Ono F, Wakamatsu Y, Kanda T, Masuya G. 1994. Effect of film cooling/regenerative cooling on scramjet engine performances. Journal of Propulsion and Power, 10: 618-624. doi: 10.2514/3.23771
    [63] Konopka M, Meinke M, Schrder W. 2011. Large-Eddy Simulation of Supersonic Film Cooling at Laminar and Turbulent Injection. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.
    [64] Labergue A, Gradeck M, Lemoine F. 2015. Comparative study of the cooling of a hot temperaturesurface using sprays and liquid jets. InternationalJournal of Heat and Mass Transfer, 81: 889-900. doi: 10.1016/j.ijheatmasstransfer.2014.11.018
    [65] Li Z H, Ma Q, Cui J. 2016. Finite Element Algorithm for Dynamic Thermoelasticity Coupling Problems and Application to Transient Response of Structure with Strong Aerothermodynamic Environment. Communications in Computational Physics, 20 : 773-810.
    [66] Li Z H, Ma Q, Cui J. 2016. Second-order two-scale finite element algorithm for dynamic thermo-mechanical coupling problem in symmetric structure. Journal of Computational Physics, 1: 712-748.
    [67] Li Z H, Peng A, Ma Q, Dang L, Tang X, Sun X. 2019. Gas-kinetic unified algorithm for computable modeling of Boltzmann equation and application to aerothermodynamics for falling disintegration of uncontrolled Tiangong-No.1 spacecraft. Advances in Aerodynamics, 1: 1-21.

    Li Z H, Peng A, Ma Q, Dang L, Tang X, Sun X. 2019. Gas-kinetic unified algorithm for computable modeling of Boltzmann equation and application to aerothermodynamics for falling disintegration of uncontrolled Tiangong-No.1 spacecraft. Advances in Aerodynamics, 1: 1-21.
    [68] Lin A Q, Sun Y G, Zhang H, Lin X, Yang L, Zheng Q. 2018. Zheng. Fluctuating characteristics of air-mist mixture flow with conjugate wall-film motion in a compressor of gas turbine. Applied Thermal Engineering, 142: 779-792. doi: 10.1016/j.applthermaleng.2018.07.076
    [69] Lin A Q, Zhou J, Fawzy H. Zhang H, Zheng Q. 2019. Evaluation of mass injection cooling on flow and heat transfer characteristics for high-temperature inlet air in a MIPCC engine. International Journal of Heat And Mass Transfer, 135: 620-630. doi: 10.1016/j.ijheatmasstransfer.2019.02.025
    [70] Liu W, Chen Q. 1998. The effect of transpiration cooling with liquid oxygen on the flow field. 34th AIAA/ASME SAE/ASEEJoint Propulsion Conference andExhibit.
    [71] Liu W, Chen Q, Wu B. 2013. Transpiration cooling of rocket thrust chamber with liquid oxygen. 36th AIAA Aerospace Sciences Meeting and Exhibit.
    [72] Liang J, Li Z H, Li X, Shi W. 2018. Monte carlo simulation of spacecraft reentry aerothermodynamics and analysis for ablating disintegration. Communications in Computational Physics, 23(4): 1037-1051.
    [73] Mehta U, Bowles J, Melton J, Hagseth P. 2012. Water Injection Pre-Compressor Cooling Assist Space Access. International Space Planes and Hypersonic Systems and Technologies Conference.
    [74] Menezes V, Saravanan S, Jagadeesh G, Kpj R. 2002. Shock tunnel study of spiked aerodynamic bodies flying at hypersonic Mach numbers. Shock Waves, 12: 197-204. doi: 10.1007/s00193-002-0160-3
    [75] Menezes V, Saravanan S, Jagadeesh G, Kpj R. 2003. Experimental investigations of hypersonic flow over highly blunted cones with aerospikes. AIAA, 40: 1955-1966.
    [76] Miranda A W, Naraghi M H. 2011. Analysis of film cooling and heat transfer in rocket thrust chamber and nozzle. 49th AIAA Aerospace SciencesMeeting including the New HorizonsForum and Aerospace ExpositionAnalysis of Film Cooling and HeatTransfer in Rocket Thrust Chamber and Nozzle.
    [77] Miró F M, Pinna F. 2020, Injection-gas-composition effects on hypersonic boundary-layer transition. Journal of Fluid Mechanics, 890 : R4.
    [78] Morrell G. 1951. Investigation of internal film cooling of a 1000- pound thrust liquid ammonia liquid oxygen rocket. NACA Research Memorandum E51E04.
    [79] Müller R A, Pagan A S, Upadhyay P P, Herdrich G. 2019. Numerical assessment of magnetohydrodynamic heat flux mitigation for picosized entry capsule mockup. Journal of Thermophysics andHeat Transfer, 33: 1018-1025. doi: 10.2514/1.T5679
    [80] Niranjan S, Vinayak K, Saravanan S, Jagadeesh G, Reddy K. 2005. Film cooling effectiveness on a large angle blunt cone flying athypersonic speed. Physics of Fluids, 17: 036102. doi: 10.1063/1.1862261
    [81] O'Connor J P, Haji-Sheikh A. 2017. Numerical study of film cooling in supersonic flow. AIAA, 1: 2426-2433.
    [82] Pais M R, Chow L C, Mahefkey E T. 1992. Surface roughness and its effects on the heat transfer mechanism in spray cooling. Journal of Heat Transfer, 114: 211-219. doi: 10.1115/1.2911248
    [83] Piomelli U, Moin P, Ferziger J. 1989. Large eddy simulation of the flow in a transpired channel. Journal of Thermophysics & Heat Transfer, 5: 124-128.
    [84] Prithiviraj M, Andrews M J. 1998. Three dimensional numer-ical simulation of shell-and-tubeheat exchangers. Part I: Heat transfer, Numerical Heat Transfer, Part A. 33 : 817-828.
    [85] Qin J, Zhou W X, Bao W, Yu D. 2010. Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet. International Journal of Hydrogen Energy, 35: 356-364. doi: 10.1016/j.ijhydene.2009.09.025
    [86] Reeve H, Finney A. 2015. Probabilistic analysis for aircraft thermal management system design and evaluation. Aiaa Aerospace Sciences Meeting & Exhibit.
    [87] Ren F, Tang J, Liu L, Wu Z, Sun H. 1998. Influence of transpiration cooling on laminar boundary layer structure. 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference.
    [88] Riebe J M. 1955. A correlation of two dimensional data in lift coefficient available with blowing-, suction-, slotted-, and plain flap high lift devices[M]. Langley Aeronautical Laboratory.
    [89] Rohsenow W M. 1956. Heat transfer and temperature distribution in laminar film condensation. Trans Asme, 78: 1645-1648.
    [90] Sahoo N, Kulkarni V, Saravanan S. 2005, Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed. Physics of Fluids, 17 : 036102.
    [91] Saravanan S, Jagadeesh G, Reddy K. 2009. Investigation of missile-shaped body with forward-facing cavity at Mach 8. Journal of Spacecraft and Rockets, 46: 577-591. doi: 10.2514/1.38914
    [92] Shang J, Hayes J, Wurtzler K, Strang W. 2001. Jet-spike bifurcation in high-speed flows. AIAA, 39: 1159-1165. doi: 10.2514/2.1430
    [93] Shen L, Wang J H, Dong W J, Pu J, Peng J L, Qu D J, Chen L Z. 2016. An experimental investigation on transpiration cooling with phase change under supersonic condition. Applied Thermal Engineering, 105: 549-556. doi: 10.1016/j.applthermaleng.2016.03.039
    [94] Shi J X, Wang J H. 2011. A numerical investigation of transpiration cooling with liquid coolant phase change. Transport in Porous Media, 87: 703-716. doi: 10.1007/s11242-010-9710-9
    [95] Shine S R, Nidhi S S. 2018. Review on film cooling of liquid rocket engines. Propulsion and Power Research, 7: 1-18. doi: 10.1016/j.jppr.2018.01.004
    [96] Song J, Tao L, Li Q, Peng C, Dong Z, Peng C, Jun S. 2021. Study on the heat transfer characteristics of regenerative cooling for LOX/LCH4 variable thrust rocket engine. Case Studies in Thermal Engineering, 28: 101664. doi: 10.1016/j.csite.2021.101664
    [97] Sriram R, Jagadeesh G. 2009. Film cooling at hypersonic Mach numbers using forward facing array of micro-jets. International Journal of Heat and Mass Transfer, 52: 3654-3664. doi: 10.1016/j.ijheatmasstransfer.2009.02.035
    [98] Stechman R C, Joelee O, Howell J. 1968. Fil cool-ing design criteria for small rocket engines. AIAA-1968-617.
    [99] Stollery J L, El-Ehwany A. 1965. A note on the use of a boundary-layer model for correlating film-cooling data. International Journal of Heat & Mass Transfer, 8 : 55-65.
    [100] Tandon T N, Varma H K, Gupta C P. 1982. A new flow regimes map for condensation inside horizontal tubes. Journal of Heat Transfer, 104: 763-768. doi: 10.1115/1.3245197
    [101] Thornton E A. 1996. Thermal Structures for Aerospace Applications, AIAA.
    [102] Tindell R, Willis B. 1997. Experimental investigation of blowing for controlling oblique shock boundary layer interactions. 33rd Joint Propulsion Conference and Exhibit.
    [103] Wang J, Jin H, Gao H, Wen D. 2022. Cooling capacity optimization of hydrocarbon fuels for regenerative cooling. Applied Thermal Engineering: Design, processes, equipment, economics, 200 : 117661.
    [104] Wang J H, Zhao L J, Wang X C, Ma J, Jia L. 2014. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant. InternationalJournal of Heat and Mass Transfer, 75: 442-449. doi: 10.1016/j.ijheatmasstransfer.2014.03.076
    [105] Wang Y, Jiang Y, Chen W, Zhou B. 2018. Heat transfer characteristics of spray cooling beyond critical heat fluxunder severe heat dissipation condition. Applied Thermal Engineering, 123: 1356-1364.
    [106] Warren C H. 1960. An experimental investigation of the effect of ejecting a coolant gas at the nose of a blunt body. Journal of Fluid Mechanics, 8: 400-417. doi: 10.1017/S0022112060000694
    [107] Wei R, Hu C, Wu F, Zhu X, Yang J, Li F, Li C. 2021. Heat-transfer characteristics of CO2 boiling flow in the regenerative cooling channel of an Mg/CO2 powder rocket engine for Mars missions. Acta Astronautica, 189: 43-54. doi: 10.1016/j.actaastro.2021.08.010
    [108] Whalley P, Hewitt G F. 1978. The correlation of liquid entrainment fraction and entrainment rate in annular two phase flow. UKAEA Atomic Energy Research Establishment.
    [109] Wishart D, Fortin T, Guinan D, Modroukas D. 2003. Design, Fabrication and Testing of an Actively Cooled Scramjet Propulsion System. 41st Aerospace Sciences Meeting and Exhibit.
    [110] Yang J, Pais M, Chow L. 1993. High heat flux spraycooling. Proceedings of SPIE-The InternationalSociety for Optical Engineering, 8: 29-40.
    [111] Yang X, Badcock K J, Richards B E, Barakos G N. 2003. Numerical study of film cooling in hypersonic flows. 36th AIAA Thermophysics Conference.
    [112] Zhang B, Huang H M, Lu X L. 2020. Experimentalinvestigation on transpiration cooling for porous ceramic withliquid water. Astronautica, 167: 117-121. doi: 10.1016/j.actaastro.2019.11.009
    [113] Zhang S, Li X, Zuo J, Bao W. 2020. Research progress on active thermal protection for hypersonic vehicles. Progress in Aerospace Sciences, 119: 100646. doi: 10.1016/j.paerosci.2020.100646
    [114] Zhou Z, Chen B, Wang R. 2016, Coupling effect of hypobaric pressure and spray distance on heat transfer dynamics of R134a pulsed flashing spray cooling. Experimental Thermal and Fluid Science, 70 : 96-104.
  • 加载中
图(19)
计量
  • 文章访问数:  904
  • HTML全文浏览量:  179
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-20
  • 录用日期:  2023-12-19
  • 网络出版日期:  2023-12-22
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回